1
|
Ouyang HB, Wang YP, He MH, Wu EJ, Hu BH, Zhan J, Yang L. Mutations in the signal peptide of effector gene Pi04314 contribute to the adaptive evolution of the Phytophthora infestans. BMC Ecol Evol 2025; 25:21. [PMID: 40082776 PMCID: PMC11907978 DOI: 10.1186/s12862-025-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Effectors are critical in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes of effectors remains fragmented despite its importance for the sustainable management of plant diseases. Here, we used a population genetic approach to explore the evolution of the effector gene Pi04314 in Phytophthora infestans, the causal agent of potato blight. RESULTS We found that Pi04314 gene exhibits a low genetic variation generated by point mutations mainly occurring in the signal peptide. Two of the 14 amino acid isoforms completely abolished the secretion functions of signal peptides. The effector is under purifying selection, supported by the comparative analyses between its population differentiation with that of SSR marker loci as well as by negative Tajima's D (-1.578, p = 0.040) and Fu's FS (-10.485, p = 0.000). Furthermore, we found that the nucleotide diversity of Pi04314 is significantly correlated with the annual mean temperature at the collection sites. CONCLUSION These results suggest that the evolution of effector genes could be influenced by local air temperature and signal peptides may contribute to the ecological adaptation of pathogens. The implications of these results for agricultural and natural sustainability are discussed.
Collapse
Affiliation(s)
- Hai-Bing Ouyang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural, Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Meng-Han He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - E-Jiao Wu
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bin-Hong Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Tolchard J, Chambers VS, Boutemy LS, Banfield MJ, Blumenschein TMA. Dynamics in the Phytophthora capsici Effector AVR3a11 Confirm the Core WY Domain Fold. Biochemistry 2025; 64:1146-1156. [PMID: 39976585 PMCID: PMC11883810 DOI: 10.1021/acs.biochem.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Oomycete pathogens cause large economic losses in agriculture through diseases such as late blight (Phytophthora infestans), and stem and root rot of soybean (Phytophthora sojae). The effector protein AVR3a, from P. infestans, and its homologue AVR3a11 from Phytophthora capsici, are host-translocated effectors that interact with plant proteins to evade defense mechanisms and enable infection. Both proteins belong to the family of RXLR effectors and contain an N-terminal secretion signal, an RXLR motif for translocation into the host cell, and a C-terminal effector domain. Within this family, many proteins have been predicted to contain one or more WY domains as their effector domain, which is proposed to encompass a conserved minimal core fold containing three helices, further stabilized by additional helices or dimerization. In AVR3a11, a helical N-terminal extension to the core fold forms a four-helix bundle, as determined by X-ray crystallography. For a complete picture of the dynamics of AVR3a11, we have determined the solution structure of AVR3a11, and studied its dynamics in the fast time scale (ns-ps, from NMR relaxation parameters) and in the slow time scale (seconds to minutes, from hydrogen/deuterium exchange experiments). Hydrogen/deuterium exchange showed that the N-terminal helix is less stable than the other three helices, confirming the core fold originally proposed. Relaxation measurements confirm that AVR3a11 undergoes extensive conformational exchange, despite the uniform presence of fast motions in the spectral density function throughout most of its sequence. As functional residues are in the more mobile regions, flexibility in the slow/intermediate time scale may be functionally important.
Collapse
Affiliation(s)
- James Tolchard
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Vicki S. Chambers
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Laurence S. Boutemy
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Mark J. Banfield
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Tharin M. A. Blumenschein
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
3
|
Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, Cano LM, Manosalva PM. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol 2024; 15:1341803. [PMID: 39211322 PMCID: PMC11357935 DOI: 10.3389/fmicb.2024.1341803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Phytophthora cinnamomi is a hemibiotrophic oomycete causing Phytophthora root rot in over 5,000 plant species, threatening natural ecosystems, forestry, and agriculture. Genomic studies of P. cinnamomi are limited compared to other Phytophthora spp. despite the importance of this destructive and highly invasive pathogen. The genome of two genetically and phenotypically distinct P. cinnamomi isolates collected from avocado orchards in California were sequenced using PacBio and Illumina sequencing. Genome sizes were estimated by flow cytometry and assembled de novo to 140-141 Mb genomes with 21,111-21,402 gene models. Genome analyses revealed that both isolates exhibited complex heterozygous genomes fitting the two-speed genome model. The more virulent isolate encodes a larger secretome and more RXLR effectors when compared to the less virulent isolate. Transcriptome analysis after P. cinnamomi infection in Arabidopsis thaliana, Nicotiana benthamiana, and Persea americana de Mill (avocado) showed that this pathogen deploys common gene repertoires in all hosts and host-specific subsets, especially among effectors. Overall, our results suggested that clonal P. cinnamomi isolates employ similar strategies as other Phytophthora spp. to increase phenotypic diversity (e.g., polyploidization, gene duplications, and a bipartite genome architecture) to cope with environmental changes. Our study also provides insights into common and host-specific P. cinnamomi infection strategies and may serve as a method for narrowing and selecting key candidate effectors for functional studies to determine their contributions to plant resistance or susceptibility.
Collapse
Affiliation(s)
- Aidan C. Shands
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Guangyuan Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Rodger J. Belisle
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shirin Seifbarghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Natasha Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valéncia, Valencia, Spain
| | - Liliana M. Cano
- Department of Plant Pathology, Indian River Research and Education Center (IRREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Patricia M. Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Gouveia C, Santos RB, Paiva-Silva C, Buchholz G, Malhó R, Figueiredo A. The pathogenicity of Plasmopara viticola: a review of evolutionary dynamics, infection strategies and effector molecules. BMC PLANT BIOLOGY 2024; 24:327. [PMID: 38658826 PMCID: PMC11040782 DOI: 10.1186/s12870-024-05037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.
Collapse
Affiliation(s)
- Catarina Gouveia
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Rita B Santos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Catarina Paiva-Silva
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Günther Buchholz
- RLP AgroScience/AlPlanta-Institute for Plant Research, Neustadt an Der Weinstrasse, Germany
| | - Rui Malhó
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
5
|
Fu Q, Yang J, Zhang K, Yin K, Xiang G, Yin X, Liu G, Xu Y. Plasmopara viticola effector PvCRN11 induces disease resistance to downy mildew in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:873-891. [PMID: 37950600 DOI: 10.1111/tpj.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.
Collapse
Affiliation(s)
- Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kaixin Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
6
|
Nur M, Wood K, Michelmore R. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:397-410. [PMID: 36853198 DOI: 10.1094/mpmi-11-22-0236-ta] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Munir Nur
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Kelsey Wood
- The Genome Center, University of California, Davis, CA, U.S.A
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, CA, U.S.A
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
7
|
Mandal K, Dutta S, Upadhyay A, Panda A, Tripathy S. Comparative Genome Analysis Across 128 Phytophthora Isolates Reveal Species-Specific Microsatellite Distribution and Localized Evolution of Compartmentalized Genomes. Front Microbiol 2022; 13:806398. [PMID: 35369471 PMCID: PMC8967354 DOI: 10.3389/fmicb.2022.806398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Phytophthora sp. are invasive groups of pathogens belonging to class Oomycetes. In order to contain and control them, a deep knowledge of their biology and infection strategy is imperative. With the availability of large-scale sequencing data, it has been possible to look directly into their genetic material and understand the strategies adopted by them for becoming successful pathogens. Here, we have studied the genomes of 128 Phytophthora species available publicly with reasonable quality. Our analysis reveals that the simple sequence repeats (SSRs) of all Phytophthora sp. follow distinct isolate specific patterns. We further show that TG/CA dinucleotide repeats are far more abundant in Phytophthora sp. than other classes of repeats. In case of tri- and tetranucleotide SSRs also, TG/CA-containing motifs always dominate over others. The GC content of the SSRs are stable without much variation across the isolates of Phytophthora. Telomeric repeats of Phytophthora follow a pattern of (TTTAGGG)n or (TTAGGGT)n rather than the canonical (TTAGGG)n. RxLR (arginine-any amino acid-leucine-arginine) motifs containing effectors diverge rapidly in Phytophthora and do not show any core common group. The RxLR effectors of some Phytophthora isolates have a tendency to form clusters with RxLRs from other species than within the same species. An analysis of the flanking intergenic distance clearly indicates a two-speed genome organization for all the Phytophthora isolates. Apart from effectors and the transposons, a large number of other virulence genes such as carbohydrate-active enzymes (CAZymes), transcriptional regulators, signal transduction genes, ATP-binding cassette transporters (ABC), and ubiquitins are also present in the repeat-rich compartments. This indicates a rapid co-evolution of this powerful arsenal for successful pathogenicity. Whole genome duplication studies indicate that the pattern followed is more specific to a geographic location. To conclude, the large-scale genomic studies of Phytophthora have thrown light on their adaptive evolution, which is largely guided by the localized host-mediated selection pressure.
Collapse
Affiliation(s)
- Kajal Mandal
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajeet Dutta
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Upadhyay
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Panda
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN, United States
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
9
|
Amoozadeh S, Johnston J, Meisrimler CN. Exploiting Structural Modelling Tools to Explore Host-Translocated Effector Proteins. Int J Mol Sci 2021; 22:12962. [PMID: 34884778 PMCID: PMC8657640 DOI: 10.3390/ijms222312962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Oomycete and fungal interactions with plants can be neutral, symbiotic or pathogenic with different impact on plant health and fitness. Both fungi and oomycetes can generate so-called effector proteins in order to successfully colonize the host plant. These proteins modify stress pathways, developmental processes and the innate immune system to the microbes' benefit, with a very different outcome for the plant. Investigating the biological and functional roles of effectors during plant-microbe interactions are accessible through bioinformatics and experimental approaches. The next generation protein modeling software RoseTTafold and AlphaFold2 have made significant progress in defining the 3D-structure of proteins by utilizing novel machine-learning algorithms using amino acid sequences as their only input. As these two methods rely on super computers, Google Colabfold alternatives have received significant attention, making the approaches more accessible to users. Here, we focus on current structural biology, sequence motif and domain knowledge of effector proteins from filamentous microbes and discuss the broader use of novel modelling strategies, namely AlphaFold2 and RoseTTafold, in the field of effector biology. Finally, we compare the original programs and their Colab versions to assess current strengths, ease of access, limitations and future applications.
Collapse
Affiliation(s)
- Sahel Amoozadeh
- School of Biological Science, University of Canterbury, Christchurch 8041, New Zealand;
| | - Jodie Johnston
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| | | |
Collapse
|
10
|
Waheed A, Wang YP, Nkurikiyimfura O, Li WY, Liu ST, Lurwanu Y, Lu GD, Wang ZH, Yang LN, Zhan J. Effector Avr4 in Phytophthora infestans Escapes Host Immunity Mainly Through Early Termination. Front Microbiol 2021; 12:646062. [PMID: 34122360 PMCID: PMC8192973 DOI: 10.3389/fmicb.2021.646062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Effector genes play critical roles in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes in effector genes and the contribution of climatic factors to the evolution of effector genes are fragmented but important in sustainable management of plant diseases and securing food supply under changing climates. Here, we used a population genetic approach to explore the evolution of the Avr4 gene in Phytophthora infestans, the causal agent of potato blight. We found that the Avr4 gene exhibited a high genetic diversity generated by point mutation and sequence deletion. Frameshifts caused by a single base-pair deletion at the 194th nucleotide position generate two stop codons, truncating almost the entire C-terminal, which is important for effector function and R4 recognition in all sequences. The effector is under natural selection for adaptation supported by comparative analyses of population differentiation (FST ) and isolation-by-distance between Avr4 sequences and simple sequence repeat marker loci. Furthermore, we found that local air temperature was positively associated with pairwise FST in the Avr4 sequences. These results suggest that the evolution of the effector gene is influenced by local air temperature, and the C-terminal truncation is one of the main mutation mechanisms in the P. infestans effector gene to circumvent the immune response of potato plants. The implication of these results to agricultural and natural sustainability in future climate conditions is discussed.
Collapse
Affiliation(s)
- Abdul Waheed
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Ping Wang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Oswald Nkurikiyimfura
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Yang Li
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Ting Liu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahuza Lurwanu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Crop Protection, Bayero University Kano, Kano, Nigeria
| | - Guo-Dong Lu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Chen T, Peng J, Yin X, Li M, Xiang G, Wang Y, Lei Y, Xu Y. Importin-αs are required for the nuclear localization and function of the Plasmopara viticola effector PvAVH53. HORTICULTURE RESEARCH 2021; 8:46. [PMID: 33642571 PMCID: PMC7917100 DOI: 10.1038/s41438-021-00482-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 05/20/2023]
Abstract
Plant pathogenic oomycetes deliver a troop of effector proteins into the nucleus of host cells to manipulate plant cellular immunity and promote colonization. Recently, researchers have focused on identifying how effectors are transferred into the host cell nucleus, as well as the identity of the nuclear targets. In this study, we found that the RxLR effector PvAVH53 from the grapevine (Vitis vinifera) oomycete pathogen Plasmopara viticola physically interacts with grapevine nuclear import factor importin alphas (VvImpα and VvImpα4), localizes to the nucleus and triggers cell death when transiently expressed in tobacco (Nicotiana benthamiana) cells. Deletion of a nuclear localization signal (NLS) sequence from PvAVH53 or addition of a nuclear export signal (NES) sequence disrupted the nuclear localization of PvAVH53 and attenuated its ability to trigger cell death. Suppression of two tobacco importin-α genes, namely, NbImp-α1 and NbImp-α2, by virus-induced gene silencing (VIGS) also disrupted the nuclear localization and ability of PvAVH53 to induce cell death. Likewise, we transiently silenced the expression of VvImpα/α4 in grape through CRISPR/Cas13a, which has been reported to target RNA in vivo. Finally, we found that attenuating the expression of the Importin-αs genes resulted in increased susceptibility to the oomycete pathogen Phytophthora capsici in N. benthamiana and P. viticola in V. vinifera. Our results demonstrate that importin-αs are required for the nuclear localization and function of PvAVH53 and are essential for host innate immunity. The findings provide insight into the functions of importin-αs in grapevine against downy mildew.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Meijie Li
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Lei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, 350013, Fuzhou, Fujian, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China.
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
12
|
Abstract
Pharmacological approaches have made a tremendous impact on the field of microbial secretion systems. This protocol describes the inhibition of Golgi-dependent secretion in Magnaporthe oryzae though brefeldin A (BFA) treatment. State-of-the-art live-cell imaging allows tracking secreted proteins in their secretion pathways. Here we applied this protocol for defining the secretion systems of two fluorescently labeled effectors, Bas4 (apoplastic) and Pwl2 (cytoplasmic). Secretion of Bas4 is clearly inhibited by brefeldin A (BFA), indicating its Golgi-dependent secretion pathway. By contrast, secretion of Pwl2 is BFA insensitive and follows a nonconventional secretion pathway that is Snare and Exocyst dependent. The protocol is suitable to other plant-microbial systems and in vitro secreted microbial proteins.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Zhang F, Chen H, Zhang X, Gao C, Huang J, Lü L, Shen D, Wang L, Huang C, Ye W, Zheng X, Wang Y, Vossen JH, Dong S. Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. PHYTOPATHOLOGY 2021; 111:96-107. [PMID: 33026300 DOI: 10.1094/phyto-05-20-0208-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Li Lü
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518120, China
| | - Chong Huang
- National Agro-Tech Extension and Service Center, Maizidian Street, No. 20, Beijing, 100125, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Wood KJ, Nur M, Gil J, Fletcher K, Lakeman K, Gann D, Gothberg A, Khuu T, Kopetzky J, Naqvi S, Pandya A, Zhang C, Maisonneuve B, Pel M, Michelmore R. Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS Pathog 2020; 16:e1009012. [PMID: 33104763 PMCID: PMC7644090 DOI: 10.1371/journal.ppat.1009012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/05/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogens that infect plants and animals use a diverse arsenal of effector proteins to suppress the host immune system and promote infection. Identification of effectors in pathogen genomes is foundational to understanding mechanisms of pathogenesis, for monitoring field pathogen populations, and for breeding disease resistance. We identified candidate effectors from the lettuce downy mildew pathogen Bremia lactucae by searching the predicted proteome for the WY domain, a structural fold found in effectors that has been implicated in immune suppression as well as effector recognition by host resistance proteins. We predicted 55 WY domain containing proteins in the genome of B. lactucae and found substantial variation in both sequence and domain architecture. These candidate effectors exhibit several characteristics of pathogen effectors, including an N-terminal signal peptide, lineage specificity, and expression during infection. Unexpectedly, only a minority of B. lactucae WY effectors contain the canonical N-terminal RXLR motif, which is a conserved feature in the majority of cytoplasmic effectors reported in Phytophthora spp. Functional analysis of 21 effectors containing WY domains revealed 11 that elicited cell death on wild accessions and domesticated lettuce lines containing resistance genes, indicative of recognition of these effectors by the host immune system. Only two of the 11 recognized effectors contained the canonical RXLR motif, suggesting that there has been an evolutionary divergence in sequence motifs between genera; this has major consequences for robust effector prediction in oomycete pathogens.
Collapse
Affiliation(s)
- Kelsey J. Wood
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Munir Nur
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Juliana Gil
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Plant Pathology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Kyle Fletcher
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | - Dasan Gann
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ayumi Gothberg
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Tina Khuu
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Jennifer Kopetzky
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Sanye Naqvi
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Archana Pandya
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Chi Zhang
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | | | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
15
|
Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms 2020; 8:microorganisms8060917. [PMID: 32560346 PMCID: PMC7355776 DOI: 10.3390/microorganisms8060917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.
Collapse
|
16
|
Chen T, Liu R, Dou M, Li M, Li M, Yin X, Liu GT, Wang Y, Xu Y. Insight Into Function and Subcellular Localization of Plasmopara viticola Putative RxLR Effectors. Front Microbiol 2020; 11:692. [PMID: 32373100 PMCID: PMC7186587 DOI: 10.3389/fmicb.2020.00692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Grapevine downy mildew, caused by oomycete fungus Plasmopara viticola, is one of the most devastating diseases of grapes across the major production regions of the world. Although many putative effector molecules have been identified from this pathogen, the functions of the majority of these are still unknown. In this study, we analyzed the potential function of 26 P. viticola effectors from the highly virulent strain YL. Using transient expression in leaf cells of the tobacco Nicotiana benthamiana, we found that the majority of the effectors could suppress cell death triggered by BAX and INF1, while seven could induce cell death. The subcellular localization of effectors in N. benthamiana was consistent with their localization in cells of Vitis vinifera. Those effectors that localized to the nucleus (17/26) showed a variety of subnuclear localization. Ten of the effectors localized predominantly to the nucleolus, whereas the remaining seven localized to nucleoplasm. Interestingly, five of the effectors were strongly related in sequence and showed identical subcellular localization, but had different functions in N. benthamiana leaves and expression patterns in grapevine in response to P. viticola. This study highlights the potential functional diversity of P. viticola effectors.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Meijie Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Rahman A, Góngora-Castillo E, Bowman MJ, Childs KL, Gent DH, Martin FN, Quesada-Ocampo LM. Genome Sequencing and Transcriptome Analysis of the Hop Downy Mildew Pathogen Pseudoperonospora humuli Reveal Species-Specific Genes for Molecular Detection. PHYTOPATHOLOGY 2019; 109:1354-1366. [PMID: 30939079 DOI: 10.1094/phyto-11-18-0431-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudoperonospora humuli is an obligate oomycete pathogen of hop (Humulus lupulus) that causes downy mildew, an important disease in most production regions in the Northern Hemisphere. The pathogen can cause a systemic infection in hop, overwinter in the root system, and infect propagation material. Substantial yield loss may occur owing to P. humuli infection of strobiles (seed cones), shoots, and cone-bearing branches. Fungicide application and cultural practices are the primary methods to manage hop downy mildew. However, effective, sustainable, and cost-effective management of downy mildew can be improved by developing early detection systems to inform on disease risk and timely fungicide application. However, no species-specific diagnostic assays or genomic resources are available for P. humuli. The genome of the P. humuli OR502AA isolate was partially sequenced using Illumina technology and assembled with ABySS. The assembly had a minimum scaffold length of 500 bp and an N50 (median scaffold length of the assembled genome) of 19.2 kbp. A total number of 18,656 genes were identified using MAKER standard gene predictions. Additionally, transcriptome assemblies were generated using RNA-seq and Trinity for seven additional P. humuli isolates. Bioinformatics analyses of next generation sequencing reads of P. humuli and P. cubensis (a closely related sister species) identified 242 candidate species-specific P. humuli genes that could be used as diagnostic molecular markers. These candidate genes were validated using polymerase chain reaction against a diverse collection of isolates from P. humuli, P. cubensis, and other oomycetes. Overall, four diagnostic markers were found to be uniquely present in P. humuli. These candidate markers identified through comparative genomics can be used for pathogen diagnostics in propagation material, such as rhizomes and vegetative cuttings, or adapted for biosurveillance of airborne sporangia, an important source of inoculum in hop downy mildew epidemics.
Collapse
Affiliation(s)
- A Rahman
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - E Góngora-Castillo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- 2Department of Biotechnology, Yucatan Center for Scientific Research, 97205 Mérida, Yucatán, México
| | - M J Bowman
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - K L Childs
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - D H Gent
- 4Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service and Oregon State University, Corvallis 97331, OR, U.S.A
| | - F N Martin
- 5Crop Improvement and Protection Research Station, U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - L M Quesada-Ocampo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
18
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
19
|
Comparative Methods for Molecular Determination of Host-Specificity Factors in Plant-Pathogenic Fungi. Int J Mol Sci 2018; 19:ijms19030863. [PMID: 29543717 PMCID: PMC5877724 DOI: 10.3390/ijms19030863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Many plant-pathogenic fungi are highly host-specific. In most cases, host-specific interactions evolved at the time of speciation of the respective host plants. However, host jumps have occurred quite frequently, and still today the greatest threat for the emergence of new fungal diseases is the acquisition of infection capability of a new host by an existing plant pathogen. Understanding the mechanisms underlying host-switching events requires knowledge of the factors determining host-specificity. In this review, we highlight molecular methods that use a comparative approach for the identification of host-specificity factors. These cover a wide range of experimental set-ups, such as characterization of the pathosystem, genotyping of host-specific strains, comparative genomics, transcriptomics and proteomics, as well as gene prediction and functional gene validation. The methods are described and evaluated in view of their success in the identification of host-specificity factors and the understanding of their functional mechanisms. In addition, potential methods for the future identification of host-specificity factors are discussed.
Collapse
|
20
|
Shi Q, Mao Z, Zhang X, Ling J, Lin R, Zhang X, Liu R, Wang Y, Yang Y, Cheng X, Xie B. The Novel Secreted Meloidogyne incognita Effector MiISE6 Targets the Host Nucleus and Facilitates Parasitism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:252. [PMID: 29628931 PMCID: PMC5876317 DOI: 10.3389/fpls.2018.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/12/2018] [Indexed: 05/16/2023]
Abstract
Meloidogyne incognita is highly specialized parasite that interacts with host plants using a range of strategies. The effectors are synthesized in the esophageal glands and secreted into plant cells through a needle-like stylet during parasitism. In this study, based on RNA-seq and bioinformatics analysis, we predicted 110 putative Meloidogyne incognita effectors that contain nuclear localization signals (NLSs). Combining the Burkholderia glumae-pEDV based screening system with subcellular localization, from 20 randomly selected NLS effector candidates, we identified an effector MiISE6 that can effectively suppress B. glumae-induced cell death in Nicotiana benthamiana, targets to the nuclei of plant cells, and is highly expressed in early parasitic J2 stage. Sequence analysis showed that MiISE6 is a 157-amino acid peptide, with an OGFr_N domain and two NLS motifs. Hybridization in situ verified that MiISE6 is expressed in the subventral esophageal glands. Yeast invertase secretion assay validated the function of the signal peptide harbored in MiISE6. Transgenic Arabidopsis thaliana plants expressing MiISE6 become more susceptible to M. incognita. Inversely, the host-derived RNAi of MiISE6 of the nematode can decrease its parasitism on host. Based on transcriptome analysis of the MiISE6 transgenic Arabidopsis samples and the wild-type samples, we obtained 852 differentially expressed genes (DEGs). Integrating Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, we found that expression of MiISE6 in Arabidopsis can suppress jasmonate signaling pathway. In addition, the expression of genes related to cell wall modification and the ubiquitination proteasome pathway also have detectable changes in the transgenic plants. Results from the present study suggest that MiISE6 is involved in interaction between nematode-plant, and plays an important role during the early stages of parasitism by interfering multiple signaling pathways of plant. Moreover, we found homologs of MiISE6 in other sedentary nematodes, Meloidogyne hapla and Globodera pallida. Our experimental results provide evidence to decipher the molecular mechanisms underlying the manipulation of host immune defense responses by plant parasitic nematodes, and transcriptome data also provide useful information for further study nematode-plant interactions.
Collapse
Affiliation(s)
- Qianqian Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Zhang
- School of Medical Science, Chifeng University, Chifeng, China
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Bingyan Xie, Xinyue Cheng,
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Bingyan Xie, Xinyue Cheng,
| |
Collapse
|
21
|
Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Industri B, Nesme X, Bardin M, Galiana E. Tomato root microbiota and Phytophthora parasitica-associated disease. MICROBIOME 2017; 5:56. [PMID: 28511691 PMCID: PMC5434524 DOI: 10.1186/s40168-017-0273-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Interactions between pathogenic oomycetes and microbiota residing on the surface of the host plant root are unknown, despite being critical to inoculum constitution. The nature of these interactions was explored for the polyphagous and telluric species Phytophthora parasitica. RESULTS Composition of the rhizospheric microbiota of Solanum lycopersicum was characterized using deep re-sequencing of 16S rRNA gene to analyze tomato roots either free of or partly covered with P. parasitica biofilm. Colonization of the host root surface by the oomycete was associated with a shift in microbial community involving a Bacteroidetes/Proteobacteria transition and Flavobacteriaceae as the most abundant family. Identification of members of the P. parasitica-associated microbiota interfering with biology and oomycete infection was carried out by screening for bacteria able to (i) grow on a P. parasitica extract-based medium (ii), exhibit in vitro probiotic or antibiotic activity towards the oomycete (iii), have an impact on the oomycete infection cycle in a tripartite interaction S. lycopersicum-P. parasitica-bacteria. One Pseudomonas phylotype was found to exacerbate disease symptoms in tomato plants. The lack of significant gene expression response of P. parasitica effectors to Pseudomonas suggested that the increase in plant susceptibility was not associated with an increase in virulence. Our results reveal that Pseudomonas spp. establishes commensal interactions with the oomycete. Bacteria preferentially colonize the surface of the biofilm rather than the roots, so that they can infect plant cells without any apparent infection of P. parasitica. CONCLUSIONS The presence of the pathogenic oomycete P. parasitica in the tomato rhizosphere leads to a shift in the rhizospheric microbiota composition. It contributes to the habitat extension of Pseudomonas species mediated through a physical association between the oomycete and the bacteria.
Collapse
Affiliation(s)
- Marie Larousse
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Corinne Rancurel
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Camille Syska
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Ferran Palero
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain
| | | | - Benoît Industri
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Xavier Nesme
- Université de Lyon, UCBL, CNRS, INRA, Ecologie Microbienne (LEM), 69622 Villeurbanne, France
| | - Marc Bardin
- Plant Pathology, INRA, 84140 Montfavet, France
| | - Eric Galiana
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
22
|
Affiliation(s)
- Marie Larousse
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
23
|
Larsen MKG, Jørgensen MM, Bennike TB, Stensballe A. Time-course investigation of Phytophthora infestans infection of potato leaf from three cultivars by quantitative proteomics. Data Brief 2016; 6:238-48. [PMID: 26862565 PMCID: PMC4707178 DOI: 10.1016/j.dib.2015.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 12/03/2022] Open
Abstract
Potato late blight is one the most important crop diseases worldwide. Even though potato has been studied for many years, the potato disease late blight still has a vast negative effect on the potato production [1], [2], [3]. Late blight is caused by the pathogen Phytophthora infestans (P. infestans), which initiates infection through leaves. However, the biological activities during different stages of infection are poorly described, and could enable novel or improved ways of defeating late blight infection [4]. Therefore, we investigated the interactions between P. infestans (mixed strain culture) and potato (Solanum tuberosum). Three commercially available field potato cultivars of different resistance to late blight infection; Kuras (moderate), Sarpo Mira (highly resistant) and Bintje (very susceptable) were grown under controlled green house conditions and inoculated with a diversity of P. infestans populations. We used label-free quantitative proteomics to investigate the infection with P. infestans in a time-course study over 258 h. Several key issues limits proteome analysis of potato leaf tissue [5], [6], [7]. Firstly, the immense complexity of the plant proteome, which is further complicated by the presence of highly abundant proteins, such as ribulose bisphosphate carboxylase/oxygenase (RuBisCO). Secondly, plant leaf and potato, in particular, contain abundant levels amounts of phenols and polyphenols, which hinder or completely prevent a successful protein extraction. Hitherto, protein profiling of potato leaf tissues have been limited to few proteome studies and only 1484 proteins have been extracted and comprehensively described [5], [8], [9]. We here present the detailed methods and raw data by optimized gel-enhanced label free quantitative approach. The methodology enabled us to detect and quantify between 3248 and 3529 unique proteins from each cultivar, and up to 758 P. infestans derived proteins. The complete dataset is available via ProteomeXchange, with the identifier PXD002767.
Collapse
Affiliation(s)
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000 Aalborg, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Gascuel Q, Bordat A, Sallet E, Pouilly N, Carrere S, Roux F, Vincourt P, Godiard L. Effector Polymorphisms of the Sunflower Downy Mildew Pathogen Plasmopara halstedii and Their Use to Identify Pathotypes from Field Isolates. PLoS One 2016; 11:e0148513. [PMID: 26845339 PMCID: PMC4742249 DOI: 10.1371/journal.pone.0148513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/19/2016] [Indexed: 01/23/2023] Open
Abstract
The obligate biotroph oomycete Plasmopara halstedii causes downy mildew on sunflower crop, Helianthus annuus. The breakdown of several Pl resistance genes used in sunflower hybrids over the last 25 years came along with the appearance of new Pl. halstedii isolates showing modified virulence profiles. In oomycetes, two classes of effector proteins, key players of pathogen virulence, are translocated into the host: RXLR and CRN effectors. We identified 54 putative CRN or RXLR effector genes from transcriptomic data and analyzed their genetic diversity in seven Pl. halstedii pathotypes representative of the species variability. Pl. halstedii effector genes were on average more polymorphic at both the nucleic and protein levels than random non-effector genes, suggesting a potential adaptive dynamics of pathogen virulence over the last 25 years. Twenty-two KASP (Competitive Allele Specific PCR) markers designed on polymorphic effector genes were genotyped on 35 isolates belonging to 14 Pl. halstedii pathotypes. Polymorphism analysis based on eight KASP markers aims at proposing a determination key suitable to classify the eight multi-isolate pathotypes into six groups. This is the first report of a molecular marker set able to discriminate Pl. halstedii pathotypes based on the polymorphism of pathogenicity effectors. Compared to phenotypic tests handling living spores used until now to discriminate Pl. halstedii pathotypes, this set of molecular markers constitutes a first step in faster pathotype diagnosis of Pl. halstedii isolates. Hence, emerging sunflower downy mildew isolates could be more rapidly characterized and thus, assessment of plant resistance breakdown under field conditions should be improved.
Collapse
Affiliation(s)
- Quentin Gascuel
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
| | - Amandine Bordat
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
| | - Erika Sallet
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
| | - Nicolas Pouilly
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
| | - Sébastien Carrere
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
| | - Fabrice Roux
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
| | - Patrick Vincourt
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
| | - Laurence Godiard
- Institut National de la Recherche Agronomique, INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherches UMR2594, F-31326 Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
25
|
Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Recent Progress in RXLR Effector Research. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1063-72. [PMID: 26125490 DOI: 10.1094/mpmi-01-15-0022-cr] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Some of the most devastating oomycete pathogens deploy effector proteins, with the signature amino acid motif RXLR, that enter plant cells to promote virulence. Research on the function and evolution of RXLR effectors has been very active over the decade that has transpired since their discovery. Comparative genomics indicate that RXLR genes play a major role in virulence for Phytophthora and downy mildew species. Importantly, gene-for-gene resistance against these oomycete lineages is based on recognition of RXLR proteins. Comparative genomics have revealed several mechanisms through which this resistance can be broken, most notably involving epigenetic control of RXLR gene expression. Structural studies have revealed a core fold that is present in the majority of RXLR proteins, providing a foundation for detailed mechanistic understanding of virulence and avirulence functions. Finally, functional studies have demonstrated that suppression of host immunity is a major function for RXLR proteins. Host protein targets are being identified in a variety of plant cell compartments. Some targets comprise hubs that are also manipulated by bacteria and fungi, thereby revealing key points of vulnerability in the plant immune network.
Collapse
Affiliation(s)
- Ryan G Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Devdutta Deb
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Kevin Fedkenheuer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| |
Collapse
|
26
|
Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP. Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genomics 2015; 15:697-706. [PMID: 26077032 DOI: 10.1007/s10142-015-0446-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
RNA interference (RNAi) has proved a powerful genetic tool for silencing genes in plants. Host-induced gene silencing of pathogen genes has provided a gene knockout strategy for a wide range of biotechnological applications. The RXLR effector Avr3a gene is largely responsible for virulence of oomycete plant pathogen Phytophthora infestans. In this study, we attempted to silence the Avr3a gene of P. infestans through RNAi technology. The P. infestans inoculation resulted in lower disease progression and a reduction in pathogen load, as demonstrated by disease scoring and quantification of pathogen biomass in terms of Pi08 repetitive elements, respectively. Transgenic plants induced moderate silencing of Avr3a, and the presence and/or expression of small interfering RNAs, as determined through Northern hybridization, indicated siRNA targeted against Avr3a conferred moderate resistance to P. infestans. The single effector gene did not provide complete resistance against P. infestans. Although the Avr3a effector gene could confer moderate resistance, for complete resistance, the cumulative effect of effector genes in addition to Avr3a needs to be considered. In this study, we demonstrated that host-induced RNAi is an effective strategy for functional genomics in oomycetes.
Collapse
Affiliation(s)
- Suman Sanju
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Aditi Thakur
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Pradeep K Shukla
- Sam Higginbottom Institute of Agriculture, School of Biological Sciences, Allahabad, 211007, Uttara Pradesh, India.
| | | | - Debasis Pattanayak
- ICAR-National Research Centre for Plant Biotechnology, IARI, New Delhi, 110012, India.
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - B P Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| |
Collapse
|
27
|
He Q, McLellan H, Boevink PC, Sadanandom A, Xie C, Birch PRJ, Tian Z. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3189-99. [PMID: 25873665 PMCID: PMC4449539 DOI: 10.1093/jxb/erv128] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ubiquitination regulates many processes in plants, including immunity. The E3 ubiquitin ligase PUB17 is a positive regulator of programmed cell death (PCD) triggered by resistance proteins CF4/9 in tomato. Its role in immunity to the potato late blight pathogen, Phytophthora infestans, was investigated here. Silencing StPUB17 in potato by RNAi and NbPUB17 in Nicotiana benthamiana by virus-induced gene silencing (VIGS) each enhanced P. infestans leaf colonization. PAMP-triggered immunity (PTI) transcriptional responses activated by flg22, and CF4/Avr4-mediated PCD were attenuated by silencing PUB17. However, silencing PUB17 did not compromise PCD triggered by P. infestans PAMP INF1, or co-expression of R3a/AVR3a, demonstrating that not all PTI- and PCD-associated responses require PUB17. PUB17 localizes to the plant nucleus and especially in the nucleolus. Transient over-expression of a dominant-negative StPUB17(V314I,V316I) mutant, which retained nucleolar localization, suppressed CF4-mediated cell death and enhanced P. infestans colonization. Exclusion of the StPUB17(V314I,V316I) mutant from the nucleus abolished its dominant-negative activity, demonstrating that StPUB17 functions in the nucleus. PUB17 is a positive regulator of immunity to late blight that acts in the nucleus to promote specific PTI and PCD pathways.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Ari Sadanandom
- Durham Centre for Crop Improvement Technology School of Biological and Biomedical Sciences, Durham University, Durham DH1 3HP, UK
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China;
| |
Collapse
|
28
|
Kuo HC, Wang TY, Chen PP, Chen RS, Chen TY. Genome sequence of Trichoderma virens FT-333 from tropical marine climate. FEMS Microbiol Lett 2015; 362:fnv036. [PMID: 25761749 DOI: 10.1093/femsle/fnv036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
Environmental factors can cause changes in the content of the fungal genome during evolution. In this study, a fungus used as a biocontrol agent, Trichoderma virens FT-333 (from a tropical marine climate) has been isolated. The genome (38.6 Mbp; GC content, 49.43%) has a total of 12,751 proteins. Gene ontology terms (cellular component and molecular function) and KEGG analyses demonstrated the importance of the secretion function in FT-333. Compared to the other Trichoderma species, copy number of genes related to defense and nutrient utilization was variable.
Collapse
Affiliation(s)
- Hsiao-Che Kuo
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Peng-Peng Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
29
|
Childers R, Danies G, Myers K, Fei Z, Small IM, Fry WE. Acquired Resistance to Mefenoxam in Sensitive Isolates of Phytophthora infestans. PHYTOPATHOLOGY 2015; 105:342-9. [PMID: 25226526 DOI: 10.1094/phyto-05-14-0148-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The systemic fungicide mefenoxam has been important in the control of late blight disease caused by Phytophthora infestans. This phenylamide fungicide has a negative effect on the synthesis of ribosomal RNA; however, the genetic basis for inherited field resistance is still not completely clear. We recently observed that a sensitive isolate became tolerant after a single passage on mefenoxam-containing medium. Further analyses revealed that all sensitive isolates tested (in three diverse genotypes) acquired this resistance equally quickly. In contrast, isolates that were "resistant" to mefenoxam in the initial assessment (stably resistant) did not increase in resistance upon further exposure. However, there appeared to be a cost associated with acquired resistance in the initially sensitive isolates, in that isolates with acquired resistance grew more slowly on mefenoxam-free medium than did the same isolates that had never been exposed to mefenoxam. The acquired resistance of the sensitive isolates declined slightly with subsequent culturing on medium free of mefenoxam. To investigate the mechanism of acquired resistance, we employed strand-specific RNA sequencing. Many differentially expressed genes were genotype specific, but one set of genes was differentially expressed in all genotypes. Among these were several genes (a phospholipase "Pi-PLD-like-3," two ATP-binding cassette superfamily [ABC] transporters, and a mannitol dehydrogenase) that were up-regulated and whose function might contribute to a resistance phenotype.
Collapse
|
30
|
Misner I, Blouin N, Leonard G, Richards TA, Lane CE. The secreted proteins of Achlya hypogyna and Thraustotheca clavata identify the ancestral oomycete secretome and reveal gene acquisitions by horizontal gene transfer. Genome Biol Evol 2014; 7:120-35. [PMID: 25527045 PMCID: PMC4316629 DOI: 10.1093/gbe/evu276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2014] [Indexed: 12/27/2022] Open
Abstract
Saprotrophic and parasitic microorganisms secrete proteins into the environment to breakdown macromolecules and obtain nutrients. The molecules secreted are collectively termed the "secretome" and the composition and function of this set of proteins varies depending on the ecology, life cycle, and environment of an organism. Beyond the function of nutrient acquisition, parasitic lineages must also secrete molecules to manipulate their host. Here, we use a combination of de novo genome and transcriptome sequencing and bioinformatic identification of signal peptides to identify the putative secreted proteome of two oomycetes, the facultative parasite Achlya hypogyna and free-living Thraustotheca clavata. By comparing the secretomes of these saprolegnialean oomycetes with that of eight other oomycetes, we were able to characterize the evolution of this protein set across the oomycete clade. These species span the last common ancestor of the two major oomycete families allowing us to identify the ancestral secretome. This putative ancestral secretome consists of at least 84 gene families. Only 11 of these gene families are conserved across all 10 secretomes analyzed and the two major branches in the oomycete radiation. Notably, we have identified expressed elicitin-like effector genes in the saprotrophic decomposer, T. clavata. Phylogenetic analyses show six novel horizontal gene transfers to the oomycete secretome from bacterial and fungal donor lineages, four of which are specific to the Saprolegnialeans. Comparisons between free-living and pathogenic taxa highlight the functional changes of oomycete secretomes associated with shifts in lifestyle.
Collapse
Affiliation(s)
- Ian Misner
- Department of Biological Sciences, The University of Rhode Island Department of Biological Sciences, The University of Maryland, College Park
| | - Nic Blouin
- Department of Biological Sciences, The University of Rhode Island
| | - Guy Leonard
- Biosciences, University of Exeter, United Kingdom
| | - Thomas A Richards
- Biosciences, University of Exeter, United Kingdom Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | | |
Collapse
|
31
|
Wiesel L, Newton AC, Elliott I, Booty D, Gilroy EM, Birch PRJ, Hein I. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. FRONTIERS IN PLANT SCIENCE 2014; 5:655. [PMID: 25484886 PMCID: PMC4240061 DOI: 10.3389/fpls.2014.00655] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonizing internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance toward non-adapted pathogens they can also be described as "defense elicitors." In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defense elicitors in the absence of pathogens can promote plant resistance by uncoupling defense activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.
Collapse
Affiliation(s)
- Lea Wiesel
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Adrian C. Newton
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | | | | | - Paul R. J. Birch
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- The Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton InstituteDundee, UK
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
32
|
Molecular profiling of the Phytophthora plurivora secretome: a step towards understanding the cross-talk between plant pathogenic oomycetes and their hosts. PLoS One 2014; 9:e112317. [PMID: 25372870 PMCID: PMC4221288 DOI: 10.1371/journal.pone.0112317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023] Open
Abstract
The understanding of molecular mechanisms underlying host–pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction.
Collapse
|
33
|
Meijer HJG, Mancuso FM, Espadas G, Seidl MF, Chiva C, Govers F, Sabidó E. Profiling the secretome and extracellular proteome of the potato late blight pathogen Phytophthora infestans. Mol Cell Proteomics 2014; 13:2101-13. [PMID: 24872595 PMCID: PMC4125740 DOI: 10.1074/mcp.m113.035873] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
Oomycetes are filamentous organisms that cause notorious diseases, several of which have a high economic impact. Well known is Phytophthora infestans, the causal agent of potato late blight. Previously, in silico analyses of the genome and transcriptome of P. infestans resulted in the annotation of a large number of genes encoding proteins with an N-terminal signal peptide. This set is collectively referred to as the secretome and comprises proteins involved in, for example, cell wall growth and modification, proteolytic processes, and the promotion of successful invasion of plant cells. So far, proteomic profiling in oomycetes was primarily focused on subcellular, intracellular or cell wall fractions; the extracellular proteome has not been studied systematically. Here we present the first comprehensive characterization of the in vivo secretome and extracellular proteome of P. infestans. We have used mass spectrometry to analyze P. infestans proteins present in seven different growth media with mycelial cultures and this resulted in the consistent identification of over two hundred proteins. Gene ontology classification pinpointed proteins involved in cell wall modifications, pathogenesis, defense responses, and proteolytic processes. Moreover, we found members of the RXLR and CRN effector families as well as several proteins lacking an obvious signal peptide. The latter were confirmed to be bona fide extracellular proteins and this suggests that, similar to other organisms, oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment.
Collapse
Affiliation(s)
- Harold J G Meijer
- From the ‡Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Francesco M Mancuso
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Guadalupe Espadas
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael F Seidl
- From the ‡Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; ‖Centre for BioSystems Genomics, Droevendaalsesteeg, 16708 PB Wageningen, The Netherlands
| | - Cristina Chiva
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Francine Govers
- From the ‡Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; ‖Centre for BioSystems Genomics, Droevendaalsesteeg, 16708 PB Wageningen, The Netherlands
| | - Eduard Sabidó
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain;
| |
Collapse
|
34
|
MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, Hogenhout SA. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 2014; 12:e1001835. [PMID: 24714165 PMCID: PMC3979655 DOI: 10.1371/journal.pbio.1001835] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/28/2014] [Indexed: 12/19/2022] Open
Abstract
Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants).
Collapse
Affiliation(s)
- Allyson M. MacLean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Zigmunds Orlovskis
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Krissana Kowitwanich
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Anna M. Zdziarska
- Bioscience, Plant Research International, Wageningen, The Netherlands
| | - Gerco C. Angenent
- Bioscience, Plant Research International, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | | | - Saskia A. Hogenhout
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| |
Collapse
|
35
|
Yin C, Park JJ, Gang DR, Hulbert SH. Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:227-35. [PMID: 24350783 DOI: 10.1094/mpmi-09-13-0289-fi] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.
Collapse
|
36
|
Cock PJA, Grüning BA, Paszkiewicz K, Pritchard L. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ 2013; 1:e167. [PMID: 24109552 PMCID: PMC3792188 DOI: 10.7717/peerj.167] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/30/2013] [Indexed: 12/28/2022] Open
Abstract
The Galaxy Project offers the popular web browser-based platform Galaxy for running bioinformatics tools and constructing simple workflows. Here, we present a broad collection of additional Galaxy tools for large scale analysis of gene and protein sequences. The motivating research theme is the identification of specific genes of interest in a range of non-model organisms, and our central example is the identification and prediction of "effector" proteins produced by plant pathogens in order to manipulate their host plant. This functional annotation of a pathogen's predicted capacity for virulence is a key step in translating sequence data into potential applications in plant pathology. This collection includes novel tools, and widely-used third-party tools such as NCBI BLAST+ wrapped for use within Galaxy. Individual bioinformatics software tools are typically available separately as standalone packages, or in online browser-based form. The Galaxy framework enables the user to combine these and other tools to automate organism scale analyses as workflows, without demanding familiarity with command line tools and scripting. Workflows created using Galaxy can be saved and are reusable, so may be distributed within and between research groups, facilitating the construction of a set of standardised, reusable bioinformatic protocols. The Galaxy tools and workflows described in this manuscript are open source and freely available from the Galaxy Tool Shed (http://usegalaxy.org/toolshed or http://toolshed.g2.bx.psu.edu).
Collapse
Affiliation(s)
- Peter J A Cock
- Information and Computational Sciences, James Hutton Institute , UK
| | | | | | | |
Collapse
|
37
|
Quinn L, O'Neill PA, Harrison J, Paskiewicz KH, McCracken AR, Cooke LR, Grant MR, Studholme DJ. Genome-wide sequencing of Phytophthora lateralis reveals genetic variation among isolates from Lawson cypress (Chamaecyparis lawsoniana) in Northern Ireland. FEMS Microbiol Lett 2013; 344:179-85. [PMID: 23678994 DOI: 10.1111/1574-6968.12179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/17/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022] Open
Abstract
Phytophthora lateralis is a fungus-like (oomycete) pathogen of trees in the family Cupressaceae, including Chamaecyparis lawsoniana (Lawson cypress or Port Orford cedar). Known in North America since the 1920s, presumably having been accidentally introduced from its assumed East Asian centre of origin, until recently, this pathogen has not been identified causing disease in Europe except for a few isolated outbreaks. However, since 2010, there have been several reports of infection of C. lawsoniana by P. lateralis in the United Kingdom, including Northern Ireland. We sequenced the genomes of four isolates of P. lateralis from two sites in Northern Ireland in 2011. Comparison with the closely related tree and shrub pathogen P. ramorum (cause of ramorum disease of larch and other species in the UK) shows that P. lateralis shares 91.47% nucleotide sequence identity over the core conserved compartments of the genome. The genomes of the four Northern Ireland isolates are almost identical, but we identified several single-nucleotide polymorphisms (SNPs) that distinguish between isolates, thereby presenting potential molecular markers of use for tracking routes of spread and in epidemiological studies. Our data reveal very low rates of heterozygosity (compared with P. ramorum), consistent with inbreeding within this P. lateralis population.
Collapse
Affiliation(s)
- Lisa Quinn
- Agri-Food & Biosciences Institute (AFBI), Newforge Lane, Belfast, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wawra S, Djamei A, Albert I, Nürnberger T, Kahmann R, van West P. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:528-36. [PMID: 23547905 DOI: 10.1094/mpmi-08-12-0200-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant-pathogenic oomycetes have a large set of secreted effectors that can be translocated into their host cells during infection. One group of these effectors are the RxLR effectors for which it has been shown, in a few cases, that the RxLR motif is important for their translocation. It has been suggested that the RxLR-leader sequences alone are enough to translocate the respective effectors into eukaryotic cells through binding to surface-exposed phosphoinositol-3-phosphate. These conclusions were primary based on translocation experiments conducted with recombinant fusion proteins whereby the RxLR leader of RxLR effectors (i.e., Avr1b from Phytophthora sojae) were fused to the green fluorescent protein reporter-protein. However, we failed to observe specific cellular uptake for a comparable fusion protein where the RxLR leader of the P. infestans AVR3a was fused to monomeric red fluorescent protein. Therefore, we reexamined the ability of the reported P. sojae AVR1b RxLR leader to enter eukaryotic cells. Different relevant experiments were performed in three independent laboratories, using fluorescent reporter fusion constructs of AVR3a and Avr1b proteins in a side-by-side comparative study on plant tissue and human and animal cells. We report that we were unable to obtain conclusive evidence for specific RxLR-mediated translocation.
Collapse
|
39
|
Clément JAJ, Baldwin TK, Magalon H, Glais I, Gracianne C, Andrivon D, Jacquot E. Specific detection and quantification of virulent/avirulent Phytophthora infestans isolates using a real-time PCR assay that targets polymorphisms of the Avr3a gene. Lett Appl Microbiol 2013; 56:322-32. [PMID: 23350602 DOI: 10.1111/lam.12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Molecular tools that allow intraspecific quantification and discrimination of pathogen isolates are useful to assess fitness of competitors during mixed infections. However, methods that were developed for quantifying Phytophthora infestans are only specific at the species level. Here, we reported a TaqMan-based real-time PCR assay allowing, according to the specificity of the used probes, an accurate quantification of different proportions of two genetically distinct clones of P. infestans in mixed fractions. Indeed, in addition to a primer specific to P. infestans, two primers and two TaqMan(®) probes that target single-nucleotide polymorphisms located in the Avr3a/avr3a virulence gene sequence were designed. The reliability of the method was tested on serially diluted fractions containing plasmid DNA with either the Avr3a or the avr3a sequences at concentrations ranging from 10(2) to 10(8) copies per μl. Based on its specificity, sensitivity and repeatability, the proposed assay allowed a quantification of the targeted DNA sequence in fractions with a Avr3a/avr3a ratio in the range 1/99 to 99/1. The reliability of the test was also checked for counting zoospores. Applications for future research in P. infestans/host quantitative interactions were also discussed.
Collapse
|
40
|
Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 2013; 4:1996. [PMID: 23774898 PMCID: PMC3709508 DOI: 10.1038/ncomms2996] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/09/2013] [Indexed: 12/30/2022] Open
Abstract
To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion.
Collapse
Affiliation(s)
- Martha C. Giraldo
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
- These authors contributed equally to this work
| | - Yasin F. Dagdas
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- These authors contributed equally to this work
| | - Yogesh K. Gupta
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas A. Mentlak
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- Present address: Cambridge Consultants Ltd, Cambridge, CB4 0DW, UK
| | - Mihwa Yi
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ana Lilia Martinez-Rocha
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- Present address: Department of Molecular Phytopathology and Genetics, University of Hamburg, Biozentrum Klein Flottbek, D-22609 Hamburg, Germany
| | - Hiromasa Saitoh
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
41
|
Anand A, Rojas CM, Tang Y, Mysore KS. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation. THE NEW PHYTOLOGIST 2012; 195:203-16. [PMID: 22486382 DOI: 10.1111/j.1469-8137.2012.04133.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
• Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. • We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. • We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. • We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Ajith Anand
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA
| | | | | | | |
Collapse
|
42
|
Host-targeting protein 1 (SpHtp1) from the oomycete Saprolegnia parasitica translocates specifically into fish cells in a tyrosine-O-sulphate-dependent manner. Proc Natl Acad Sci U S A 2012; 109:2096-101. [PMID: 22308362 DOI: 10.1073/pnas.1113775109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic oomycetes, or water molds, contain several species that are devastating pathogens of plants and animals. During infection, oomycetes translocate effector proteins into host cells, where they interfere with host-defense responses. For several oomycete effectors (i.e., the RxLR-effectors) it has been shown that their N-terminal polypeptides are important for the delivery into the host. Here we demonstrate that the putative RxLR-like effector, host-targeting protein 1 (SpHtp1), from the fish pathogen Saprolegnia parasitica translocates specifically inside host cells. We further demonstrate that cell-surface binding and uptake of this effector protein is mediated by an interaction with tyrosine-O-sulfate-modified cell-surface molecules and not via phospholipids, as has been reported for RxLR-effectors from plant pathogenic oomycetes. These results reveal an effector translocation route based on tyrosine-O-sulfate binding, which could be highly relevant for a wide range of host-microbe interactions.
Collapse
|
43
|
Rahnamaeian M, Vilcinskas A. Defense gene expression is potentiated in transgenic barley expressing antifungal peptide Metchnikowin throughout powdery mildew challenge. JOURNAL OF PLANT RESEARCH 2012; 125:115-24. [PMID: 21516363 DOI: 10.1007/s10265-011-0420-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 02/27/2011] [Indexed: 05/08/2023]
Abstract
Transgenesis of antimicrobial peptides (AMPs) from different origins has emerged as an option for improvement of crop disease resistance since proof-of-concept for their activities against microbial phytopathogens is provided, persistently. Nevertheless, a more systematic approach based on knowledge of AMPs modes of action including elucidation of their cellular targets and possible impact on immune system considerably improves and diversifies the armory against harmful plant diseases. In present study, the impact of Metchnikowin (Mtk) expression in barley in terms of modulating different immune pathways was investigated. Monitoring of transcript abundance of different genes involved in key immune pathways of SAR, ISR, and redox milieu during interaction of Mtk barley with biotrophic Blumeria graminis f. sp. hordei (Bgh) demonstrated that several immune responses are modulated in Mtk transgenic plants. Present findings substantiate the higher activation of SAR pathway as well as ISR pathway in transgenic plants. Regarding susceptibility factors, nonetheless MLO gene is expressed more in Mtk plants and should lead to an increased cellular accessibility to Bgh, its impact is presumably overwhelmed by other mechanism(s) so that the plants show more resistance when challenging with Bgh. On the other hand, no obvious difference was observed between expression level of Bax inhibitor-1 (BI-1) in transgenic and wild type plants, which could be an indicative of its neutrality in resistance/susceptibility of transgenic plants to Bgh. The provided evidence on the involved pathways in Mtk-induced resistance improves our knowledge concerning impacts of AMPs expressed in diverse plant species on immune system of relevant transgenic plants.
Collapse
Affiliation(s)
- Mohammad Rahnamaeian
- Department of Plant Biotechnology, College of Agriculture, Shahid Bahonar University, P O Box: 76169-133, Kerman, Iran.
| | | |
Collapse
|
44
|
Nowicki M, Foolad MR, Nowakowska M, Kozik EU. Potato and Tomato Late Blight Caused by Phytophthora infestans: An Overview of Pathology and Resistance Breeding. PLANT DISEASE 2012; 96:4-17. [PMID: 30731850 DOI: 10.1094/pdis-05-11-0458] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Marcin Nowicki
- Research Institute of Horticulture, Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Skierniewice, Poland
| | - Majid R Foolad
- Department of Horticulture and The Intercollege Graduate Degree Programs in Plant Biology and Genetics, The Pennsylvania State University, University Park
| | - Marzena Nowakowska
- Research Institute of Horticulture, Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Skierniewice, Poland
| | - Elznieta U Kozik
- Research Institute of Horticulture, Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Skierniewice, Poland
| |
Collapse
|
45
|
Haegeman A, Mantelin S, Jones JT, Gheysen G. Functional roles of effectors of plant-parasitic nematodes. Gene 2011; 492:19-31. [PMID: 22062000 DOI: 10.1016/j.gene.2011.10.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Plant pathogens have evolved a variety of different strategies that allow them to successfully infect their hosts. Plant-parasitic nematodes secrete numerous proteins into their hosts. These proteins, called effectors, have various functions in the plant cell. The most studied effectors to date are the plant cell wall degrading enzymes, which have an interesting evolutionary history since they are believed to have been acquired from bacteria or fungi by horizontal gene transfer. Extensive genome, transcriptome and proteome studies have shown that plant-parasitic nematodes secrete many additional effectors. The function of many of these is less clear although during the last decade, several research groups have determined the function of some of these effectors. Even though many effectors remain to be investigated, it has already become clear that they can have very diverse functions. Some are involved in suppression of plant defences, while others can specifically interact with plant signalling or hormone pathways to promote the formation of nematode feeding sites. In this review, the most recent progress in the understanding of the function of plant-parasitic nematode effectors is discussed.
Collapse
Affiliation(s)
- Annelies Haegeman
- Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
46
|
Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc Natl Acad Sci U S A 2011; 108:14676-81. [PMID: 21873196 DOI: 10.1073/pnas.1111771108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation.
Collapse
|
47
|
Gilroy EM, Breen S, Whisson SC, Squires J, Hein I, Kaczmarek M, Turnbull D, Boevink PC, Lokossou A, Cano LM, Morales J, Avrova AO, Pritchard L, Randall E, Lees A, Govers F, van West P, Kamoun S, Vleeshouwers VGAA, Cooke DEL, Birch PRJ. Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants. THE NEW PHYTOLOGIST 2011; 191:763-776. [PMID: 21539575 DOI: 10.1111/j.1469-8137.2011.03736.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.
Collapse
Affiliation(s)
- Eleanor M Gilroy
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Susan Breen
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, College of Life Sciences, University of Dundee at JHI, Invergowrie, Dundee DD2 5DA, UK
| | - Stephen C Whisson
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Julie Squires
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Ingo Hein
- Genetics Programmes, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Maciej Kaczmarek
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dionne Turnbull
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Anoma Lokossou
- Wageningen UR Plant Breeding, Wageningen University, Wageningen, the Netherlands
| | - Liliana M Cano
- The Sainsbury Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Juan Morales
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Universidad Nacional de Colombia sede Medellín, Campus El Volador, Departamento de Ciencias Agronómicas, Medellin, Colombia
| | - Anna O Avrova
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Leighton Pritchard
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eva Randall
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Alison Lees
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Centre for BioSystems Genomics, Wageningen University, Wageningen, the Netherlands
| | - Pieter van West
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | | | - David E L Cooke
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R J Birch
- Plant Pathology, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, College of Life Sciences, University of Dundee at JHI, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
48
|
Tian M, Win J, Savory E, Burkhardt A, Held M, Brandizzi F, Day B. 454 Genome sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motif. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:543-53. [PMID: 21261462 DOI: 10.1094/mpmi-08-10-0185] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pseudoperonospora cubensis is a biotrophic oomycete pathogen that causes downy mildew of cucurbits, a devastating foliar disease threatening cucurbit production worldwide. We sequenced P. cubensis genomic DNA using 454 pyrosequencing and obtained random genomic sequences covering approximately 14% of the genome, thus providing the first set of useful genomic sequence information for P. cubensis. Using bioinformatics approaches, we identified 32 putative RXLR effector proteins. Interestingly, we also identified 29 secreted peptides with high similarity to RXLR effectors at the N-terminal translocation domain, yet containing an R-to-Q substitution in the first residue of the translocation motif. Among these, a family of QXLR-containing proteins, designated as PcQNE, was confirmed to have a functional signal peptide and was further characterized as being localized in the plant nucleus. Internalization of secreted PcQNE into plant cells requires the QXLR-EER motif. This family has a large number of near-identical copies within the P. cubensis genome, is under diversifying selection at the C-terminal domain, and is upregulated during infection of plants, all of which are common characteristics of characterized oomycete effectors. Taken together, the data suggest that PcQNE are bona fide effector proteins with a QXLR translocation motif, and QXLR effectors are prevalent in P. cubensis. Furthermore, the massive duplication of PcQNE suggests that they might play pivotal roles in pathogen fitness and pathogenicity.
Collapse
Affiliation(s)
- Miaoying Tian
- Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Pritchard L, Birch P. A systems biology perspective on plant-microbe interactions: biochemical and structural targets of pathogen effectors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:584-603. [PMID: 21421407 DOI: 10.1016/j.plantsci.2010.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 05/22/2023]
Abstract
Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework.
Collapse
Affiliation(s)
- Leighton Pritchard
- Plant Pathology Programme, SCRI, Errol Road, Invergowrie, Dundee, Scotland DD25DA, UK.
| | | |
Collapse
|
50
|
Li JW, Liu J, Zhang H, Xie CH. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber. PLANT CELL REPORTS 2011; 30:345-57. [PMID: 21153027 DOI: 10.1007/s00299-010-0959-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/04/2010] [Accepted: 11/23/2010] [Indexed: 05/02/2023]
Abstract
To identify genes induced during Pseudoperonospora cubensis (Berk. and Curk.) Rostov. infection in cucumber (Cucumis sativus L.), the suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from cucumber seedlings inoculated with the pathogen as a tester and cDNA from uninfected cucumber seedlings as a driver. A forward subtractive cDNA library (FSL) and a reverse subtractive cDNA library (RSL) were constructed, from which 1,416 and 1,128 recombinant clones were isolated, respectively. Differential screening of the preferentially expressed recombinant clones identified 58 unique expressed sequence tags (ESTs) from FSL and 29 from RSL. The ESTs with significant protein homology were sorted into 13 functional categories involved in nearly the whole process of plant defense such as signal transduction and cell defense, transcription, cell cycle and DNA processing, protein synthesis, protein fate, proteins with binding functions, transport, metabolism and energy. The expressions of twenty-five ESTs by real-time quantitative RT-PCR confirmed that differential gene regulation occurred during P. cubensis infection and inferred that higher and earlier expression of transcription factors and signal transduction associated genes together with ubiquitin/proteasome and polyamine biosynthesis pathways may contribute to the defense response of cucumber to P. cubensis infection. The transcription profiling of selected down-regulated genes revealed that suppression of the genes in reactive oxygen species scavenging system and photosynthesis pathway may inhibit disease development in the host tissue.
Collapse
Affiliation(s)
- Jian-Wu Li
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei, China
| | | | | | | |
Collapse
|