1
|
Zhang C, Meng Y, Zhao M, Wang M, Wang C, Dong J, Fan W, Xu F, Wang D, Xie Z. Advances and mechanisms of fungal symbionts in improving the salt tolerance of crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112261. [PMID: 39270825 DOI: 10.1016/j.plantsci.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Soil salinization leads to reduced crop yields and waste of land resources, thereby impacting global food security. To meet the increasing demand for food and simultaneously alleviate pressure on soil resources, the development of sustainable agriculture is imperative. In contrast to physical and chemical methods, bioremediation represents an efficient and environmentally friendly approach. Fungal symbionts have been found to be associated with most plants in natural ecosystems, colonizing and residing within the internal tissues of host plants. Moreover, the potential of fungal symbionts in improving saline-alkaline soil has been widely recognized and confirmed. Numerous reports have documented the effectiveness of arbuscular mycorrhizal fungi in alleviating salt stress in plants. Meanwhile, research on other endophytic fungi for mitigating plant salt stress has emerged in recent years, which contributes to refining mechanisms for enhancing plant salt tolerance. In this review, we summarized various mechanisms by which endophytic fungi enhance plant salt tolerance. We also provided an overview of the challenges and development directions in the field of fungal symbiosis, with the aim of offering a viable strategy for the bioremediation of saline-alkali soils.
Collapse
Affiliation(s)
- Chengkai Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Yue Meng
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Mengguang Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Mengliang Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Chao Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Jingyi Dong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Wenbin Fan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Fulei Xu
- Jiangsu Wolvbao Biological Technology Co., Ltd, Su'qian City, Jiangsu 223800, China
| | - Dandan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
2
|
Wang W, Wang H, Zhang Z, Li W, Yin X, Long Y. Dual RNA sequencing during Trichoderma harzianum-Phytophthora capsici interaction reveals multiple biological processes involved in the inhibition and highlights the cell wall as a potential target. PEST MANAGEMENT SCIENCE 2024; 80:4533-4542. [PMID: 38742618 DOI: 10.1002/ps.8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Phytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T-22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known. RESULTS T. harzianum T-22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T-22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T-22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici. CONCLUSION These findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Haidong Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Zhuzhu Zhang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Xianhui Yin
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
3
|
Chen Z, Guo Z, Zhou L, Xu H, Liu C, Yan X. Advances in Identifying the Mechanisms by Which Microorganisms Improve Barley Salt Tolerance. Life (Basel) 2023; 14:6. [PMID: 38276255 PMCID: PMC10817418 DOI: 10.3390/life14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
As the global human population continues to increase, the use of saline-alkali land for food production is an important consideration for food security. In addition to breeding or cultivating salt-tolerant crop varieties, microorganisms are increasingly being evaluated for their ability to improve plant salt tolerance. Barley is one of the most important and salt-tolerant cereal crops and is a model system for investigating the roles of microorganisms in improving plant salt tolerance. However, a comprehensive review of the mechanisms by which microorganisms improve barley salt tolerance remains lacking. In this review, the mechanisms of barley salt tolerance improvement by microorganisms are summarized, along with a discussion of existing problems in current research and areas of future research directions. In particular, with the development of sequencing technology and the great reduction of prices, the use of omics can not only comprehensively evaluate the role of microorganisms but also evaluate the impact of the microbiome on plants, which will provide us with many opportunities and challenges in this research area.
Collapse
Affiliation(s)
- Zhiwei Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Zhenzhu Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Hongwei Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Xin Yan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Wippel K. Plant and microbial features governing an endophytic lifestyle. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102483. [PMID: 37939457 DOI: 10.1016/j.pbi.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Beneficial microorganisms colonizing internal plant tissues, the endophytes, support their host through plant growth promotion, pathogen protection, and abiotic stress alleviation. Their efficient application in agriculture requires the understanding of the molecular mechanisms and environmental conditions that facilitate in planta accommodation. Accumulating evidence reveals that commensal microorganisms employ similar colonization strategies as their pathogenic counterparts. Fine-tuning of immune response, motility, and metabolic crosstalk accounts for their differentiation. For a holistic perspective, in planta experiments with microbial collections and comprehensive genome data exploration are crucial. This review describes the most recent findings on factors involved in endophytic colonization processes, focusing on bacteria and fungi, and discusses required methodological approaches to unravel their relevance within a community context.
Collapse
Affiliation(s)
- Kathrin Wippel
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Zhang S, Zhang C, Gao ZF, Qiu CW, Shi SH, Chen ZH, Ali MA, Wang F, Wu F. Integrated physiological and omics analyses reveal the mechanism of beneficial fungal Trichoderma sp. alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115631. [PMID: 37890251 DOI: 10.1016/j.ecoenv.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal and readily accumulates in tobacco, which imperils public health via Cd exposure from smoking. Beneficial microbes have a pivotal role in promoting plant growth, especially under environmental stresses such as heavy metal stresses. In this study, we introduced a novel fungal strain Trichoderma nigricans T32781, and investigated its capacity to alleviate Cd-induced stress in tobacco plants through comprehensive physiological and omics analyses. Our findings revealed that T32781 inoculation in soil leads to a substantial reduction in Cd-induced growth inhibition. This was evidenced by increased plant height, enhanced biomass accumulation, and improved photosynthesis, as indicated by higher values of key photosynthetic parameters, including the maximum quantum yield of photosystem Ⅱ (Fv/Fm), stomatal conductance (Gs), photosynthetic rate (Pn) and transpiration rate (Tr). Furthermore, element analysis demonstrated that T. nigricans T32781 inoculation resulted in a remarkable reduction of Cd uptake by 62.2% and a 37.8% decrease in available soil Cd compared to Cd-stressed plants without inoculation. The protective role of T32781 extended to mitigating Cd-induced oxidative stress by improving antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX). Metabolic profiling of tobacco roots identified 43 key metabolites, with notable contributions from compounds like nicotinic acid, succinic acid, and fumaric acid in reducing Cd toxicity in T32781-inoculated plants. Additionally, rhizosphere microbiome analysis highlighted the promotion of beneficial microbes, including Gemmatimonas and Sphingomonas, by T32781 inoculation, which potentially contributed to the restoration of plant growth under Cd exposure. In summary, our study demonstrated that T. nigricans T32781 effectively alleviated Cd stress in tobacco plants by reducing Cd uptake, alleviating Cd-induced oxidative stress, influencing plant metabolite and modulating the microbial composition in the rhizosphere. These findings offer a novel perspective and a promising candidate strain for enhancing Cd tolerance and prohibiting its accumulation in plants to reduce health risks associated with exposure to Cd-contaminated plants.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chulong Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zi-Feng Gao
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Wei Qiu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shou-Heng Shi
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Feng Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Feibo Wu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Wei Y, Yang H, Hu J, Li H, Zhao Z, Wu Y, Li J, Zhou Y, Yang K, Yang H. Trichoderma harzianum inoculation promotes sweet sorghum growth in the saline soil by modulating rhizosphere available nutrients and bacterial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1258131. [PMID: 37771481 PMCID: PMC10523306 DOI: 10.3389/fpls.2023.1258131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
As one of the major abiotic stresses, salinity can affect crop growth and plant productivity worldwide. The inoculation of rhizosphere or endophytic microorganisms can enhance plant tolerance to salt stresses, but the potential mechanism is not clear. In this study, Trichoderma harzianum ST02 was applied on sweet sorghum [Sorghum bicolor (L.) Moench] in a field trial to investigate the effects on microbiome community and physiochemical properties in the rhizosphere soil. Compared with the non-inoculated control, Trichoderma inoculation significantly increased the stem yield, plant height, stem diameter, and total sugar content in stem by 35.52%, 32.68%, 32.09%, and 36.82%, respectively. In addition, Trichoderma inoculation improved the nutrient availability (e.g., N, P, and K) and organic matter in the rhizosphere soil and changed the bacterial community structure and function in both bulk and rhizosphere soil by particularly increasing the relative abundance of Actinobacter and N-cycling genes (nifH, archaeal and bacterial amoA). We proposed that T. harzianum ST02 could promote sweet sorghum growth under saline conditions by regulating available nutrients and the bacterial community in the rhizosphere soil.
Collapse
Affiliation(s)
- Yanli Wei
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Han Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jindong Hu
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongmei Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhongjuan Zhao
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuanzheng Wu
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jishun Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Kai Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hetong Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
7
|
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 2023; 21:312-326. [PMID: 36414835 DOI: 10.1038/s41579-022-00819-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.
Collapse
Affiliation(s)
- Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Zhou R, Qian Y, Lei Z, Tang Y, Li Y. Production and characterization of exopolysaccharides from salinity-induced Auxenochlorella protothecoides and the analysis of anti-inflammatory activity. Int J Biol Macromol 2023; 240:124217. [PMID: 37001784 DOI: 10.1016/j.ijbiomac.2023.124217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
The set scenario of this work was to investigate the production, physicochemical characteristics, and anti-inflammatory activities of exopolysaccharides from salinity-induced Auxenochlorella protothecoides. The results demonstrated that 10 ‰ salinity manipulation endowed preferable exopolysaccharide production by A. protothecoides. Under this salinity stress, ACPEPS1A and ACPEPS2A were purified from exopolysaccharide production by anion chromatography and molecular exclusion chromatography. ACPEPS1A exhibited a molecular weight (Mw) of 132 kDa and mainly consisted of galactose. ACPEPS2A was a heteropolysaccharide with an Mw of 170 kDa and the main monosaccharides of galactose and rhamnose with separate molar percents of 42.41 % and 35.29 %, respectively. FTIR, 1H and 13C NMR supported that monosaccharide components of ACPEPS1A and ACPEPS2A possessed both α- and β-configuration pyranose rings. Further evidence indicated that ACPEPS1A and ACPEPS2A could effectively inhibit the inflammatory response in lipopolysaccharide (LPS) induced RAW264.7 cells by quenching inflammatory factor levels such as ROS, iNOS, TNF-α, and IL-6. The potential anti-inflammatory possibilities were that the monosaccharides of ACPEPS1A and ACPEPS2A possessed higher affinity with receptors on the macrophage surface than LPS and hampered LPS-induced inflammation. The findings of this work would favor innovative applications of exopolysaccharides from microalgae in complementary medicines or functional foods.
Collapse
|
9
|
Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput Struct Biotechnol J 2022; 20:6543-6551. [DOI: 10.1016/j.csbj.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
|
10
|
Cao ZJ, Qin WT, Zhao J, Liu Y, Wang SX, Zheng SY. Three New Trichoderma Species in Harzianum Clade Associated with the Contaminated Substrates of Edible Fungi. J Fungi (Basel) 2022; 8:1154. [PMID: 36354921 PMCID: PMC9696741 DOI: 10.3390/jof8111154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 04/16/2024] Open
Abstract
Trichoderma is known worldwide as biocontrol agents of plant diseases, producers of enzymes and antibiotics, and competitive contaminants of edible fungi. In this investigation of contaminated substrates of edible fungi from North China, 39 strains belonging to 10 Trichoderma species isolated from four kinds of edible fungi were obtained, and three novel species belonging to the Harzianum clade were isolated from the contaminated substrates of Auricularia heimuer and Pholiota adipose. They were recognized based on integrated studies of phenotypic features, culture characteristics, and molecular analyses of RNA polymerase II subunit B and translation elongation factor 1-α genes. Trichoderma auriculariae was strongly supported as a separate lineage and differed from T. vermifimicola due to its larger conidia. Trichoderma miyunense was closely related to T. ganodermatigerum but differed due to its smaller conidia and higher optimum mycelial growth temperature. As a separate lineage, T. pholiotae was distinct from T. guizhouense and T. pseudoasiaticum due to its higher optimum mycelial growth temperature and larger conidia. This study extends the understanding of Trichoderma spp. contaminating substrates of edible fungi and updates knowledge of species diversity in the group.
Collapse
Affiliation(s)
- Zi-Jian Cao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wen-Tao Qin
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Juan Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Liu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shou-Xian Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Su-Yue Zheng
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
11
|
Gupta SVK, Smith PMC, Natera SHA, Roessner U. Biochemical Changes in Two Barley Genotypes Inoculated With a Beneficial Fungus Trichoderma harzianum Rifai T-22 Grown in Saline Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:908853. [PMID: 35982702 PMCID: PMC9379338 DOI: 10.3389/fpls.2022.908853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
One of the most important environmental factors impacting crop plant productivity is soil salinity. Fungal endophytes have been characterised as biocontrol agents that help in plant productivity and induce resistance responses to several abiotic stresses, including salinity. In the salt-tolerant cereal crop barley (Hordeum vulgare L.), there is limited information about the metabolites and lipids that change in response to inoculation with fungal endophytes in saline conditions. In this study, gas chromatography coupled to mass spectrometry (GC-MS) and LC-electrospray ionisation (ESI)-quadrupole-quadrupole time of flight (QqTOF)-MS were used to determine the metabolite and lipid changes in two fungal inoculated barley genotypes with differing tolerance levels to saline conditions. The more salt-tolerant cultivar was Vlamingh and less salt tolerant was Gairdner. Trichoderma harzianum strain T-22 was used to treat these plants grown in soil under control and saline (200 mM NaCl) conditions. For both genotypes, fungus-colonised plants exposed to NaCl had greater root and shoot biomass, and better chlorophyll content than non-colonised plants, with colonised-Vlamingh performing better than uninoculated control plants. The metabolome dataset using GC-MS consisted of a total of 93 metabolites of which 74 were identified in roots of both barley genotypes as organic acids, sugars, sugar acids, sugar alcohols, amino acids, amines, and a small number of fatty acids. LC-QqTOF-MS analysis resulted in the detection of 186 lipid molecular species, classified into three major lipid classes-glycerophospholipids, glycerolipids, and sphingolipids, from roots of both genotypes. In Cultivar Vlamingh both metabolites and lipids increased with fungus and salt treatment while in Gairdner they decreased. The results from this study suggest that the metabolic pathways by which the fungus imparts salt tolerance is different for the different genotypes.
Collapse
Affiliation(s)
| | | | - Siria H. A. Natera
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Gupta S, Schillaci M, Roessner U. Metabolomics as an emerging tool to study plant-microbe interactions. Emerg Top Life Sci 2022; 6:175-183. [PMID: 35191478 PMCID: PMC9023012 DOI: 10.1042/etls20210262] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/14/2023]
Abstract
In natural environments, interaction between plant roots and microorganisms are common. These interactions between microbial species and plants inhabited by them are being studied using various techniques. Metabolomics research based on mass spectrometric techniques is one of the crucial approaches that underpins system biology and relies on precision instrument analysis. In the last decade, this emerging field has received extensive attention. It provides a qualitative and quantitative approach for determining the mechanisms of symbiosis of bacteria and fungi with plants and also helps to elucidate the tolerance mechanisms of host plants against various abiotic stresses. However, this -omics application and its tools in plant-microbe interaction studies is still underutilized compared with genomic and transcriptomic methods. Therefore, it is crucial to bring this field forward to bear on the study of plant resistance and susceptibility. This review describes the current status of methods and progress in metabolomics applications for plant-microbe interaction studies discussing current challenges and future prospects.
Collapse
Affiliation(s)
- Sneha Gupta
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Martino Schillaci
- Consiglio Nazionale Delle Ricerche-Istituto per la Protezione Sostenibile Delle Piante, Strada delle Cacce 73, 10135 Torino, Italy
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Mokabel S, Olama Z, Ali S, El-Dakak R. The Role of Plant Growth Promoting Rhizosphere Microbiome as Alternative Biofertilizer in Boosting Solanum melongena L. Adaptation to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050659. [PMID: 35270129 PMCID: PMC8912713 DOI: 10.3390/plants11050659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 05/07/2023]
Abstract
Recent ecological perturbations are presumed to be minimized by the application of biofertilizers as a safe alternative to chemical fertilizers. The current study aims to use bioinoculum (I) as an alternative biofertilizer and to alleviate salinity stress in the cultivar Solanum melongena L. Baldi. The salinity drench was 200 mM NaCl (S), which was used with different treatments (0; I; S; S + I) in pots prefilled with clay and sand (1:2). Results showed that salinity stress inhibited both plant fresh and dry weights, water content, and photosynthetic pigments. The content of root spermine (Spm), spermidine (Spd), and puterscine (Put) decreased. However, addition of the bioinoculum to salt-treated plants increased pigment content (80.35, 39.25, and 82.44% for chl a, chl b, and carotenoids, respectively). Similarly, K+, K+/Na+, Ca2+, P, and N contents were significantly enhanced. Increases were recorded for Spm + Spd and Put in root and shoot (8.4-F, 1.6-F and 2.04-F, 2.13-F, respectively). RAPD PCR showed gene expression upregulation of photosystem II D2 protein, glutathione reductase, glutathione-S-transferase, protease I, and protease II. The current work recommends application of the selected bioinoculum as a green biofertilizer and biopesticide. Additionally, the studied eggplant cultivar can be regarded as a source of salt tolerance genes in agricultural fields.
Collapse
Affiliation(s)
- Souhair Mokabel
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.M.); (Z.O.)
| | - Zakia Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.M.); (Z.O.)
| | - Safaa Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Rehab El-Dakak
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.M.); (Z.O.)
- Correspondence:
| |
Collapse
|