1
|
Mukherjee T, Kambhampati S, Morley SA, Durrett TP, Allen DK. Metabolic flux analysis to increase oil in seeds. PLANT PHYSIOLOGY 2025; 197:kiae595. [PMID: 39499667 PMCID: PMC11823122 DOI: 10.1093/plphys/kiae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected metabolism (i.e. when metabolism is different than in a textbook) and can be used to guide engineering efforts; however, as metabolism is context specific, it changes with tissue type, local environment, and development. This review describes recent insights from metabolic flux analysis in oilseeds and indicates engineering opportunities based on emerging topics and developing technologies that will aid quantitative understanding of metabolism and enable efforts to produce more oil. We also suggest that investigating the key regulators of fatty acid biosynthesis, such as transcription factors, and exploring metabolic signals like phytohormones in greater depth through flux analysis could open new pathways for advancing genetic engineering and breeding strategies to enhance oil crop production.
Collapse
Affiliation(s)
- Thiya Mukherjee
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Shrikaar Kambhampati
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66502, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- United States Department of Agriculture, Agriculture Research Service, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
2
|
Xu C, Shaw T, Choppararu SA, Lu Y, Farooq SN, Qin Y, Hudson M, Weekley B, Fisher M, He F, Da Silva Nascimento JR, Wergeles N, Joshi T, Bates PD, Koo AJ, Allen DK, Cahoon EB, Thelen JJ, Xu D. FatPlants: a comprehensive information system for lipid-related genes and metabolic pathways in plants. Database (Oxford) 2024; 2024:baae074. [PMID: 39104285 PMCID: PMC11300840 DOI: 10.1093/database/baae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
FatPlants, an open-access, web-based database, consolidates data, annotations, analysis results, and visualizations of lipid-related genes, proteins, and metabolic pathways in plants. Serving as a minable resource, FatPlants offers a user-friendly interface for facilitating studies into the regulation of plant lipid metabolism and supporting breeding efforts aimed at increasing crop oil content. This web resource, developed using data derived from our own research, curated from public resources, and gleaned from academic literature, comprises information on known fatty-acid-related proteins, genes, and pathways in multiple plants, with an emphasis on Glycine max, Arabidopsis thaliana, and Camelina sativa. Furthermore, the platform includes machine-learning based methods and navigation tools designed to aid in characterizing metabolic pathways and protein interactions. Comprehensive gene and protein information cards, a Basic Local Alignment Search Tool search function, similar structure search capacities from AphaFold, and ChatGPT-based query for protein information are additional features. Database URL: https://www.fatplants.net/.
Collapse
Affiliation(s)
- Chunhui Xu
- Institute for Data Science and Informatics, University of Missouri, 22 Heinkel Building, Columbia, MO 65211, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
| | - Trey Shaw
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Sai Akhil Choppararu
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Yiwei Lu
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Shaik Naveed Farooq
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Yongfang Qin
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Matt Hudson
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Brock Weekley
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Michael Fisher
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Fei He
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Jose Roberto Da Silva Nascimento
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Biochemistry, University of Missouri, Schweitzer Hall, 117, 503 S College Ave, Columbia, MO 65211, United States
| | - Nicholas Wergeles
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| | - Trupti Joshi
- Institute for Data Science and Informatics, University of Missouri, 22 Heinkel Building, Columbia, MO 65211, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri, CE707, Clinical Support and Education Building, 5 Hospital Dr. Columbia, MO, United States
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, 101D Plant Sciences Building, Pullman, WA 99164, United States
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Schweitzer Hall, 117, 503 S College Ave, Columbia, MO 65211, United States
| | - Doug K Allen
- Agriculture Research Service, United States Department of Agriculture, 975 N Warson Rd, St. Louis, MO 63132, United States
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO 63132, United States
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska, 1901 Vine St, Lincoln, NE 68588, United States
| | - Jay J Thelen
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Biochemistry, University of Missouri, Schweitzer Hall, 117, 503 S College Ave, Columbia, MO 65211, United States
| | - Dong Xu
- Institute for Data Science and Informatics, University of Missouri, 22 Heinkel Building, Columbia, MO 65211, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Lafferre Hall, 416 S 6th St, Columbia, MO 65201, United States
| |
Collapse
|
3
|
Wang C, Lin J, Bu Y, Sun R, Lu Y, Gai J, Xing H, Guo N, Zhao J. Genome-wide transcriptome analysis reveals key regulatory networks and genes involved in the determination of seed hardness in vegetable soybean. HORTICULTURE RESEARCH 2024; 11:uhae084. [PMID: 38766533 PMCID: PMC11101316 DOI: 10.1093/hr/uhae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
Seed hardness is an important quality trait of vegetable soybean. To determine the factors underlying seed hardness, two landraces with contrasting seed hardness, Niumaohuang (low seed hardness) and Pixiansilicao (high seed hardness), were selected from 216 soybean accessions originating from 26 provinces in China. The contents of the main components in vegetable soybean seeds such as water, soluble sugar, starch, protein and oil were measured, and transcriptome analyses performed during five stages of seed developmental. Transcriptome analysis indicates that during the middle and late stages of seed development, a large number of genes involved in the synthesis or degradation of starch, storage protein, and fatty acids were differentially expressed, leading to differences in the accumulation of stored substances during seed maturation among Niumaohuang and Pixiansilicao. The activity of cell proliferation and the formation of cell walls in the middle and late stages of seed development may also affect the hardness of seeds to a certain extent. In addition, weighted gene co-expression network analysis (WGCNA) was undertaken to identify co-expressed gene modules and hub genes that regulate seed hardness. Overexpression of a candidate seed hardness regulatory hub gene, GmSWEET2, resulted in increased seed hardness. In this study, the important role of GmSWEET2 in regulating the hardness of vegetable soybean seeds was verified and numerous potential key regulators controlling seed hardness and the proportion of seed components were identified, laying the groundwork for improving the texture of vegetable soybean.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianyu Lin
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanpeng Bu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruidong Sun
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Lu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - JunYi Gai
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Xing
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Yusefi-Tanha E, Fallah S, Pokhrel LR, Rostamnejadi A. Role of particle size-dependent copper bioaccumulation-mediated oxidative stress on Glycine max (L.) yield parameters with soil-applied copper oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28905-28921. [PMID: 38564134 PMCID: PMC11058571 DOI: 10.1007/s11356-024-33070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Increased impetus on the application of nano-fertilizers to improve sustainable food production warrants understanding of nanophytotoxicity and its underlying mechanisms before its application could be fully realized. In this study, we evaluated the potential particle size-dependent effects of soil-applied copper oxide nanoparticles (nCuO) on crop yield and quality attributes (photosynthetic pigments, seed yield and nutrient quality, seed protein, and seed oil), including root and seed Cu bioaccumulation and a suite of oxidative stress biomarkers, in soybean (Glycine max L.) grown in field environment. We synthesized three distinct sized (25 nm = S [small], 50 nm = M [medium], and 250 nm = L [large]) nCuO with same surface charge and compared with soluble Cu2+ ions (CuCl2) and water-only controls. Results showed particle size-dependent effects of nCuO on the photosynthetic pigments (Chla and Chlb), seed yield, potassium and phosphorus accumulation in seed, and protein and oil yields, with nCuO-S showing higher inhibitory effects. Further, increased root and seed Cu bioaccumulation led to concomitant increase in oxidative stress (H2O2, MDA), and as a response, several antioxidants (SOD, CAT, POX, and APX) increased proportionally, with nCuO treatments including Cu2+ ion treatment. These results are corroborated with TEM ultrastructure analysis showing altered seed oil bodies and protein storage vacuoles with nCuO-S treatment compared to control. Taken together, we propose particle size-dependent Cu bioaccumulation-mediated oxidative stress as a mechanism of nCuO toxicity. Future research investigating the potential fate of varied size nCuO, with a focus on speciation at the soil-root interface, within the root, and edible parts such as seed, will guide health risk assessment of nCuO.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Faculty of Electromagnetics, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Hooker JC, Smith M, Zapata G, Charette M, Luckert D, Mohr RM, Daba KA, Warkentin TD, Hadinezhad M, Barlow B, Hou A, Lefebvre F, Golshani A, Cober ER, Samanfar B. Differential gene expression provides leads to environmentally regulated soybean seed protein content. FRONTIERS IN PLANT SCIENCE 2023; 14:1260393. [PMID: 37790790 PMCID: PMC10544915 DOI: 10.3389/fpls.2023.1260393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Soybean is an important global source of plant-based protein. A persistent trend has been observed over the past two decades that soybeans grown in western Canada have lower seed protein content than soybeans grown in eastern Canada. In this study, 10 soybean genotypes ranging in average seed protein content were grown in an eastern location (control) and three western locations (experimental) in Canada. Seed protein and oil contents were measured for all lines in each location. RNA-sequencing and differential gene expression analysis were used to identify differentially expressed genes that may account for relatively low protein content in western-grown soybeans. Differentially expressed genes were enriched for ontologies and pathways that included amino acid biosynthesis, circadian rhythm, starch metabolism, and lipid biosynthesis. Gene ontology, pathway mapping, and quantitative trait locus (QTL) mapping collectively provide a close inspection of mechanisms influencing nitrogen assimilation and amino acid biosynthesis between soybeans grown in the East and West. It was found that western-grown soybeans had persistent upregulation of asparaginase (an asparagine hydrolase) and persistent downregulation of asparagine synthetase across 30 individual differential expression datasets. This specific difference in asparagine metabolism between growing environments is almost certainly related to the observed differences in seed protein content because of the positive correlation between seed protein content at maturity and free asparagine in the developing seed. These results provided pointed information on seed protein-related genes influenced by environment. This information is valuable for breeding programs and genetic engineering of geographically optimized soybeans.
Collapse
Affiliation(s)
- Julia C. Hooker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Myron Smith
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Gerardo Zapata
- Canadian Centre for Computational Genomics, Montréal, QC, Canada
| | - Martin Charette
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Doris Luckert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Ramona M. Mohr
- Brandon Research Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Ketema A. Daba
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Mehri Hadinezhad
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Brent Barlow
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anfu Hou
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | | | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Elroy R. Cober
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Bahram Samanfar
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
6
|
Yusefi-Tanha E, Fallah S, Pokhrel LR, Rostamnejadi A. Addressing global food insecurity: Soil-applied zinc oxide nanoparticles promote yield attributes and seed nutrient quality in Glycine max L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162762. [PMID: 36914126 DOI: 10.1016/j.scitotenv.2023.162762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Consumed globally, oilseeds serve as a major source of proteins and oils in human and animal nutrition, supporting global food security. Zinc (Zn) is an essential micronutrient critical for oil and protein synthesis in plants. In this study, we synthesized three distinct sized zinc oxide nanoparticles (nZnO: 38 nm = S [small], 59 nm = M [medium], and > 500 nm = L [large], and assessed the potential effects of varied particle sizes and concentrations (0, 50, 100, 200, and 500 mg/kg-soil) on seed yield attributes, nutrient quality and oil and protein yield in soybean (Glycine max L.) grown for a full lifecycle of 120 days, and compared with soluble Zn2+ ions (ZnCl2) and water-only controls. We observed particle size- and concentration-dependent influence of nZnO on photosynthetic pigments, pod formation, potassium and phosphorus accumulation in seed, and protein and oil yields. Overall, soybean showed significant stimulatory responses to nZnO-S for most of the parameters tested compared to nZnO-M, nZnO-L, and Zn2+ ions treatments up to 200 mg/kg, suggesting the potential for small size nZnO to improve seed quality and production in soybean. At 500 mg/kg, however, for all endpoints (except for carotenoids and seed formation) toxicity was observed with all Zn compounds. Further, TEM analysis of seed ultrastructure indicated potential alterations in seed oil bodies and protein storage vacuoles at a toxic concentration (500 mg/kg) of nZnO-S compared to control. These findings suggest 200 mg/kg as an optimal dose for the smallest size nZnO-S (38 nm) to significantly improve seed yield, nutrient quality, and oil and protein yield, paving a path for addressing global food insecurity using small sized nZnO as a novel nano-fertilizer to promote crop yield and nutrient quality, in soil-grown soybean.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Faculty of Electromagnetics, Malek Ashtar University of Technology, Iran
| |
Collapse
|
7
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
8
|
Morley SA, Ma F, Alazem M, Frankfater C, Yi H, Burch-Smith T, Clemente TE, Veena V, Nguyen H, Allen DK. Expression of malic enzyme reveals subcellular carbon partitioning for storage reserve production in soybeans. THE NEW PHYTOLOGIST 2023. [PMID: 36829298 DOI: 10.1111/nph.18835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed biomass (i.e. 2-9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.
Collapse
Affiliation(s)
- Stewart A Morley
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Mazen Alazem
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Cheryl Frankfater
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hochul Yi
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Tessa Burch-Smith
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE, 68583, USA
| | - Veena Veena
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hanh Nguyen
- Center for Plant Science Innovation, University of Nebraska, N300 Beadle Center, 1901 Vine St., Lincoln, NE, 68588, USA
| | - Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| |
Collapse
|
9
|
Dean EA, Finer JJ. Amino acids induce high seed-specific expression driven by a soybean (Glycine max) glycinin seed storage protein promoter. PLANT CELL REPORTS 2023; 42:123-136. [PMID: 36271177 DOI: 10.1007/s00299-022-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
We characterize GFP expression driven by a soybean glycinin promoter in transgenic soybean. We demonstrate specific amino acid-mediated induction of this promoter in developing soybean seeds in vitro. In plants, gene expression is primarily regulated by promoter regions which are located upstream of gene coding sequences. Promoters allow transcription in certain tissues and respond to environmental stimuli as well as other inductive phenomena. In soybean, seed storage proteins (SSPs) accumulate during seed development and account for most of the monetary and nutritional value of this crop. To better study the regulatory functions of a SSP promoter, we developed a cotyledon culture system where media and media addenda were evaluated for their effects on cotyledon development and promoter activity. Stably transformed soybean events containing a glycinin SSP promoter regulating the green fluorescent protein (GFP) were generated. Promoter activity, as visualized by GFP expression, was only observed in developing in planta seeds and in vitro-cultured isolated embryos and cotyledons from developing seeds when specific media addenda were included. Asparagine, proline, and especially glutamine induced glycinin promoter activity in cultured cotyledons from developing seeds. Other amino acids did not induce the glycinin promoter. Here, we report, for the first time, induction of a reintroduced glycinin SSP promoter by specific amino acids in cotyledon tissues during seed development.
Collapse
Affiliation(s)
- Eric A Dean
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Pairwise, 110 TW Alexander Dr, Research Triangle Park, Durham, NC, 27709, USA.
| | - John J Finer
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Kapnik Center, Florida Gulf Coast University, 4940 Bayshore Dr, Naples, FL, 34112, USA
| |
Collapse
|
10
|
Jha UC, Nayyar H, Parida SK, Deshmukh R, von Wettberg EJB, Siddique KHM. Ensuring Global Food Security by Improving Protein Content in Major Grain Legumes Using Breeding and 'Omics' Tools. Int J Mol Sci 2022; 23:7710. [PMID: 35887057 PMCID: PMC9325250 DOI: 10.3390/ijms23147710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Grain legumes are a rich source of dietary protein for millions of people globally and thus a key driver for securing global food security. Legume plant-based 'dietary protein' biofortification is an economic strategy for alleviating the menace of rising malnutrition-related problems and hidden hunger. Malnutrition from protein deficiency is predominant in human populations with an insufficient daily intake of animal protein/dietary protein due to economic limitations, especially in developing countries. Therefore, enhancing grain legume protein content will help eradicate protein-related malnutrition problems in low-income and underprivileged countries. Here, we review the exploitable genetic variability for grain protein content in various major grain legumes for improving the protein content of high-yielding, low-protein genotypes. We highlight classical genetics-based inheritance of protein content in various legumes and discuss advances in molecular marker technology that have enabled us to underpin various quantitative trait loci controlling seed protein content (SPC) in biparental-based mapping populations and genome-wide association studies. We also review the progress of functional genomics in deciphering the underlying candidate gene(s) controlling SPC in various grain legumes and the role of proteomics and metabolomics in shedding light on the accumulation of various novel proteins and metabolites in high-protein legume genotypes. Lastly, we detail the scope of genomic selection, high-throughput phenotyping, emerging genome editing tools, and speed breeding protocols for enhancing SPC in grain legumes to achieve legume-based dietary protein security and thus reduce the global hunger risk.
Collapse
Affiliation(s)
- Uday C. Jha
- ICAR—Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 160014, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research, New Delhi 110067, India;
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Punjab 140308, India;
| | | | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
11
|
Kambhampati S, Aznar-Moreno JA, Bailey SR, Arp JJ, Chu KL, Bilyeu KD, Durrett TP, Allen DK. Temporal changes in metabolism late in seed development affect biomass composition. PLANT PHYSIOLOGY 2021; 186:874-890. [PMID: 33693938 PMCID: PMC8195533 DOI: 10.1093/plphys/kiab116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 05/23/2023]
Abstract
The negative association between protein and oil production in soybean (Glycine max) seed is well-documented. However, this inverse relationship is based primarily on the composition of mature seed, which reflects the cumulative result of events over the course of soybean seed development and therefore does not convey information specific to metabolic fluctuations during developmental growth regimes. In this study, we assessed maternal nutrient supply via measurement of seed coat exudates and metabolite levels within the cotyledon throughout development to identify trends in the accumulation of central carbon and nitrogen metabolic intermediates. Active metabolic activity during late seed development was probed through transient labeling with 13C substrates. The results indicated: (1) a drop in lipid contents during seed maturation with a concomitant increase in carbohydrates, (2) a transition from seed filling to maturation phases characterized by quantitatively balanced changes in carbon use and CO2 release, (3) changes in measured carbon and nitrogen resources supplied maternally throughout development, (4) 13C metabolite production through gluconeogenic steps for sustained carbohydrate accumulation as the maternal nutrient supply diminishes, and (5) oligosaccharide biosynthesis within the seed coat during the maturation phase. These results highlight temporal engineering targets for altering final biomass composition to increase the value of soybeans and a path to breaking the inverse correlation between seed protein and oil content.
Collapse
Affiliation(s)
| | - Jose A Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sally R Bailey
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Kristin D Bilyeu
- United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| |
Collapse
|
12
|
A proteomic analysis of peanut seed at different stages of underground development to understand the changes of seed proteins. PLoS One 2020; 15:e0243132. [PMID: 33284814 PMCID: PMC7721164 DOI: 10.1371/journal.pone.0243132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
In order to obtain more valuable insights into the protein dynamics and accumulation of allergens in seeds during underground development, we performed a proteomic study on developing peanut seeds at seven different stages. A total of 264 proteins with altered abundance and contained at least one unique peptide was detected by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). All identified proteins were classified into five functional categories as level 1 and 20 secondary functional categories as level 2. Among them, 88 identified proteins (IPs) were related to carbohydrate/ amino acid/ lipid transport and metabolism, indicating that carbohydrate/amino acid/ lipid metabolism played a key role in the underground development of peanut seeds. Hierarchical cluster analysis showed that all IPs could be classified into eight cluster groups according to the abundance profiles, suggesting that the modulatory patterns of these identified proteins were complicated during seed development. The largest group contained 41 IPs, the expression of which decreased at R 2 and reached a maximum at R3 but gradually decreased from R4. A total of 14 IPs were identified as allergen-like proteins by BLAST with A genome (Arachis duranensis) or B genome (Arachis ipaensis) translated allergen sequences. Abundance profile analysis of 14 identified allergens showed that the expression of all allergen proteins was low or undetectable by 2-DE at the early stages (R1 to R4), and began to accumulate from the R5 stage and gradually increased. Network analysis showed that most of the significant proteins were involved in active metabolic pathways in early development. Real time RT-PCR analysis revealed that transcriptional regulation was approximately consistent with expression at the protein level for 8 selected identified proteins. In addition, some amino acid sequences that may be associated with new allergens were also discussed.
Collapse
|
13
|
Yun DY, Kang YG, Kim M, Kim D, Kim EH, Hong YS. Metabolomic understanding of pod removal effect in soybean plants and potential association with their health benefit. Food Res Int 2020; 138:109797. [PMID: 33288179 DOI: 10.1016/j.foodres.2020.109797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
Since natural materials, such as phytochemicals in plants, are increasingly being used for foods and skincare due to their beneficial functions, it is important for developing the cultivation practices to increase the contents of phytochemicals. We here explored metabolite perturbations in the leaves of soybean plants when their pods were removed during growth through 1H NMR-based metabolomics approach. There were obvious metabolic differences in the leaves between normal and pod-removed soybean plants. High amounts of primary metabolites in pod-removed soybean leaves, including amino acids, sugars, and fatty acids, reflected a delay of leaf senescence caused by pod removal. In particular, amounts of isoflavones, coumestrol, and apigenin derivatives in pod-removed soybean leaves were substantially increased. These were considered as distinct metabolic influences of pod removal in soybean plants. These results indicate that pod removal of soybean plants can induce significant perturbations of various metabolites in their soybean leaves, providing useful information to improve the quality of soybean leaves by increasing amounts of bioactive components.
Collapse
Affiliation(s)
- Dae-Yong Yun
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Kyeonggi-do 17074, Republic of Korea
| | - Myoyeon Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Kyeonggi-do 17074, Republic of Korea
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Kyeonggi-do 17074, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipment, Korea Basic Science Institute, Cheongwon-Gu, Cheongju-Si, Chungbuk 28119, Republic of Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
14
|
Impact of Nitrogen Fertilizer Levels on Metabolite Profiling of the Lycium barbarum L. Fruit. Molecules 2019; 24:molecules24213879. [PMID: 31661883 PMCID: PMC6864581 DOI: 10.3390/molecules24213879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
The yield and quality of goji (Lycium barbarum L.) fruit are heavily dependent on fertilizer, especially the availability of nitrogen, phosphorus, and potassium (N, P, and K, respectively). In this study, we performed a metabolomic analysis of the response of goji berry to nitrogen fertilizer levels using an Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) method. There was no significant difference in the fruit yield or the commodity grade between N0 (42.5 g/plant), N1 (85 g/plant), and N2 (127.5 g/plant). The primary nutrients of the goji berry changed with an increasing nitrogen fertilization. Comparative metabolomic profiling of three nitrogen levels resulted in the identification of 612 metabolites, including amino acids, flavonoids, carbohydrates, organic acids, and lipids/alcohols, among others, of which 53 metabolites (lipids, fatty acids, organic acids, and phenolamides) demonstrated significant changes. These results provide new insights into the molecular mechanisms of the relationship between yield and quality of goji berry and nitrogen fertilizer.
Collapse
|
15
|
Wang J, Zhou P, Shi X, Yang N, Yan L, Zhao Q, Yang C, Guan Y. Primary metabolite contents are correlated with seed protein and oil traits in near-isogenic lines of soybean. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Ma D, Gao H, Du C, Li L, Sun W, Liu S, Wang C, Xie Y, Kang G. Transcriptomic and Metabolomics Analysis of Different Endosperm Region under Nitrogen Treatments. Int J Mol Sci 2019; 20:ijms20174212. [PMID: 31466282 PMCID: PMC6747615 DOI: 10.3390/ijms20174212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 02/04/2023] Open
Abstract
Storage protein distribution in wheat-grain endosperm is heterogeneous, but the underlying molecular mechanism remains unclear. Two parts of the endosperm region, the innermost endosperm (IE) region and the remaining endosperm (RE) region, grown under low nitrogen (LN) and high nitrogen (HN) treatments were used to perform metabolomic and transcriptomic analysis. We identified 533 and 503 differentially expressed genes (DEGs) with at least a two-fold expression change (p < 0.05) between IE and RE, among which 81 and 78 transcripts under LN and HN, respectively, related to carbon and nitrogen metabolism, and encoded transcription factors or proteins involved in post-translational modification (PTM). The significantly differentially abundant metabolites between IE and RE were mainly amino acids, N-compounds, carbohydrates, and nucleic acids. More upregulated transcripts and metabolites were identified in RE than IE under HN conditions, indicating that HN activates metabolism in the endosperm periphery. In addition to carbon and nitrogen metabolism, transcription factors and protein PTMs, such as phosphorylation and acetylation, might determine the protein heterogeneous distribution between IE and RE and its response to nitrogen fertilizer supply.
Collapse
Affiliation(s)
- Dongyun Ma
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China.
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Honghuan Gao
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenyang Du
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Lingli Li
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Wan Sun
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Sujun Liu
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenyang Wang
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingxin Xie
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Guozhang Kang
- Agronomy College/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
17
|
Cunicelli MJ, Bhandari HS, Chen P, Sams CE, Mian MAR, Mozzoni LA, Smallwood CJ, Pantalone VR. Effect of a Mutant Danbaekkong Allele on Soybean Seed Yield, Protein, and Oil Concentration. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mia J. Cunicelli
- Department of Plant SciencesUniversity of Tennessee 2431 Joe Johnson Drive, Knoxville TN 37996 USA
| | - Hem S. Bhandari
- Department of Plant SciencesUniversity of Tennessee 2431 Joe Johnson Drive, Knoxville TN 37996 USA
| | - Pengyin Chen
- Division of Plant SciencesUniversity of Missouri Fisher Delta Research Center 147 State Hwy T, Portageville MO 63873 USA
| | - Carl E. Sams
- Department of Plant SciencesUniversity of Tennessee 2431 Joe Johnson Drive, Knoxville TN 37996 USA
| | - M. A. Rouf Mian
- Soybean and Nitrogen Fixation Research UnitUSDA‐ARS Raleigh NC 27607 USA
| | - Leandro A. Mozzoni
- Department of Crop, Soil, and Environmental ScienceUniversity of Arkansas PTSC 105 Fayetteville AR 72701 USA
| | - Christopher J. Smallwood
- Department of Research and Development, Olam Spices & Vegetable Ingredients 9301 E. Lacey Blvd., Hanford CA 93230 USA
| | - Vincent R. Pantalone
- Department of Plant SciencesUniversity of Tennessee 2431 Joe Johnson Drive, Knoxville TN 37996 USA
| |
Collapse
|
18
|
Zhong Y, Xu D, Hebelstrup KH, Yang D, Cai J, Wang X, Zhou Q, Cao W, Dai T, Jiang D. Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. BMC PLANT BIOLOGY 2018; 18:353. [PMID: 30545290 PMCID: PMC6293556 DOI: 10.1186/s12870-018-1563-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/22/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Nitrogen is one basic element of amino acids and grain protein in wheat. In field experiments, wheat plants were subjected to different timing of nitrogen topdressing treatments: at the stages of emergence of the top fifth leaf (TL5), top third leaf (TL3) and top first leaf (TL1) to test the regulatory effects of nitrogen topdressing timing on grain protein quality. The underlying mechanisms were elucidated by clarifying the relationship between proteolysis in vegetative organs and accumulation of amino acids in the endosperm cavity, conversion of amino acids, and storage protein synthesis in endosperm of wheat grain. RESULTS Delayed nitrogen topdressing up-regulated gene expression related to nitrogen metabolism and protease synthesis in the flag leaf, followed by more free amino acids being transported to both the cavity and the endosperm from 7 days after anthesis (DAA) to 13 DAA in TL1. TL1 enhanced the conversion between free amino acids in endosperm and upregulated the expression of genes encoding high molecular weight (HMW) and low molecular weight (LMW) subunits and protein disulfide isomerases-like (PDIL) proteins, indicating that the synthesis and folding of glutenin were enhanched by delayed nitrogen topdressing. As a consequense, the content of glutenin macropolymers (GMP) and glutenin increased with delaying nitrogen topdressing. CONCLUSIONS The results highlight the relationship between nitrogen remobilization and final grain protein production and suggest that the nitrogen remobilization processes could be a potential target for improving the quality of wheat grain. Additionally, specific gene expression related to nitrogen topdressing was identified, which conferred more detailed insights into underlying mechanism on the modification protein quality.
Collapse
Affiliation(s)
- Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production / Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Dachao Xu
- National Laboratory of Plant Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Donglei Yang
- National Laboratory of Plant Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production / Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production / Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production / Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Weixing Cao
- National Technique Innovation Center for Regional Wheat Production / Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production / Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production / Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
19
|
Amir R, Galili G, Cohen H. The metabolic roles of free amino acids during seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:11-18. [PMID: 30107877 DOI: 10.1016/j.plantsci.2018.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 05/03/2023]
Abstract
Amino acids play vital roles in the central metabolism of seeds. They are primarily utilized for the synthesis of seed-storage proteins, but also serve as precursors for the biosynthesis of secondary metabolites and as a source of energy. Here, we aimed at describing the knowledge accumulated in recent years describing the changes occurring in the contents of free amino acids (FAAs) during seed development. Since several essential amino acids are found in low levels in seeds (e.g., Lys, Met, Thr, Val, Leu, Ile and His), or play unique functional roles in seed development (e.g., Pro and the non-proteinogenic γ-aminobutyrate [GABA]), we also briefly describe studies carried out in order to alter their levels in seeds and determine the effects of the manipulation on seed biology. The lion share of these studies highlights strong positive correlations between the biosynthetic pathways of FAAs, meaning that when the levels of a certain amino acid change in seeds, the contents of other FAAs tend to elevate as well. These observations infer a tight regulatory network operating in the biosynthesis of FAAs during seed development.
Collapse
Affiliation(s)
- Rachel Amir
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona 12100, Israel; Tel-Hai College, Upper Galilee 11016, Israel.
| | - Gad Galili
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagai Cohen
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Lorenz C, Brandt S, Borisjuk L, Rolletschek H, Heinzel N, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. The Role of Persulfide Metabolism During Arabidopsis Seed Development Under Light and Dark Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1381. [PMID: 30283487 PMCID: PMC6156424 DOI: 10.3389/fpls.2018.01381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
The sulfur dioxygenase ETHE1 oxidizes persulfides in the mitochondrial matrix and is involved in the degradation of L-cysteine and hydrogen sulfide. ETHE1 has an essential but as yet undefined function in early embryo development of Arabidopsis thaliana. In leaves, ETHE1 is strongly induced by extended darkness and participates in the use of amino acids as alternative respiratory substrates during carbohydrate starvation. Thus, we tested the effect of darkness on seed development in an ETHE1 deficient mutant in comparison to the wild type. Since ETHE1 knock-out is embryo lethal, the knock-down line ethe1-1 with about 1% residual sulfur dioxygenase activity was used for this study. We performed phenotypic analysis, metabolite profiling and comparative proteomics in order to investigate the general effect of extended darkness on seed metabolism and further define the specific function of the mitochondrial sulfur dioxygenase ETHE1 in seeds. Shading of the siliques had no morphological effect on embryogenesis in wild type plants. However, the developmental delay that was already visible in ethe1-1 seeds under control conditions was further enhanced in the darkness. Dark conditions strongly affected seed quality parameters of both wild type and mutant plants. The effect of ETHE1 knock-down on amino acid profiles was clearly different from that found in leaves indicating that in seeds persulfide oxidation interacts with alanine and glycine rather than branched-chain amino acid metabolism. Sulfur dioxygenase deficiency led to defects in endosperm development possibly due to alterations in the cellularization process. In addition, we provide evidence for a potential role of persulfide metabolism in abscisic acid (ABA) signal transduction in seeds. We conclude that the knock-down of ETHE1 causes metabolic re-arrangements in seeds that differ from those in leaves. Putative mechanisms that cause the aberrant endosperm and embryo development are discussed.
Collapse
Affiliation(s)
- Christin Lorenz
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Saskia Brandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Tatjana M. Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
21
|
Borek S, Kalemba EM, Pukacka S, Pietrowska-Borek M, Stawiński S, Ratajczak L. Nitrate simultaneously enhances lipid and protein accumulation in developing yellow lupin cotyledons cultured in vitro, but not under field conditions. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:26-34. [PMID: 28558332 DOI: 10.1016/j.jplph.2017.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
The research was conducted on yellow lupin (Lupinus luteus L.) mature seeds, developing cotyledons, developing pods, and seedlings. The main storage compound in yellow lupin seeds is protein, whose content may reach up to 45%. Oil content in seeds of yellow lupin is about 6%. In such protein-storing seeds there is a strong negative relationship between accumulation of storage lipid and protein. An increase in protein content causes a decrease in lipid level, and vice versa. However, simultaneous increase in lipid and protein content is possible in developing lupin cotyledons (the main storage organs of lupin seeds) cultured in vitro. Such an effect was obtained by feeding the cotyledons with nitrate (35mM). The same positive relationship in storage lipid and protein accumulation was also obtained in developing lupin pods fed with nitrate (35mM), detached from the mother plant, and maintained under quasi in vitro conditions. Fertilization of lupin plants with nitrate under field conditions (40 or 80kgNha-1 applied before sowing, at the nodulation stage or at the flowering and pod formation stage) did not cause significant changes in lipid and protein contents in mature seeds. Experiments performed on lupin seedlings cultivated hydroponically showed that nitrate added to the medium was accumulated mainly in roots, and at a remarkably lower level in shoots. We hypothesize that the lack of stimulatory effect of nitrate on storage lipid and protein accumulation in seeds under field conditions is due to inefficient transport of nitrate from the root to developing pods in lupin plants. This causes that the level of nitrate inside the developing lupin seeds is not elevated under field conditions.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences,ul. Parkowa 5, 62-035, Kórnik, Poland.
| | - Stanisława Pukacka
- Institute of Dendrology, Polish Academy of Sciences,ul. Parkowa 5, 62-035, Kórnik, Poland.
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, ul. Dojazd 11, 60-632, Poznań, Poland.
| | - Stanisław Stawiński
- Plant Breeding Station Smolice Division in Przebędowo, Przebędowo 1, 62-095 Murowana Goślina, Poland.
| | - Lech Ratajczak
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
22
|
Gaufichon L, Marmagne A, Belcram K, Yoneyama T, Sakakibara Y, Hase T, Grandjean O, Clément G, Citerne S, Boutet-Mercey S, Masclaux-Daubresse C, Chardon F, Soulay F, Xu X, Trassaert M, Shakiebaei M, Najihi A, Suzuki A. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:371-393. [PMID: 28390103 DOI: 10.1111/tpj.13567] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 05/23/2023]
Abstract
Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoterCaMV35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoterNapin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway.
Collapse
Affiliation(s)
- Laure Gaufichon
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Anne Marmagne
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Katia Belcram
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Observatoire du Végétal - Cytologie Imagerie, RD10, Versailles, F-78026, France
| | - Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi l-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yukiko Sakakibara
- Institute for Protein Research, Division of Protein Chemistry, Laboratory of Regulation of Biological Reactions, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiharu Hase
- Institute for Protein Research, Division of Protein Chemistry, Laboratory of Regulation of Biological Reactions, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Olivier Grandjean
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Observatoire du Végétal - Cytologie Imagerie, RD10, Versailles, F-78026, France
| | - Gilles Clément
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Observatoire du Végétal - Chimie Métabolisme, RD10, Versailles, F-78026, France
| | - Sylvie Citerne
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Observatoire du Végétal - Chimie Métabolisme, RD10, Versailles, F-78026, France
| | - Stéphanie Boutet-Mercey
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Observatoire du Végétal - Chimie Métabolisme, RD10, Versailles, F-78026, France
| | | | - Fabien Chardon
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Fabienne Soulay
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Xiaole Xu
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Marion Trassaert
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Maryam Shakiebaei
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Amina Najihi
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| | - Akira Suzuki
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France
| |
Collapse
|
23
|
Elucidating the Effects of Higher Expression Level of Cystathionine γ-Synthase on Methionine Contents in Transgenic Arabidopsis, Soybean and Tobacco Seeds. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-56526-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
24
|
Han C, Zhen S, Zhu G, Bian Y, Yan Y. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:320-327. [PMID: 28415032 DOI: 10.1016/j.plaphy.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
In this study, we performed the first comparative metabolomic analysis of the wheat embryo and endosperm during seed germination using GC-MS/MS. In total, 82 metabolites were identified in the embryo and endosperm. Principal component analysis (PCA), metabolite-metabolite correlation and hierarchical cluster analysis (HCA) revealed distinct dynamic changes in metabolites between the embryo and endosperm during seed germination. Generally, the metabolite changes in the embryo were much greater than those in the endosperm, suggesting that the embryo is more active than the endosperm during seed germination. Most amino acids were upregulated in both embryo and endosperm, while polysaccharides and organic acids associated with sugars were mainly downregulated in the embryo. Most of the sugars showed an upregulated trend in the endosperm, but significant changes in lipids occurred only in the embryo. Our results suggest that the embryo mobilises mainly protein and lipid metabolism, while the endosperm mobilises storage starch and minor protein metabolism during seed germination. The primary energy was generated mainly in the embryo by glycolysis during seed imbibition. The embryo containing most of the genetic information showed increased nucleotides during seed germination process, indicating more active transcription and translation metabolisms.
Collapse
Affiliation(s)
- Caixia Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Shoumin Zhen
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Gengrui Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yanwei Bian
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025 Jingzhou, China.
| |
Collapse
|
25
|
Wang X, Komatsu S. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:117-148. [PMID: 28427531 DOI: 10.1016/bs.afnr.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean.
Collapse
Affiliation(s)
- Xin Wang
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
26
|
Huber SC, Li K, Nelson R, Ulanov A, DeMuro CM, Baxter I. Canopy position has a profound effect on soybean seed composition. PeerJ 2016; 4:e2452. [PMID: 27672507 PMCID: PMC5028787 DOI: 10.7717/peerj.2452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
Although soybean seeds appear homogeneous, their composition (protein, oil and mineral concentrations) can vary significantly with the canopy position where they were produced. In studies with 10 cultivars grown over a 3-yr period, we found that seeds produced at the top of the canopy have higher concentrations of protein but less oil and lower concentrations of minerals such as Mg, Fe, and Cu compared to seeds produced at the bottom of the canopy. Among cultivars, mean protein concentration (average of different positions) correlated positively with mean concentrations of S, Zn and Fe, but not other minerals. Therefore, on a whole plant basis, the uptake and allocation of S, Zn and Fe to seeds correlated with the production and allocation of reduced N to seed protein; however, the reduced N and correlated minerals (S, Zn and Fe) showed different patterns of allocation among node positions. For example, while mean concentrations of protein and Fe correlated positively, the two parameters correlated negatively in terms of variation with canopy position. Altering the microenvironment within the soybean canopy by removing neighboring plants at flowering increased protein concentration in particular at lower node positions and thus altered the node-position gradient in protein (and oil) without altering the distribution of Mg, Fe and Cu, suggesting different underlying control mechanisms. Metabolomic analysis of developing seeds at different positions in the canopy suggests that availability of free asparagine may be a positive determinant of storage protein accumulation in seeds and may explain the increased protein accumulation in seeds produced at the top of the canopy. Our results establish node-position variation in seed constituents and provide a new experimental system to identify genes controlling key aspects of seed composition. In addition, our results provide an unexpected and simple approach to link agronomic practices to improve human nutrition and health in developing countries because food products produced from seeds at the bottom of the canopy contained higher Fe concentrations than products from the top of the canopy. Therefore, using seeds produced in the lower canopy for production of iron-rich soy foods for human consumption could be important when plants are the major source of protein and human diets can be chronically deficient in Fe and other minerals.
Collapse
Affiliation(s)
- Steven C Huber
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kunzhi Li
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Lab of Plant Nutrition Genetic Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Randall Nelson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States
| | - Alexander Ulanov
- Metabolomics Facility, Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Catherine M DeMuro
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States
| | - Ivan Baxter
- Plant Genetics Research Unit, United States Department of Agriculture Agricultural Research Service, St. Louis, MO, United States.,Donald Danforth Plant Science Center, Creve Coeur, MO, United States
| |
Collapse
|
27
|
Yang H, Meng Y, Chen B, Zhang X, Wang Y, Zhao W, Zhou Z. How Integrated Management Strategies Promote Protein Quality of Cotton Embryos: High Levels of Soil Available N, N Assimilation and Protein Accumulation Rate. FRONTIERS IN PLANT SCIENCE 2016; 7:1118. [PMID: 27532007 PMCID: PMC4969568 DOI: 10.3389/fpls.2016.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 05/24/2023]
Abstract
Cottonseed is widely used as a source of ruminant feed and for industrial purposes. Therefore, there is a tremendous need to improve the nutritional value of cotton embryos. In this study, a conventional management (CM) and two integrated cotton management strategies (IMS1, IMS2) were performed at two soil fertility levels to study the relationships among soil N, N assimilation, embryonic protein accumulation and protein quality. The levels of proteins, essential amino acids, and semi-essential amino acids, especially those of glutamate, lysine, and methionine, were higher in IMS1 and IMS2 embryos than in CM embryos. These changes were significantly positively correlated with the soil-available N content, glutamine synthetase activity and peak value of protein accumulation rate and were negatively correlated with the free amino acid level. These results illustrated that integrated management strategies, especially the rates and timing of N application, raise the level of soil available N, which is beneficial for N assimilation in developing cotton embryos. The protein content was limited by the rate of protein accumulation rather than by the free amino acid content. The combination of target yield fertilization, a growth-driven N application schedule, a high plant density and the seedling raising with bio-organic fertilizer can substantially improve protein quality in cotton embryos, especially at a soil with low soil organic matter and total nitrogen.
Collapse
Affiliation(s)
| | | | - BingLin Chen
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural University and Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
| | | | | | | | | |
Collapse
|
28
|
Zhen S, Dong K, Deng X, Zhou J, Xu X, Han C, Zhang W, Xu Y, Wang Z, Yan Y. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3731-3740. [PMID: 26676564 DOI: 10.1002/jsfa.7561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. RESULTS In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. CONCLUSION The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shoumin Zhen
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Kun Dong
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Jiaxing Zhou
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xuexin Xu
- College of Agricultural and Biotechnology, China Agricultural University, 100091, Beijing, China
| | - Caixia Han
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China
| | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China
| | - Zhimin Wang
- College of Agricultural and Biotechnology, China Agricultural University, 100091, Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048, Beijing, China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China
| |
Collapse
|
29
|
Cohen H, Shir OM, Yu Y, Hou W, Sun S, Han T, Amir R. Genetic background and environmental conditions drive metabolic variation in wild type and transgenic soybean (Glycine max) seeds. PLANT, CELL & ENVIRONMENT 2016; 39:1805-17. [PMID: 27038216 DOI: 10.1111/pce.12748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The metabolic profiles and composition of storage reserves of agricultural crop seeds are strongly regulated by heritable and environmental factors. Yet, very little is known about the genetic and environmental determinants of adaptive metabolic variation amongst wild type as well as transgenic seed populations derived from the same genetic background, grown under natural field conditions. The goal of the current study was to investigate the effects of natural environmental conditions on wild type and transgenic soybean seeds expressing a feedback-insensitive form of cystathionine γ-synthase, a methionine main regulatory enzyme. The seeds were grown in four geographically distinct habitats in China and then assayed for primary metabolic profiles using gas chromatography mass spectrometry, morphological traits and storage reserve accumulation. The analyses revealed changes in the levels of primary metabolites which evidently exhibited high correlation to methionine regardless of changes in environmental conditions. The environment, however, constituted a major determinant of metabolic profiles amongst seeds, as much more metabolites were observed to be affected by this variable, particularly along the north-to-south latitudinal gradient. The observations suggest that metabolic variation amongst seeds grown under natural field conditions depends upon the complex relationships existing amongst their genetic background and the environmental conditions characterizing their cultivation areas.
Collapse
Affiliation(s)
- Hagai Cohen
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
- Migal Galilee Technology Center, Kiryat Shmona, 12100, Israel
| | - Ofer M Shir
- Migal Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| | - Yang Yu
- MOA Key Laboratory of Soybean Biology, Institute of Crop Science, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Hou
- MOA Key Laboratory of Soybean Biology, Institute of Crop Science, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Sun
- MOA Key Laboratory of Soybean Biology, Institute of Crop Science, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianfu Han
- MOA Key Laboratory of Soybean Biology, Institute of Crop Science, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rachel Amir
- Migal Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| |
Collapse
|
30
|
Zhen S, Zhou J, Deng X, Zhu G, Cao H, Wang Z, Yan Y. Metabolite profiling of the response to high-nitrogen fertilizer during grain development of bread wheat ( Triticum aestivum L.). J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Cohen H, Pajak A, Pandurangan S, Amir R, Marsolais F. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids. Amino Acids 2016; 48:1413-22. [DOI: 10.1007/s00726-016-2193-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 01/03/2023]
|
32
|
Hu C, Tohge T, Chan SA, Song Y, Rao J, Cui B, Lin H, Wang L, Fernie AR, Zhang D, Shi J. Identification of Conserved and Diverse Metabolic Shifts during Rice Grain Development. Sci Rep 2016; 6:20942. [PMID: 26860358 PMCID: PMC4748235 DOI: 10.1038/srep20942] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 11/26/2022] Open
Abstract
Seed development dedicates to reserve synthesis and accumulation and uncovering its genetic and biochemical mechanisms has been a major research focus. Although proteomic and transcriptomic analyses revealed dynamic changes of genes and enzymes involved, the information regarding concomitant metabolic changes is missing. Here we investigated the dynamic metabolic changes along the rice grain development of two japonica and two indica cultivars using non-targeted metabolomics approach, in which we successfully identified 214 metabolites. Statistical analyses revealed both cultivar and developmental stage dependent metabolic changes in rice grains. Generally, the stage specific metabolic kinetics corresponded well to the physiological status of the developing grains, and metabolic changes in developing rice grain are similar to those of dicot Arabidopsis and tomato at reserve accumulation stage but are different from those of dicots at seed desiccation stage. The remarkable difference in metabolite abundances between japonica and indica rice grain was observed at the reserve accumulation stage. Metabolite-metabolite correlation analysis uncovered potential new pathways for several metabolites. Taken together, this study uncovered both conserved and diverse development associated metabolic kinetics of rice grains, which facilitates further study to explore fundamental questions regarding the evolution of seed metabolic capabilities as well as their potential applications in crop improvement.
Collapse
Affiliation(s)
- Chaoyang Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Yue Song
- Agilent Technology, Inc. Shanghai, China
| | - Jun Rao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
- Jiangxi Cancer Hospital, No. 519 East Beijing Road, Nanchang 330029, China
| | - Bo Cui
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Hong Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Lei Wang
- Agilent Technology, Inc. Beijing 100000, China
| | - Alisdair R. Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
- Shanghai Ruifeng Agro-biotechnology Co., Ltd, Room 108, No 233 Rushan Rd., Shanghai 200120, China
| |
Collapse
|
33
|
Pandurangan S, Pajak A, Rintoul T, Beyaert R, Hernández-Sebastià C, Brown DCW, Marsolais F. Soybean seeds overexpressing asparaginase exhibit reduced nitrogen concentration. PHYSIOLOGIA PLANTARUM 2015; 155:126-137. [PMID: 25898948 DOI: 10.1111/ppl.12341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/18/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
In soybean seed, a correlation has been observed between the concentration of free asparagine at mid-maturation and protein concentration at maturity. In this study, a Phaseolus vulgaris K+ -dependent asparaginase cDNA, PvAspG2, was expressed in transgenic soybean under the control of the embryo specific promoter of the β-subunit of β-conglycinin. Three lines were isolated having high expression of the transgene at the transcript, protein and enzyme activity levels at mid-maturation, with a 20- to 40-fold higher asparaginase activity in embryo than a control line expressing β-glucuronidase. Increased asparaginase activity was associated with a reduction in free asparagine levels as a percentage of total free amino acids, by 11-18%, and an increase in free aspartic acid levels, by 25-60%. Two of the lines had reduced nitrogen concentration in mature seed as determined by nitrogen analysis, by 9-13%. Their levels of extractible globulins were reduced by 11-30%. This was accompanied by an increase in oil concentration, by 5-8%. The lack of change in nitrogen concentration in the third transgenic line was correlated with an increase in free glutamic acid levels by approximately 40% at mid-maturation.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Agnieszka Pajak
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Tara Rintoul
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Ronald Beyaert
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Cinta Hernández-Sebastià
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Daniel C W Brown
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| |
Collapse
|
34
|
Dai Z, Plessis A, Vincent J, Duchateau N, Besson A, Dardevet M, Prodhomme D, Gibon Y, Hilbert G, Pailloux M, Ravel C, Martre P. Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:326-43. [PMID: 25996785 DOI: 10.1111/tpj.12881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/08/2015] [Accepted: 05/05/2015] [Indexed: 05/08/2023]
Abstract
Wheat (Triticum aestivum L.) grain storage proteins (GSPs) are major determinants of flour end-use value. Biological and molecular mechanisms underlying the developmental and nutritional determination of GSP accumulation in cereals are as yet poorly understood. Here we timed the accumulation of GSPs during wheat grain maturation relative to changes in metabolite and transcript pools in different conditions of nitrogen (N) and sulfur (S) availability. We found that the N/S supply ratio modulated the duration of accumulation of S-rich GSPs and the rate of accumulation of S-poor GSPs. These changes are likely to be the result of distinct relationships between N and S allocation, depending on the S content of the GSP. Most developmental and nutritional modifications in GSP synthesis correlated with the abundance of structural gene transcripts. Changes in the expression of transport and metabolism genes altered the concentrations of several free amino acids under variable conditions of N and S supply, and these amino acids seem to be essential in determining GSP expression. The comprehensive data set generated and analyzed here provides insights that will be useful in adapting fertilizer use to variable N and S supply, or for breeding new cultivars with balanced and robust GSP composition.
Collapse
Affiliation(s)
- Zhanwu Dai
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
| | - Anne Plessis
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
| | - Jonathan Vincent
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
- UMR6158 CNRS Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes, Blaise Pascal University, Aubière, F-63 173, France
| | - Nathalie Duchateau
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
| | - Alicia Besson
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
| | - Mireille Dardevet
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
| | - Duyen Prodhomme
- INRA, UMR1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33 882, France
| | - Yves Gibon
- INRA, UMR1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33 882, France
| | - Ghislaine Hilbert
- INRA, UMR1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, F-33 882, France
| | - Marie Pailloux
- UMR6158 CNRS Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes, Blaise Pascal University, Aubière, F-63 173, France
| | - Catherine Ravel
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
| | - Pierre Martre
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, Clermont-Ferrand, F-63 039, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal University, Aubière, F-63 177, France
| |
Collapse
|
35
|
Rayaprolu S, Hettiarachchy N, Horax R, Satchithanandam E, Chen P, Mauromoustakos A. Amino Acid Profiles of 44 Soybean Lines and ACE-I Inhibitory Activities of Peptide Fractions from Selected Lines. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2655-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Pandurangan S, Sandercock M, Beyaert R, Conn KL, Hou A, Marsolais F. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition. FRONTIERS IN PLANT SCIENCE 2015; 6:92. [PMID: 25750649 PMCID: PMC4335288 DOI: 10.3389/fpls.2015.00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 05/28/2023]
Abstract
It has been hypothesized that the relatively low concentration of sulfur amino acids in legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris) differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an enhanced concentration of cysteine and methionine, mostly at the expense of the abundant non-protein amino acid, S-methylcysteine. To identify potential effects associated with an increased concentration of sulfur amino acids in the protein pool, the response of the two genotypes to low and high sulfur nutrition was evaluated under controlled conditions. Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment in both genotypes. The concentration of total cysteine and extractible globulins was increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein 4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1 exhibited a slight increase in yield in response to sulfur treatment, typical for common bean.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Mark Sandercock
- Cereal Research Centre Morden, Agriculture and Agri-Food CanadaCanada, Morden, MB, Canada
| | - Ronald Beyaert
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Kenneth L. Conn
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Anfu Hou
- Cereal Research Centre Morden, Agriculture and Agri-Food CanadaCanada, Morden, MB, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
37
|
Zhang N, Chen F, Huo W, Cui D. Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development. FRONTIERS IN PLANT SCIENCE 2015; 6:735. [PMID: 26442048 PMCID: PMC4569854 DOI: 10.3389/fpls.2015.00735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/29/2015] [Indexed: 05/20/2023]
Abstract
Proteomic approaches were applied in four grain developmental stages of the Chinese bread wheat Yunong 201 and its ethyl methanesulfonate (EMS) mutant line Yunong 3114. 2-DE and tandem MALDI-TOF/TOF-MS analyzed proteome characteristics during middle and late grain development of the Chinese bread wheat Yunong 201 and its EMS mutant line Yunong 3114 with larger grain sizes. We identified 130 differentially accumulated protein spots representing 88 unique proteins, and four main expression patterns displayed a dynamic description of middle and late grain formation. Those identified protein species participated in eight biochemical processes: stress/defense, carbohydrate metabolism, protein synthesis/assembly/degradation, storage proteins, energy production and transportation, photosynthesis, transcription/translation, signal transduction. Comparative proteomic characterization demonstrated 12 protein spots that co-accumulated in the two wheat cultivars with different expression patterns, and six cultivar-specific protein spots including serpin, small heat shock protein, β-amylase, α-amylase inhibitor, dimeric α-amylase inhibitor precursor, and cold regulated protein. These cultivar-specific protein spots possibly resulted in differential yield-related traits of the two wheat cultivars. Our results provide valuable information for dissection of molecular and genetics basis of yield-related traits in bread wheat and the proteomic characterization in this study could also provide insights in the biology of middle and late grain development.
Collapse
Affiliation(s)
| | - Feng Chen
- *Correspondence: Feng Chen, Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | | | | |
Collapse
|
38
|
Cohen H, Israeli H, Matityahu I, Amir R. Seed-specific expression of a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE in Arabidopsis stimulates metabolic and transcriptomic responses associated with desiccation stress. PLANT PHYSIOLOGY 2014; 166:1575-92. [PMID: 25232013 PMCID: PMC4226362 DOI: 10.1104/pp.114.246058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With an aim to elucidate novel metabolic and transcriptional interactions associated with methionine (Met) metabolism in seeds, we have produced transgenic Arabidopsis (Arabidopsis thaliana) seeds expressing a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE, a key enzyme of Met synthesis. Metabolic profiling of these seeds revealed that, in addition to higher levels of Met, the levels of many other amino acids were elevated. The most pronounced changes were the higher levels of stress-related amino acids (isoleucine, leucine, valine, and proline), sugars, intermediates of the tricarboxylic acid cycle, and polyamines and lower levels of polyols, cysteine, and glutathione. These changes reflect stress responses and an altered mitochondrial energy metabolism. The transgenic seeds also had higher contents of total proteins and starch but lower water contents. In accordance with the metabolic profiles, microarray analysis identified a strong induction of genes involved in defense mechanisms against osmotic and drought conditions, including those mediated by the signaling cascades of ethylene and abscisic acid. These changes imply that stronger desiccation processes occur during seed development. The expression levels of transcripts controlling the levels of Met, sugars, and tricarboxylic acid cycle metabolites were also significantly elevated. Germination assays showed that the transgenic seeds had higher germination rates under salt and osmotic stresses and in the presence of ethylene substrate and abscisic acid. However, under oxidative conditions, the transgenic seeds displayed much lower germination rates. Altogether, the data provide new insights on the factors regulating Met metabolism in Arabidopsis seeds and on the mechanisms by which elevated Met levels affect seed composition and behavior.
Collapse
Affiliation(s)
- Hagai Cohen
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Hadasa Israeli
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Ifat Matityahu
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| |
Collapse
|
39
|
Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, Tohge T, Alexander D, Guo L, Lin H, Wang J, Cui X, Rao J, Luo Q, Zhao X, Fernie AR, Zhang D. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep 2014; 4:5067. [PMID: 24861081 PMCID: PMC5381408 DOI: 10.1038/srep05067] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/08/2014] [Indexed: 01/07/2023] Open
Abstract
Seed metabolites are critically important both for plant development and human nutrition; however, the natural variation in their levels remains poorly characterized. Here we profiled 121 metabolites in mature seeds of a wide panel Oryza sativa japonica and indica cultivars, revealing correlations between the metabolic phenotype and geographic origin of the rice seeds. Moreover, japonica and indica subspecies differed significantly not only in the relative abundances of metabolites but also in their corresponding metabolic association networks. These findings provide important insights into metabolic adaptation in rice subgroups, bridging the gap between genome and phenome, and facilitating the identification of genetic control of metabolic properties that can serve as a basis for the future improvement of rice quality via metabolic engineering.
Collapse
Affiliation(s)
- Chaoyang Hu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Jianxin Shi
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Sheng Quan
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Bo Cui
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sabrina Kleessen
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Lining Guo
- Metabolon Inc., Durham, North Carolina 27713, USA
| | - Hong Lin
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Cui
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Rao
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Luo
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Alisdair R. Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dabing Zhang
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Herman EM. Soybean seed proteome rebalancing. FRONTIERS IN PLANT SCIENCE 2014; 5:437. [PMID: 25232359 PMCID: PMC4153022 DOI: 10.3389/fpls.2014.00437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
The soybean seed's protein content and composition are regulated by both genetics and physiology. Overt seed protein content is specified by the genotype's genetic framework and is selectable as a breeding trait. Within the genotype-specified protein content phenotype soybeans have the capacity to rebalance protein composition to create differing proteomes. Soybeans possess a relatively standardized proteome, but mutation or targeted engineering can induce large-scale proteome rebalancing. Proteome rebalancing shows that the output traits of seed content and composition result from two major types of regulation: genotype and post-transcriptional control of the proteome composition. Understanding the underlying mechanisms that specifies the seed proteome can enable engineering new phenotypes for the production of a high-quality plant protein source for food, feed, and industrial proteins.
Collapse
Affiliation(s)
- Eliot M. Herman
- *Correspondence: Eliot M. Herman, School of Plant Sciences, BIO5 Institute, University of Arizona, BIO5 Institute Room 249, 1657 East Helen Street, Tucson, AZ 85721-0240, USA e-mail:
| |
Collapse
|
41
|
Matityahu I, Godo I, Hacham Y, Amir R. Tobacco seeds expressing feedback-insensitive cystathionine gamma-synthase exhibit elevated content of methionine and altered primary metabolic profile. BMC PLANT BIOLOGY 2013; 13:206. [PMID: 24314105 PMCID: PMC3878949 DOI: 10.1186/1471-2229-13-206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/03/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The essential sulfur-containing amino acid methionine plays a vital role in plant metabolism and human nutrition. In this study, we aimed to elucidate the regulatory role of the first committed enzyme in the methionine biosynthesis pathway, cystathionine γ-synthase (CGS), on methionine accumulation in tobacco seeds. We also studied the effect of this manipulation on the seed's metabolism. RESULTS Two forms of Arabidopsis CGS (AtCGS) were expressed under the control of the seeds-specific promoter of legumin B4: feedback-sensitive F-AtCGS (LF seeds), and feedback-insensitive T-AtCGS (LT seeds). Unexpectedly, the soluble content of methionine was reduced significantly in both sets of transgenic seeds. Amino acids analysis and feeding experiments indicated that although the level of methionine was reduced, the flux through its synthesis had increased. As a result, the level of protein-incorporated methionine had increased significantly in LT seeds by up to 60%, but this was not observed in LF seeds, whose methionine content is tightly regulated. This increase was accompanied by a higher content of other protein-incorporated amino acids, which led to 27% protein content in the seeds although this was statistically insignificantly. In addition, the levels of reducing sugars (representing starch) were slightly but significantly reduced, while that of oil was insignificantly reduced. To assess the impact of the high expression level of T-AtCGS in seeds on other primary metabolites, metabolic profiling using GC-MS was performed. This revealed significant alterations to the primary seed metabolism manifested by a significant increase in eight annotated metabolites (mostly sugars and their oxidized derivatives), while the levels of 12 other metabolites were reduced significantly in LT compared to wild-type seeds. CONCLUSION Expression of T-AtCGS leads to an increase in the level of total Met, higher contents of total amino acids, and significant changes in the levels of 20 annotated metabolites. The high level of oxidized metabolites, the two stress-associated amino acids, proline and serine, and low level of glutathione suggest oxidative stress that occurs during LT seed development. This study provides information on the metabolic consequence of increased CGS activity in seeds and how it affects the seed's nutritional quality.
Collapse
Affiliation(s)
- Ifat Matityahu
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Itamar Godo
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Yael Hacham
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
- Tel Hai College, Upper Galilee, Israel
| |
Collapse
|
42
|
Song S, Hou W, Godo I, Wu C, Yu Y, Matityahu I, Hacham Y, Sun S, Han T, Amir R. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1917-26. [PMID: 23530130 DOI: 10.1093/jxb/ert053] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine γ-synthase (AtD-CGS), which is the first committed enzyme of Met biosynthesis. This gene was expressed under the control of a seed-specific promoter, legumin B4, and used to transform the soybean cultivar Zigongdongdou (ZD). In three transgenic lines that exhibited the highest expression level of AtD-CGS, the level of soluble Met increased significantly in developing green seeds (3.8-7-fold). These seeds also showed high levels of other amino acids. This phenomenon was more prominent in two transgenic lines, ZD24 and ZD91. The total Met content, which including Met incorporated into proteins, significantly increased in the mature dry seeds of these two transgenic lines by 1.8- and 2.3-fold, respectively. This elevation was accompanied by a higher content of other protein-incorporated amino acids, which led to significantly higher total protein content in the seeds of these two lines. However, in a third transgenic line, ZD01, the level of total Met and the level of other amino acids did not increase significantly in the mature dry seeds. This line also showed no significant change in protein levels. This suggests a positive connection between high Met content and the synthesis of other amino acids that enable the synthesis of more seed proteins.
Collapse
Affiliation(s)
- Shikui Song
- The National Key Facility for Crop Gene Resources and Genetic Improvement, NFCRI, MOA Key Laboratory of Soybean Biology Beijing, Institute of Crop Science, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Allen DK, Young JD. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. PLANT PHYSIOLOGY 2013; 161:1458-75. [PMID: 23314943 PMCID: PMC3585609 DOI: 10.1104/pp.112.203299] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 01/09/2013] [Indexed: 05/19/2023]
Abstract
Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-(13)C5]glutamine, [U-(13)C4]asparagine, and [1,2-(13)C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-(14)C12]sucrose, [U-(14)C6]glucose, [U-(14)C5]glutamine, and [U-(14)C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, St. Louis, MO 63132, USA.
| | | |
Collapse
|
44
|
Guo G, Lv D, Yan X, Subburaj S, Ge P, Li X, Hu Y, Yan Y. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC PLANT BIOLOGY 2012. [PMID: 22900893 DOI: 10.86/1471-2229-12-147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins. RESULTS Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different. CONCLUSIONS Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed storage proteins were considered to be related to different quality performance of the flour from these wheat cultivars. Some proteins with isoforms were phosphorylated, and this may reflect their importance in grain development. Our results provide new insights into proteome characterization during grain development in different wheat genotypes.
Collapse
Affiliation(s)
- Guangfang Guo
- College of Life Science, Capital Normal University, Beijing 100048, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Guo G, Lv D, Yan X, Subburaj S, Ge P, Li X, Hu Y, Yan Y. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC PLANT BIOLOGY 2012; 12:147. [PMID: 22900893 PMCID: PMC3480910 DOI: 10.1186/1471-2229-12-147] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/16/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins. RESULTS Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different. CONCLUSIONS Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed storage proteins were considered to be related to different quality performance of the flour from these wheat cultivars. Some proteins with isoforms were phosphorylated, and this may reflect their importance in grain development. Our results provide new insights into proteome characterization during grain development in different wheat genotypes.
Collapse
Affiliation(s)
- Guangfang Guo
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Dongwen Lv
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xing Yan
- College of Life Science, Capital Normal University, Beijing 100048, China
| | | | - Pei Ge
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiaohui Li
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
46
|
Pandurangan S, Pajak A, Molnar SJ, Cober ER, Dhaubhadel S, Hernández-Sebastià C, Kaiser WM, Nelson RL, Huber SC, Marsolais F. Relationship between asparagine metabolism and protein concentration in soybean seed. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3173-84. [PMID: 22357599 PMCID: PMC3350928 DOI: 10.1093/jxb/ers039] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 05/03/2023]
Abstract
The relationship between asparagine metabolism and protein concentration was investigated in soybean seed. Phenotyping of a population of recombinant inbred lines adapted to Illinois confirmed a positive correlation between free asparagine levels in developing seeds and protein concentration at maturity. Analysis of a second population of recombinant inbred lines adapted to Ontario associated the elevated free asparagine trait with two of four quantitative trait loci determining population variation for protein concentration, including a major one on chromosome 20 (linkage group I) which has been reported in multiple populations. In the seed coat, levels of asparagine synthetase were high at 50 mg and progressively declined until 150 mg seed weight, suggesting that nitrogenous assimilates are pre-conditioned at early developmental stages to enable a high concentration of asparagine in the embryo. The levels of asparaginase B1 showed an opposite pattern, being low at 50 mg and progressively increased until 150 mg, coinciding with an active phase of storage reserve accumulation. In a pair of genetically related cultivars, ∼2-fold higher levels of asparaginase B1 protein and activity in seed coat, were associated with high protein concentration, reflecting enhanced flux of nitrogen. Transcript expression analyses attributed this difference to a specific asparaginase gene, ASPGB1a. These results contribute to our understanding of the processes determining protein concentration in soybean seed.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Agnieszka Pajak
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Stephen J. Molnar
- Agriculture and Agri-Food Canada, Bioproducts and Bioprocesses and Sustainable Production Systems, Eastern Cereal and Oilseeds Research Centre, Central Experimental Farm, Ottawa, Ontario, K1A 0C6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Bioproducts and Bioprocesses and Sustainable Production Systems, Eastern Cereal and Oilseeds Research Centre, Central Experimental Farm, Ottawa, Ontario, K1A 0C6, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Cinta Hernández-Sebastià
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Werner M. Kaiser
- Department of Botany I, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, D-97082 Würzburg, Germany
| | - Randall L. Nelson
- US Department of Agriculture-Agricultural Research Service, Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C. Huber
- US Department of Agriculture-Agricultural Research Service, Photosynthesis Research Unit, and Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, 197 ERML, Urbana, IL 61801, USA
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| |
Collapse
|
47
|
Tasleem-Tahir A, Nadaud I, Chambon C, Branlard G. Expression Profiling of Starchy Endosperm Metabolic Proteins at 21 Stages of Wheat Grain Development. J Proteome Res 2012; 11:2754-73. [DOI: 10.1021/pr201110d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Isabelle Nadaud
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| | - Christophe Chambon
- INRA, QPA, Proteomic Plateforme, F-63122 Saint-Genès Champanelle,
France
| | - Gérard Branlard
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| |
Collapse
|
48
|
Martre P, Bertin N, Salon C, Génard M. Modelling the size and composition of fruit, grain and seed by process-based simulation models. THE NEW PHYTOLOGIST 2011; 191:601-618. [PMID: 21649661 DOI: 10.1111/j.1469-8137.2011.03747.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding what determines the size and composition of fruit, grain and seed in response to the environment and genotype is challenging, as these traits result from several linked processes controlled at different levels of organization, from the subcellular to the crop level, with subtle interactions occurring at or between the levels of organization. Process-based simulation models (PBSMs) implement algorithms to simulate metabolic and biophysical aspects of cell, tissue and organ behaviour. In this review, fruit, grain and seed PBSMs describing the main phases of growth, development and storage metabolism are discussed. From this concurrent work, it is possible to identify generic storage organ processes which can be modelled similarly for fruit, grain and seed. Spatial heterogeneity at the tissue and whole-plant level is found to be a key consideration in modelling the effects of the environment and genotype on fruit, grain and seed end-use value. In the future, PBSMs may well become the main link between studies at the molecular and whole-plant levels. To bridge this phenotype-to-genotype gap, future models need to remain plastic without becoming overparameterized.
Collapse
Affiliation(s)
- Pierre Martre
- INRA, UMR 1095 Genetics, Diversity, and Ecophysiology of Cereals (GDEC), 234 Avenue du Brezet, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR 1095 GDEC, F-63177 Aubière, France
| | - Nadia Bertin
- INRA, UR 1115 Plantes et Systèmes de Culture Horticoles, F-84914 Avignon, France
| | - Christophe Salon
- INRA, UMR 102 Génétique et Ecophysiologie des Légumineuses (LEG), BP 86510, F-21065 Dijon, France
- AgroSup Dijon, UMR102 LEG, F-21065 Dijon, France
| | - Michel Génard
- INRA, UR 1115 Plantes et Systèmes de Culture Horticoles, F-84914 Avignon, France
| |
Collapse
|
49
|
Sánchez-Hernández L, Marina ML, Crego AL. A capillary electrophoresis–tandem mass spectrometry methodology for the determination of non-protein amino acids in vegetable oils as novel markers for the detection of adulterations in olive oils. J Chromatogr A 2011; 1218:4944-51. [DOI: 10.1016/j.chroma.2011.01.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/13/2011] [Accepted: 01/15/2011] [Indexed: 11/28/2022]
|
50
|
Schmidt MA, Barbazuk WB, Sandford M, May G, Song Z, Zhou W, Nikolau BJ, Herman EM. Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. PLANT PHYSIOLOGY 2011; 156:330-45. [PMID: 21398260 PMCID: PMC3091051 DOI: 10.1104/pp.111.173807] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/08/2011] [Indexed: 05/19/2023]
Abstract
The ontogeny of seed structure and the accumulation of seed storage substances is the result of a determinant genetic program. Using RNA interference, the synthesis of soybean (Glycine max) glycinin and conglycinin storage proteins has been suppressed. The storage protein knockdown (SP-) seeds are overtly identical to the wild type, maturing to similar size and weight, and in developmental ontogeny. The SP- seeds rebalance the proteome, maintaining wild-type levels of protein and storage triglycerides. The SP- soybeans were evaluated with systems biology techniques of proteomics, metabolomics, and transcriptomics using both microarray and next-generation sequencing transcript sequencing (RNA-Seq). Proteomic analysis shows that rebalancing of protein content largely results from the selective increase in the accumulation of only a few proteins. The rebalancing of protein composition occurs with small alterations to the seed's transcriptome and metabolome. The selectivity of the rebalancing was further tested by introgressing into the SP- line a green fluorescent protein (GFP) glycinin allele mimic and quantifying the resulting accumulation of GFP. The GFP accumulation was similar to the parental GFP-expressing line, showing that the GFP glycinin gene mimic does not participate in proteome rebalancing. The results show that soybeans make large adjustments to the proteome during seed filling and compensate for the shortage of major proteins with the increased selective accumulation of other proteins that maintains a normal protein content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eliot M. Herman
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (M.A.S., E.M.H.); Department of Biology (W.B.B., M.S.) and the Genetics Institute (W.B.B.), University of Florida, Gainesville, Florida 32611; National Center for Genome Resources, Santa Fe, New Mexico 87505 (G.M.); Department of Biochemistry, Biophysics, and Molecular Biology (Z.S., W.Z., B.J.N.) and W.M. Keck Metabolomics Research Laboratory (B.J.N.), Iowa State University, Ames, Iowa 50011
| |
Collapse
|