1
|
Xing W, Li Y, Zhou L, Hong H, Liu Y, Luo S, Zou J, Zhao Y, Yang Y, Xu Z, Tan B. Deciphering Seed Deterioration: Molecular Insights and Priming Strategies for Revitalizing Aged Seeds. PLANTS (BASEL, SWITZERLAND) 2025; 14:1730. [PMID: 40508405 PMCID: PMC12158146 DOI: 10.3390/plants14111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/31/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025]
Abstract
Seed deterioration is an inevitable process during storage, characterized by a gradual loss of germination capacity and eventual seed death, which poses challenges to seed longevity and the preservation of genetic resources. Understanding the molecular mechanisms driving seed aging and inherent resistance pathways, alongside developing innovative rejuvenation strategies for deteriorated seeds, is crucial for agricultural sustainability and germplasm banking. This review systematically examines (1) redox-regulated deterioration pathways involving reactive oxygen species (ROS) and macromolecular damage cascades, (2) anti-deterioration mechanisms mediated by the antioxidant system and macromolecular repair mechanisms, (3) genetic-epigenetic networks governing seed aging resistance, particularly ABA- and IAA-mediated signaling through ABI3/ABI5/LEC1 regulons, and (4) technological advances in seed priming that restore aged seeds via metabolic resetting and repair potentiation. By integrating multi-omics insights with physiological evidence, we propose a hierarchical model of seed deterioration and establish mechanistic links between priming interventions and longevity enhancement. These insights offer a theoretical framework for cultivating anti-deterioration crop varieties and developing seed longevity-enhancement technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhenjiang Xu
- College of Agriculture, Guangzhou Sub-Center for New Plant Variety Tests of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (W.X.); (Y.L.); (L.Z.); (H.H.); (Y.L.); (S.L.); (J.Z.); (Y.Z.); (Y.Y.)
| | - Bin Tan
- College of Agriculture, Guangzhou Sub-Center for New Plant Variety Tests of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (W.X.); (Y.L.); (L.Z.); (H.H.); (Y.L.); (S.L.); (J.Z.); (Y.Z.); (Y.Y.)
| |
Collapse
|
2
|
Groot SPC, Goedhart PW, de Souza Vidigal D, Kodde J. Modelling the quantitative effect of oxygen on the ageing of primed celery seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70066. [PMID: 40245388 PMCID: PMC12005833 DOI: 10.1111/tpj.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 04/19/2025]
Abstract
High seed quality is a prerequisite for profitable crop production, but quality declines by ageing during storage. Whereas effects of temperature and humidity are well known, there is limited knowledge on the effect of oxygen. Here, we report on the quantitative effect of oxygen on seed ageing. Primed seeds from celery (Apium graveolens) were used as a model, because of their relatively short shelf life. The seeds were stored for up to 7 years at combinations of four relative humidity levels (16, 33, 43 and 60% RH), four temperatures (5, 13, 20 and 30°C) and six oxygen levels (≈1, 5.2, 10, 21, 50 and 99% on volume basis). A strong effect of low oxygen levels was observed at all temperatures and the three lower humidity levels. Modelling the viability data revealed a linear double logarithmic relationship between the oxygen level and the storage time at which the seed lot viability declined to 50% (p50). The models also showed that each halving of the oxygen level increased seed longevity by around 72%. This implies that reduction of the environmental oxygen level to a level below 1% increased the shelf life of the primed celery seeds by a factor of 11. For seeds pre-equilibrated at 60% RH, the effect of lowering the oxygen level below 21% was much less pronounced and even absent at 30°C. The large effect of low oxygen level during dry storage of seeds provides opportunities to prolong the shelf life of seeds. Options for practical application are discussed.
Collapse
Affiliation(s)
- Steven P. C. Groot
- Wageningen University & ResearchWageningenThe Netherlands
- International Seed AcademyDidamThe Netherlands
| | | | | | - Jan Kodde
- Wageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Maleki Farahani S, Rezazadeh A, Paravar A. Influence of seed moisture content and storage period on germination and biochemical indices: Lallemantia iberica and Lallemantia royleana. Sci Rep 2025; 15:4462. [PMID: 39915567 PMCID: PMC11802752 DOI: 10.1038/s41598-025-88881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
The longevity of seeds varies greatly between species and seed viability reduction due to seed ageing is one of the major problems affecting agricultural productivity. To comprehend the mechanisms involved in the ageing, seeds of two plant species dragon head (Lallemantia iberica) and lady's mantle (Lallemantia royleana) and with 5, 15 and 25% seed moisture content were tested for 24 and 48 h storage period at 40 °C. Increased seed moisture content and storage period significantly reduced germination percentage, protein content, catalase and ascorbate peroxidase enzyme activity. During storage, most significant deterioration was observed in L. iberica seeds showing lower germination percentage, protein content, catalase and ascorbate peroxidase enzyme activities. As a result, the cell membrane of L. iberica seeds was damaged, resulting in an increase in electrical conductivity, hydrogen peroxidase and malondialdehyde contents compared to L. royleana. Overall, the lowest deterioration was obtained in stored seeds of both Lallemantia species by 5% seed moisture content and 24 h storage period; in contrast increasing of seed moisture content and storage period induced the faster deterioration of Lallemantia seeds. Furthermore, L. iberica deteriorates rapidly by rising of seed moisture content and storage period in comparison with L .royleana.
Collapse
Affiliation(s)
- Saeideh Maleki Farahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran.
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran.
| | - Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Rolletschek H, Borisjuk L, Gómez-Álvarez EM, Pucciariello C. Advances in seed hypoxia research. PLANT PHYSIOLOGY 2024; 197:kiae556. [PMID: 39471319 PMCID: PMC11852284 DOI: 10.1093/plphys/kiae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
Seeds represent essential stages of the plant life cycle: embryogenesis, the intermittent quiescence phase, and germination. Each stage has its own physiological requirements, genetic program, and environmental challenges. Consequently, the effects of developmental and environmental hypoxia can vary from detrimental to beneficial. Past and recent evidence shows how low-oxygen signaling and metabolic adaptations to hypoxia affect seed development and germination. Here, we review the recent literature on seed biology in relation to hypoxia research and present our perspective on key challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Eva María Gómez-Álvarez
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
5
|
Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108810. [PMID: 38857563 DOI: 10.1016/j.plaphy.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Seed vigor is a crucial indicator of seed quality. Variations in seed vigor are closely associated with seed properties and storage conditions. The vigor of mature seeds progressively declines during storage, which is called seed deterioration or aging. Seed aging induces a cascade of cellular damage, including impaired subcellular structures and macromolecules, such as lipids, proteins, and DNA. Reactive oxygen species (ROS) act as signaling molecules during seed aging causing oxidative damage and triggering programmed cell death (PCD). Mitochondria are the main site of ROS production and change morphology and function before other organelles during aging. The roles of other small redox-active molecules in regulating cell and seed vigor, such as nitric oxide (NO) and hydrogen sulfide (H2S), were identified later. ROS, NO, and H2S typically regulate protein function through post-translational modifications (PTMs), including carbonylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. These signaling molecules as well as the PTMs they induce interact to regulate cell fate and seed vigor. This review was conducted to describe the physiological changes and underlying molecular mechanisms that in seed aging and provides a comprehensive view of how ROS, NO, and H2S affect cell death and seed vigor.
Collapse
Affiliation(s)
- Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Tianxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Gu DE, Han SH, Kang KS. Viability and integrity of Pinus densiflora seeds stored for 20 years at three different temperatures. CONSERVATION PHYSIOLOGY 2024; 12:coae046. [PMID: 38983122 PMCID: PMC11231940 DOI: 10.1093/conphys/coae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Storage temperature is one of the most important factors determining seed longevity in the genebank. This study aimed to investigate the effect of storage temperature on the seed viability and physiological integrity after a 20-year storage period of Pinus densiflora, a tree species of ecological and economic significance in South Korea. To this end, seeds were collected and stored dry for 20 years at -18°C, 4°C and 25°C. Germination tests were conducted to assess seed viability and vigour, electrolyte leakage analysis was performed to assess cell membrane integrity, and carbohydrate analysis was conducted to assess metabolic integrity during germination. The results revealed that over 20 years, seeds stored at -18°C maintained a high germination percentage (GP; 89%), comparable to initial GP (91%), whilst those stored at 4°C exhibited a decline in GP (44%) along with a decrease in vigour. Seeds stored at 25°C lost their viability entirely. Electrical conductivity of the leachate and leakage of inorganic compounds and soluble sugars were higher with elevated storage temperature, indicating increased imbibition damage. Additionally, changes in carbohydrate content during germination revealed that the loss of viability according to storage temperature is associated with reduced storage reserve utilization and altered carbohydrate metabolism during germination. These results enhance our understanding of the effect of seed storage temperature on longevity and physiological changes of aging in the genebank, serving as a reference for establishing conservation strategies for Pinus densiflora.
Collapse
Affiliation(s)
- Da-Eun Gu
- Forest Bioresources Department, National Institute of Forest Science, Onjeong-ro 39, Gwonseon-gu, Suwon 16631, Republic of Korea
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Kwanak-ro 1, Kwanak-gu, Seoul 08826, Republic of Korea
| | - Sim-Hee Han
- Forest Bioresources Department, National Institute of Forest Science, Onjeong-ro 39, Gwonseon-gu, Suwon 16631, Republic of Korea
| | - Kyu-Suk Kang
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Kwanak-ro 1, Kwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
8
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
9
|
López-Pozo M, Fernández-Marín B, García-Plazaola J, Seal CE, Ballesteros D. Ageing kinetics of fern chlorophyllous spores during dry storage is determined by its antioxidant potential and likely induced by photosynthetic machinery. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111870. [PMID: 37722506 DOI: 10.1016/j.plantsci.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Ageing in dry chlorophyllous propagules is leaded by photooxidation through the photosynthetic machinery, but why species differ in longevity and the ageing mechanisms of when light and oxygen are absent are unknown. We hypothesize that the cellular antioxidant capacity is key for the inter- and intra-specific differences in the ageing process. We have tested this hypothesis in chlorophyllous spores of two ferns. They were subjected to four different storage regimes resulting from light/dark and normoxia/hypoxia combinations. Lipophilic and hydrophilic antioxidants, reactive oxygen species (ROS), and photosynthetic pigments were analysed in parallel to germination and the recovery of Fv/Fm over a storage period of up to 22-months. We show that light and oxygen accelerate the ageing process, but their mechanisms (ROS, increase, antioxidant capacity decrease, loss of efficiency of the photosystem II, pigment degradation) appear the same under all conditions tested. The end of the asymptomatic phase of longevity, when a sudden drop of germination occurs, seems to be determined by a threshold in the depletion of antioxidants. Our results support the hypothesis that ageing kinetics in dry plant propagules is determined by the antioxidant system, but also suggests an active role of the photosynthetic machinery during ageing, even in darkness and hypoxia.
Collapse
Affiliation(s)
- M López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain.
| | - B Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | - J García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | - C E Seal
- Royal Botanic Gardens Kew, Wakehurst, Ardingly, West Sussex, UK
| | - D Ballesteros
- Royal Botanic Gardens Kew, Wakehurst, Ardingly, West Sussex, UK; Department of Botany and Geology, Universitat de Valencia, Burjassot, Spain
| |
Collapse
|
10
|
Ren M, Tan B, Xu J, Yang Z, Zheng H, Tang Q, Zhang X, Wang W. Priming methods affected deterioration speed of primed rice seeds by regulating reactive oxygen species accumulation, seed respiration and starch degradation. FRONTIERS IN PLANT SCIENCE 2023; 14:1267103. [PMID: 37868303 PMCID: PMC10586809 DOI: 10.3389/fpls.2023.1267103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Introduction Seed priming is a pre-sowing seed treatment that is beneficial for rice seed germination and seedling growth, but the reduced seed longevity after seed priming greatly limited its adoption. The deterioration of primed seeds showed large differences among different studies, and the priming method might play an important role in regulating the deterioration speed of primed seeds. However, whether and how the priming method affected the deterioration of primed rice seeds during storage remains unknown. Methods In this study, two typical seed priming methods, namely hydropriming (HP) and osmopriming (PEG) were compared under artificially accelerated aging conditions, the changes in germination performance, starch metabolism, seed respiration and reactive oxygen species accumulation before and after accelerated aging were determined. Results and discussion Hydroprimed rice seeds exhibited significantly faster deterioration speed than that of PEG-primed seeds in terms of germination speed and percentage. Meanwhile, α-amylase activity and total soluble sugar content in hydroprimed seeds were reduced by 19.3% and 10.0% respectively after aging, as compared with PEG-primed seeds. Such effects were strongly associated with the increased reactive oxygen generation and lipid peroxidation, as the content of superoxide anion, hydrogen peroxide and malondialdehyde in hydroprimed seeds were 4.4%, 12.3% and 13.7% higher than those in PEG-primed seeds after aging, such effect could be attributed to the increased respiratory metabolism in hydroprimed seeds. In addition, the simultaneous use of N-acetylcysteine with HP and PEG priming greatly inhibited the deterioration of primed rice seeds, suggesting that the ability to scavenge reactive oxygen species may be the key factor affecting the speed of deterioration in primed rice seeds during storage.
Collapse
Affiliation(s)
- Muyao Ren
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Biao Tan
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jiayi Xu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhengpeng Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huabin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qiyuan Tang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xiaoli Zhang
- Rice Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiqin Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Luo Y, Zhang Y, Le J, Li Q, Mou J, Deng S, Li J, Wang R, Deng Z, Liu J. Full-Length Transcriptome Sequencing Reveals the Molecular Mechanism of Metasequoia glyptostroboides Seed Responding to Aging. Antioxidants (Basel) 2023; 12:1353. [PMID: 37507893 PMCID: PMC10376015 DOI: 10.3390/antiox12071353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Metasequoia glyptostroboides, Hu and W. C. Cheng, as the only surviving relict species of the Taxodiaceae Metasequoia genus, is a critically endangered and protected species in China. There is a risk of extinction due to the low vigor of M. glyptostroboides seeds, and the physiological mechanism of seed aging in M. glyptostroboides is not yet clear. In order to investigate the physiological and molecular mechanisms underlying the aging process of M. glyptostroboides seeds, we analyzed the antioxidant system and transcriptome at 0, 2, 4, 6, and 8 days after artificial accelerated aging treatment at 40 °C and 100% relative humidity. It was found that the germination percentage of fresh dried M. glyptostroboides seeds was 54 ± 5.29%, and significantly declined to 9.33 ± 1.88% after 6 days of aging, and then gradually decreased until the seed died on day 8. Superoxide dismutase (SOD) activity, ascorbic acid (AsA), glutathione (GSH) content and superoxide anion (O2·-) content and production rate significantly decreased, while malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and glutathione peroxidase (GPX) and catalase (CAT) activity gradually increased during the aging process. A total of 42,189 unigenes were identified in the whole transcriptome, and 40,446 (95.86%) unigenes were annotated in at least one protein database. A total of 15,376 differentially expressed genes (DEGs) were obtained; KEGG enrichment analysis results revealed that seed aging may be mainly involved in the protein-processing pathways in endoplasmic reticulum, oxidative phosphorylation, and ascorbate and aldarate metabolism. Weighted gene co-expression network analysis (WGCNA) revealed that the dark magenta, orange, and medium purple modules were highly correlated with physiological indicators such as SOD, CAT, and GSH and further identified 40 hub genes such as Rboh, ACO, HSF, and CML as playing important roles in the antioxidant network of M. glyptostroboides seeds. These findings provide a broader perspective for studying the regulatory mechanism of seed aging and a large number of potential target genes for the breeding of other endangered gymnosperms.
Collapse
Affiliation(s)
- Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Yixin Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Le
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Qing Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiaolin Mou
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Shiming Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jitao Li
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Prasad C T M, Kodde J, Angenent GC, Hay FR, McNally KL, Groot SPC. Identification of the rice Rc gene as a main regulator of seed survival under dry storage conditions. PLANT, CELL & ENVIRONMENT 2023; 46:1962-1980. [PMID: 36891587 DOI: 10.1111/pce.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.) seeds stored under experimental aging conditions mimicking long-term dry storage. Genetic variation for tolerance to aging was studied in 300 Indica rice accessions by storing dry seeds under an elevated partial pressure of oxygen (EPPO) condition. A genome-wide association analysis identified 11 unique genomic regions for all measured germination parameters after aging, differing from those previously identified in rice under humid experimental aging conditions. The significant single nucleotide polymorphism in the most prominent region was located within the Rc gene, encoding a basic helix-loop-helix transcription factor. Storage experiments using near-isogenic rice lines (SD7-1D (Rc) and SD7-1d (rc) with the same allelic variation confirmed the role of the wildtype Rc gene, providing stronger tolerance to dry EPPO aging. In the seed pericarp, a functional Rc gene results in accumulation of proanthocyanidins, an important sub-class of flavonoids having strong antioxidant activity, which may explain the variation in tolerance to dry EPPO aging.
Collapse
Affiliation(s)
- Manjunath Prasad C T
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerco C Angenent
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Fiona R Hay
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Steven P C Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Nadarajan J, Walters C, Pritchard HW, Ballesteros D, Colville L. Seed Longevity-The Evolution of Knowledge and a Conceptual Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:471. [PMID: 36771556 PMCID: PMC9919896 DOI: 10.3390/plants12030471] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The lifespan or longevity of a seed is the time period over which it can remain viable. Seed longevity is a complex trait and varies greatly between species and even seed lots of the same species. Our scientific understanding of seed longevity has advanced from anecdotal 'Thumb Rules,' to empirically based models, biophysical explanations for why those models sometimes work or fail, and to the profound realisation that seeds are the model of the underexplored realm of biology when water is so limited that the cytoplasm solidifies. The environmental variables of moisture and temperature are essential factors that define survival or death, as well as the timescale to measure lifespan. There is an increasing understanding of how these factors induce cytoplasmic solidification and affect glassy properties. Cytoplasmic solidification slows down, but does not stop, the chemical reactions involved in ageing. Continued degradation of proteins, lipids and nucleic acids damage cell constituents and reduce the seed's metabolic capacity, eventually impairing the ability to germinate. This review captures the evolution of knowledge on seed longevity over the past five decades in relation to seed ageing mechanisms, technology development, including tools to predict seed storage behaviour and non-invasive techniques for seed longevity assessment. It is concluded that seed storage biology is a complex science covering seed physiology, biophysics, biochemistry and multi-omic technologies, and simultaneous knowledge advancement in these areas is necessary to improve seed storage efficacy for crops and wild species biodiversity conservation.
Collapse
Affiliation(s)
- Jayanthi Nadarajan
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Palmerston North 4410, New Zealand
| | - Christina Walters
- USDA—Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA
| | - Hugh W. Pritchard
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming 650201, China
| | - Daniel Ballesteros
- Faculty of Farmacy, Department of Botany and Geology, University of Valencia, Av. Vicent Estelles s/n, 46100 Valencia, Spain
| | - Louise Colville
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
| |
Collapse
|
14
|
Michalak M, Plitta-Michalak BP, Naskręt-Barciszewska MZ, Barciszewski J, Chmielarz P. DNA Methylation as an Early Indicator of Aging in Stored Seeds of “Exceptional” Species Populus nigra L. Cells 2022; 11:cells11132080. [PMID: 35805164 PMCID: PMC9265770 DOI: 10.3390/cells11132080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Ex situ preservation of genetic resources is an essential strategy for the conservation of plant biodiversity. In this regard, seed storage is the most convenient and efficient way of preserving germplasm for future plant breeding efforts. A better understanding of the molecular changes that occur during seed desiccation and aging is necessary to improve conservation protocols, as well as real-time methods for monitoring seed quality. In the present study, we assessed changes in the level of genomic 5-methylcytosine (5mC) in seeds of Populus nigra L. by 2D-TLC. Epigenetic changes were characterized in response to several seed storage regimes. Our results demonstrate that P. nigra seeds represent an intermediate type of post-harvest behavior, falling between recalcitrant and orthodox seeds. This was also true for the epigenetic response of P. nigra seeds to external factors. A crucial question is whether aging in seeds is initiated by a decline in the level of 5mC, or if epigenetic changes induce a process that leads to deterioration. In our study, we demonstrate for the first time that 5mC levels decrease during storage and that the decline can be detected before any changes in seed germination are evident. Once P. nigra seeds reached an 8–10% reduction in the level of 5mC, a substantial decrease in germination occurred. The decline in the level of 5mC appears to be a critical parameter underlying the rapid deterioration of intermediate seeds. Thus, the measurement of 5mC can be a fast, real-time method for assessing asymptomatic aging in stored seeds.
Collapse
Affiliation(s)
- Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M Oczapowskiego 1A, 10-721 Olsztyn, Poland;
- Correspondence: ; Tel.: +48-89-523-44-55
| | - Beata Patrycja Plitta-Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M Oczapowskiego 1A, 10-721 Olsztyn, Poland;
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-719 Olsztyn, Poland
| | | | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland; (M.Z.N.-B.); (J.B.)
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Paweł Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland;
| |
Collapse
|
15
|
Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Prasad C. T. M, Kodde J, Angenent GC, de Vos RCH, Diez-Simon C, Mumm R, Hay FR, Siricharoen S, Yadava DK, Groot SPC. Experimental rice seed aging under elevated oxygen pressure: Methodology and mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:1050411. [PMID: 36531402 PMCID: PMC9751813 DOI: 10.3389/fpls.2022.1050411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 05/13/2023]
Abstract
Seed aging during storage results in loss of vigor and germination ability due to the accumulation of damage by oxidation reactions. Experimental aging tests, for instance to study genetic variation, aim to mimic natural aging in a shorter timeframe. As the oxidation rate is increased by elevating the temperature, moisture, and oxygen levels, this study aimed to (1) investigate the effect of experimental rice seed aging by an elevated partial pressure of oxygen (EPPO), (2) elucidate the mechanism of dry-EPPO aging and (3) compare aging under dry-EPPO conditions to aging under traditional moist-controlled deterioration (CD) conditions and to long-term ambient storage. Dry seeds from 20 diverse rice accessions were experimentally aged under EPPO (200 times higher oxygen levels), at 50% relative humidity (RH), along with storage under high-pressure nitrogen gas and ambient conditions as controls. While no decline in germination was observed with ambient storage, there was significant aging of the rice seeds under EPPO storage, with considerable variation in the aging rate among the accessions, with an average decline toward 50% survival obtained after around 21 days in EPPO storage and total loss of germination after 56 days. Storage under high-pressure nitrogen gas resulted in a small but significant decline, by an average of 5% germination after 56 days. In a second experiment, seven rice seed lots were stored under EPPO as compared to a moist-CD test and two different long-term ambient storage conditions, i.e., conditioned warehouse seed storage (CWSS) and traditional rice seed storage (TRSS). Untargeted metabolomics (with identification of lipid and volatile compounds profiles) showed a relatively high increase in levels of oxidized lipids and related volatiles under all four storage conditions. These compounds had a high negative correlation with seed viability, indicating oxidation as a main deteriorating process during seed aging. Correlation analysis indicated that EPPO storage at 50% RH is more related to aging under TRSS at 60% and CD-aging at 75% ERH rather than CWSS at 40% ERH. In conclusion, aging rice seeds under EPPO conditions is a suitable experimental aging method for analyzing variation among seed lots or genotypes for longevity under storage.
Collapse
Affiliation(s)
- Manjunath Prasad C. T.
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, Netherlands
- Department of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jan Kodde
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gerco C. Angenent
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Ric C. H. de Vos
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Carmen Diez-Simon
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Roland Mumm
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Fiona R. Hay
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Sasiwimon Siricharoen
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Devendra K. Yadava
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Steven P. C. Groot
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Steven P. C. Groot,
| |
Collapse
|