1
|
Zhu Z, Liu X, Meng F, Jiang A, Zhou Y, Yuan F, Chen M. LbHKT1;1 Negatively Regulates Salt Tolerance of Limonium bicolor by Decreasing Salt Secretion Rate of Salt Glands. PLANT, CELL & ENVIRONMENT 2025; 48:3544-3558. [PMID: 39789701 DOI: 10.1111/pce.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
The HKT-type proteins have been extensively studied and have been shown to play important roles in long-distance Na+ transport, maintaining ion homoeostasis and improving salt tolerance in plants. However, there have been no reports on the types, characteristics and functions of HKT-type proteins in Limonium bicolor, a recretohalophyte species with the typical salt gland structure. In this study, five LbHKT genes were identified in L. bicolor, all belonging to subfamily 1 (HKT1). There are many cis-acting elements related to abiotic/biotic stress response on the promoters of the LbHKT genes. LbHKT1;1 was investigated in detail. Subcellular localization results showed that LbHKT1;1 is targeted to the plasma membrane. Functional analysis in yeast showed that LbHKT1;1 has a higher tolerance than AtHKT1;1 under high Na+ conditions. Silencing and overexpression of the LbHKT1;1 gene in L. bicolor showed that LbHKT1;1 negatively regulates salt secretion by the salt glands. Further experiments showed that LbbZIP52 can specifically bind to the ABRE element in the LbHKT1;1 promoter and regulate the expression of the LbHKT1;1 gene and is involved in the negative regulation of the salt secretion capacity of L. bicolor. This study demonstrates for the first time that the HKT-type protein is involved in salt secretion by salt glands and provides a new perspective on the function of HKT-type proteins under salt stress conditions.
Collapse
Affiliation(s)
- Zhihui Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Xiuyue Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Fanxia Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Yuqing Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
- Dongying Institute, Shandong Normal University, Dongying, China
| |
Collapse
|
2
|
Han L, Gao Z, Li L, Li C, Yan H, Xiao B, Ma Y, Wang H, Yang C, Xun H. Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3445. [PMID: 39683238 DOI: 10.3390/plants13233445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Salinity stress influences plants throughout their entire life cycle. However, little is known about the response of plants to long-term salinity stress (LSS). In this study, Puccinellia tenuiflora, a perennial halophyte grass, was exposed to 300 mM NaCl for two years (completely randomized experiment design with three biological replicates). We measured the photosynthetic parameters and plant hormones and employed a widely targeted metabolomics approach to quantify metabolites. Our results revealed that LSS induced significant metabolic changes in P. tenuiflora, inhibiting the accumulation of 11 organic acids in the leaves and 24 organic acids in the roots and enhancing the accumulation of 15 flavonoids in the leaves and 11 phenolamides in the roots. The elevated accumulation of the flavonoids and phenolamides increased the ability of P. tenuiflora to scavenge reactive oxygen species. A comparative analysis with short-term salinity stress revealed that the specific responses to long-term salinity stress (LSS) included enhanced flavonoid accumulation and reduced amino acid accumulation, which contributed to the adaptation of P. tenuiflora to LSS. LSS upregulated the levels of abscisic acid in the leaves and ACC (a direct precursor of ethylene) in the roots, while it downregulated the levels of cytokinins and jasmonic acids in both the organs. These tolerance-associated changes in plant hormones would be expected to reprogram the energy allocation among growth, pathogen defense, and salinity stress response. We propose that abscisic acid, ethylene, cytokinins, and jasmonic acids may interact with each other to construct a salinity stress response network during the adaptation of P. tenuiflora to LSS, which mediates salinity stress response and significant metabolic changes. Our results provided novel insights into the plant hormone-regulated metabolic response of the plants under LSS, which can enhance our understanding of plant salinity tolerance.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhanwu Gao
- Tourism and Geographical Science Institute, Baicheng Normal University, Baicheng 137000, China
| | - Luhao Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Changyou Li
- School of Life Science, Jilin Normal University, Siping 136000, China
| | - Houxing Yan
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Binbin Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yimeng Ma
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun 130018, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Anil Kumar S, Kaniganti S, Hima Kumari P, Sudhakar Reddy P, Suravajhala P, P S, Kishor PBK. Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnol Genet Eng Rev 2024; 40:3527-3570. [PMID: 36469501 DOI: 10.1080/02648725.2022.2143317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022]
Abstract
Potassium (K+) is indispensable for the regulation of a plethora of functions like plant metabolism, growth, development, and abiotic stress responses. K+ is associated with protein synthesis and entangled in the activation of scores of enzymes, stomatal regulation, and photosynthesis. It has multiple transporters and channels that assist in the uptake, efflux, transport within the cell as well as from soil to different tissues, and the grain filling sites. While it is implicated in ion homeostasis during salt stress, it acts as a modulator of stomatal movements during water deficit conditions. K+ is reported to abate the effects of chilling and photooxidative stresses. K+ has been found to ameliorate effectively the co-occurrence of drought and high-temperature stresses. Nutrient deficiency of K+ makes leaves necrotic, leads to diminished photosynthesis, and decreased assimilate utilization highlighting the role it plays in photosynthesis. Notably, K+ is associated with the detoxification of reactive oxygen species (ROS) when plants are exposed to diverse abiotic stress conditions. It is irrefutable now that K+ reduces the activity of NADPH oxidases and at the same time maintains electron transport activity, which helps in mitigating the oxidative stress. K+ as a macronutrient in plant growth, the role of K+ during abiotic stress and the protein phosphatases involved in K+ transport have been reviewed. This review presents a holistic view of the biological functions of K+, its uptake, translocation, signaling, and the critical roles it plays under abiotic stress conditions, plant growth, and development that are being unraveled in recent times.
Collapse
Affiliation(s)
- S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| | - Sirisha Kaniganti
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - P Sudhakar Reddy
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - Suprasanna P
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
- Amity Institute of Biotechnology, Amity University Mumbai, Bhatan, Mumbai, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| |
Collapse
|
4
|
Luo M, Chu J, Wang Y, Chang J, Zhou Y, Jiang X. A high-affinity potassium transporter (MeHKT1) from cassava (Manihot esculenta) negatively regulates the response of transgenic Arabidopsis to salt stress. BMC PLANT BIOLOGY 2024; 24:372. [PMID: 38714917 PMCID: PMC11075273 DOI: 10.1186/s12870-024-05084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.
Collapse
Affiliation(s)
- Minghua Luo
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Jing Chu
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yu Wang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Jingyan Chang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| | - Xingyu Jiang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Huang Z, Yao L, Li B, Ma X, Si E, Yang K, Zhang H, Meng Y, Wang J, Wang H. HgS2, a novel salt-responsive gene from the Halophyte Halogeton glomeratus, confers salt tolerance in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14356. [PMID: 38828569 DOI: 10.1111/ppl.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.
Collapse
Affiliation(s)
- Zhilei Huang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hong Zhang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Juncheng Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Chen Y, Zhang X, Fan Y, Sui D, Jiang J, Wang L. The role of WRKY transcription factors in exogenous potassium (K +) response to NaCl stress in Tamarix ramosissima. Front Genet 2023; 14:1274288. [PMID: 38054027 PMCID: PMC10694239 DOI: 10.3389/fgene.2023.1274288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction: Soil salinization poses a significant challenge to plant growth and vitality. Plants like Tamarix ramosissima Ledeb (T. ramosissima), which are halophytes, are often integrated into planting schemes tailored for saline environments. Yet, the role of WRKY transcription factors in T. ramosissima, especially under sodium chloride (NaCl) stress mitigated by exogenous K+ application, is not well-understood. This research endeavors to bridge this knowledge gap. Methods: Using Pfam protein domain prediction and physicochemical property analysis, we delved into the WRKY genes in T. ramosissima roots that are implicated in counteracting NaCl stress when aided by exogenous K+ applications. By observing shifts in the expression levels of WRKY genes annotated to the KEGG pathway under NaCl stress at 0, 48, and 168 h, we aimed to identify potential key WRKY genes. Results: We found that the expression of 56 WRKY genes in T. ramosissima roots responded to exogenous K+ application during NaCl stress at the indicated time points. Particularly, the expression levels of these genes were primarily upregulated within 168 h. From these, 10 WRKY genes were found to be relevant in the KEGG pathways. Moreover, six genes, namely Unigene0024962, Unigene0024963, Unigene0010090, Unigene0007135, Unigene0070215, and Unigene0077293, were annotated to the Plant-pathogen interaction pathway or the MAPK signaling pathway in plants. These genes exhibited dynamic expression regulation at 48 h with the application of exogenous K+ under NaCl stress. Discussion: Our research highlights that WRKY transcription factors can modulate the activation or inhibition of related genes during NaCl stress with the application of exogenous K+. This regulation enhances the plant's adaptability to saline environments and mitigates the damage induced by NaCl. These findings provide valuable gene resources for future salt-tolerant Tamarix breeding and expand our understanding of the molecular mechanisms of WRKY transcription factors in alleviating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Xuanyi Zhang
- Jiangsu Academy of Forestry, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Yunlong Fan
- Faculty of Science Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing, China
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing, China
| |
Collapse
|
7
|
Yang M, Chen S, Huang Z, Gao S, Yu T, Du T, Zhang H, Li X, Liu CM, Chen S, Li H. Deep learning-enabled discovery and characterization of HKT genes in Spartina alterniflora. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:690-705. [PMID: 37494542 DOI: 10.1111/tpj.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Spartina alterniflora is a halophyte that can survive in high-salinity environments, and it is phylogenetically close to important cereal crops, such as maize and rice. It is of scientific interest to understand why S. alterniflora can live under such extremely stressful conditions. The molecular mechanism underlying its high-saline tolerance is still largely unknown. Here we investigated the possibility that high-affinity K+ transporters (HKTs), which function in salt tolerance and maintenance of ion homeostasis in plants, are responsible for salt tolerance in S. alterniflora. To overcome the imprecision and unstable of the gene screening method caused by the conventional sequence alignment, we used a deep learning method, DeepGOPlus, to automatically extract sequence and protein characteristics from our newly assemble S. alterniflora genome to identify SaHKTs. Results showed that a total of 16 HKT genes were identified. The number of S. alterniflora HKTs (SaHKTs) is larger than that in all other investigated plant species except wheat. Phylogenetically related SaHKT members had similar gene structures, conserved protein domains and cis-elements. Expression profiling showed that most SaHKT genes are expressed in specific tissues and are differentially expressed under salt stress. Yeast complementation expression analysis showed that type I members SaHKT1;2, SaHKT1;3 and SaHKT1;8 and type II members SaHKT2;1, SaHKT2;3 and SaHKT2;4 had low-affinity K+ uptake ability and that type II members showed stronger K+ affinity than rice and Arabidopsis HKTs, as well as most SaHKTs showed preference for Na+ transport. We believe the deep learning-based methods are powerful approaches to uncovering new functional genes, and the SaHKT genes identified are important resources for breeding new varieties of salt-tolerant crops.
Collapse
Affiliation(s)
- Maogeng Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Shoukun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Tingxi Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Tingting Du
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Xiang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chun-Ming Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Shihua Chen
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| |
Collapse
|
8
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
9
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
10
|
Chen Y, Li H, Zhang S, Du S, Zhang J, Song Z, Jiang J. Analysis of the main antioxidant enzymes in the roots of Tamarix ramosissima under NaCl stress by applying exogenous potassium (K +). FRONTIERS IN PLANT SCIENCE 2023; 14:1114266. [PMID: 37143868 PMCID: PMC10151674 DOI: 10.3389/fpls.2023.1114266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
Introduction Salinization affects more than 25% of the world's arable land, and Tamarix ramosissima Ledeb (T. ramosissima), the representative of Tamarix plants, is widely grown in salinized soil. In contrast, less is known about the mechanism of potassium's antioxidative enzyme activity in preventing NaCl stress damage to plants. Method This study examined changes in root growth for T. ramosissima at 0h, 48h, and 168h, performed antioxidant enzyme activity assays, transcriptome sequencing, and non-targeted metabolite analysis to understand changes in their roots as well as changes in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Quantitative real-time PCR (qRT-PCR) was used to identify differentially expressed genes (DEGs) and differential metabolites associated with antioxidant enzyme activities. Result As the time increased, the results showed that compared with the 200 Mm NaCl group, the root growth of the 200 mM NaCl + 10 mM KCl group increased, the activities of SOD, POD and CAT increased the most, but the contents of hydrogen peroxide (H2O2) and Malondialdehyde (MDA) increased less. Meanwhile, 58 DEGs related to SOD, POD and CAT activities were changed during the application of exogenous K+ for 48h and 168h in T. ramosissima. Based on association analysis of transcriptomic and metabolomic data, we found coniferyl alcohol, which can act as a substrate to label catalytic POD. It is worth noting that Unigene0013825 and Unigene0014843, as POD-related genes, have positively regulated the downstream of coniferyl alcohol, and they have a significant correlation with coniferyl alcohol. Discussion In summary, 48h and 168h of exogenous K+ applied to the roots of T. ramosissima under NaCl stress can resist NaCl stress by scavenging the reactive oxygen species (ROS) generated by high salt stress by enhancing the mechanism of antioxidant enzyme activity, relieving NaCl toxicity and maintaining growth. This study provides genetic resources and a scientific theoretical basis for further breeding of salt-tolerant Tamarix plants and the molecular mechanism of K+ alleviating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- Jiangsu Academy of Forestry, Nanjing, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Faculty of science and Department of statistic, University of British Columbia, Vancouver, BC, Canada
| | - Haijia Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Shiyang Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Shanfeng Du
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- *Correspondence: Jiang Jiang, ; Zhizhong Song,
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jiang Jiang, ; Zhizhong Song,
| |
Collapse
|
11
|
Han QQ, Wang YP, Li J, Li J, Yin XC, Jiang XY, Yu M, Wang SM, Shabala S, Zhang JL. The mechanistic basis of sodium exclusion in Puccinellia tenuiflora under conditions of salinity and potassium deprivation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:322-338. [PMID: 35979653 DOI: 10.1111/tpj.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a significant threat to global agriculture. Understanding salt exclusion mechanisms in halophyte species may be instrumental in improving salt tolerance in crops. Puccinellia tenuiflora is a typical salt-excluding halophytic grass often found in potassium-deprived saline soils. Our previous work showed that P. tenuiflora possesses stronger selectivity for K+ than for Na+ ; however, the mechanistic basis of this phenomenon remained elusive. Here, P. tenuiflora PutHKT1;5 was cloned and the functions of PutHKT1;5 and PutSOS1 were characterized using heterologous expression systems. Yeast assays showed that PutHKT1;5 possessed Na+ transporting capacity and was highly selective for Na+ over K+ . PutSOS1 was located at the plasma membrane and operated as a Na+ /K+ exchanger, with much stronger Na+ extrusion capacity than its homolog from Arabidopsis. PutHKT2;1 mediated high-affinity K+ and Na+ uptake and its expression levels were upregulated by mild salinity and K+ deprivation. Salinity-induced changes of root PutHKT1;5 and PutHKT1;4 transcript levels matched the expression pattern of root PutSOS1, which was consistent with root Na+ efflux. The transcript levels of root PutHKT2;1 and PutAKT1 were downregulated by salinity. Taken together, these findings demonstrate that the functional activity of PutHKT1;5 and PutSOS1 in P. tenuiflora roots is fine-tuned under saline conditions as well as by operation of other ion transporters/channel (PutHKT1;4, PutHKT2;1, and PutAKT1). This leads to the coordination of radial Na+ and K+ transport processes, their loading to the xylem, or Na+ retrieval and extrusion under conditions of mild salinity and/or K+ deprivation.
Collapse
Affiliation(s)
- Qing-Qing Han
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Yong-Ping Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Jian Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Jing Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Xiao-Chang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| | - Xing-Yu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Sergey Shabala
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
| |
Collapse
|
12
|
Chen Y, Zhang S, Du S, Jiang J, Wang G. Transcriptome and Metabonomic Analysis of Tamarix ramosissima Potassium (K+) Channels and Transporters in Response to NaCl Stress. Genes (Basel) 2022; 13:genes13081313. [PMID: 35893048 PMCID: PMC9394374 DOI: 10.3390/genes13081313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Potassium ion (K+) channels and transporters are key components of plant K+ absorption and transportation and play an important role in plant growth and development. This study revealed that K+ channels and transporters are involved in the salt tolerance molecular mechanism and metabolites of the halophyte representative plant Tamarix ramosissima (T. ramosissima) in response to NaCl stress, providing a theoretical basis for the mitigation of salt stress using halophytes. Through transcriptome sequencing and metabolite detection analysis of 0 h, 48 h and 168 h by applying exogenous K+ to the roots of T. ramosissima under NaCl stress, 15 high-quality Clean Data bases were obtained, Q20 reached more than 97%, Q30 reached more than 92%, and GC content reached 44.5%, which is in line with further bioinformatics analysis. Based on the Liquid chromatography−mass spectrometry (LC-MS) analysis, the roots of T. ramosissima were exposed to exogenous potassium for 48 h and 168 h under NaCl stress, and 1510 and 1124 metabolites were identified in positive and negative ion mode, respectively. Through orthogonal projections to latent structures discriminant analysis (OPLS-DA) model analysis, its metabolomic data have excellent predictability and stability. The results of this study showed that there were 37 differentially expressed genes (DEGs) annotated as Class 2 K+ channels (Shaker-like K+ channel and TPK channel) and Class 3 K+ transporters (HAK/KUP/KT, HKT and CPAs transporter families). Among them, 29 DEGs were annotated to the gene ontology (GO) database, and the most genes were involved in the GO Biological Process. In addition, the expression levels of Unigene0014342 in the HAK/KUP/KT transporter and Unigene0088276 and Unigene0103067 in the CPAs transporter both first decreased and then increased when treated with 200 mM NaCl for 48 h and 168 h. However, when treated with 200 mM NaCl + 10 mM KCl for 48 h and 168 h, a continuous upward trend was shown. Notably, the expression level of Unigene0016813 in CPAS transporter continued to increase when treated with 200 mM NaCl and 200 mM NaCl + 10 mM KCl for 48 h and 168 h. 3 DEGs, Unigene0088276, Unigene0016813 and Unigene0103067, were dominated by the positive regulation of their related metabolites, and this correlation was significant. The results showed that these DEGs increased the absorption of K+ and the ratio of K+/Na+ under NaCl stress at 48 h and 168 h after adding exogenous potassium and enhanced the salt tolerance of T. ramosissima. Notably, the expression level of Unigene0103067 in the CPAs transporter was consistently upregulated when 200 mM NaCl + 10 mM KCl was treated for 48 h and 168 h. The positive regulatory metabolites were always dominant, which better helped T. ramosissima resist salt stress. Unigene0103067 plays an important role in enhancing the salt tolerance of T. ramosissima and reducing the toxicity of NaCl in roots. Additionally, phylogenetic tree analysis showed that Unigene0103067 and Reaumuria trigyna had the closest genetic distance in the evolutionary relationship. Finally, 9 DEGs were randomly selected for quantitative real-time PCR (qRT-PCR) verification. Their expression trends were completely consistent with the transcriptome sequencing analysis results, proving that this study’s data are accurate and reliable. This study provides resources for revealing the molecular mechanism of NaCl stress tolerance in T. ramosissima and lays a theoretical foundation for cultivating new salt-tolerant varieties.
Collapse
Affiliation(s)
- Yahui Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (S.D.)
- Faculty of Science and Department of Forest Resources Management, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Shiyang Zhang
- Faculty of Science and Department of Forest Resources Management, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Shanfeng Du
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (S.D.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (S.D.)
- Correspondence: (J.J.); (G.W.)
| | - Guangyu Wang
- Faculty of Science and Department of Forest Resources Management, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Correspondence: (J.J.); (G.W.)
| |
Collapse
|
13
|
Pi K, Luo W, Mo Z, Duan L, Ke Y, Wang P, Zeng S, Huang Y, Liu R. Overdominant expression of related genes of ion homeostasis improves K + content advantage in hybrid tobacco leaves. BMC PLANT BIOLOGY 2022; 22:335. [PMID: 35820807 PMCID: PMC9277951 DOI: 10.1186/s12870-022-03719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Potassium(K+) plays a vital role in improving the quality of tobacco leaves. However, how to improve the potassium content of tobacco leaves has always been a difficult problem in tobacco planting. K+ content in tobacco hybrid is characterized by heterosis, which can improve the quality of tobacco leaves, but its underlying molecular genetic mechanisms remain unclear. RESULTS Through a two-year field experiment, G70×GDH11 with strong heterosis and K326×GDH11 with weak heterosis were screened out. Transcriptome analyses revealed that 80.89% and 57.28% of the differentially expressed genes (DEGs) in the strong and weak heterosis combinations exhibited an overdominant expression pattern, respectively. The genes that up-regulated the overdominant expression in the strong heterosis hybrids were significantly enriched in the ion homeostasis. Genes involved in K+ transport (KAT1/2, GORK, AKT2, and KEA3), activity regulation complex (CBL-CIPK5/6), and vacuole (TPKs) genes were overdominant expressed in strong heterosis hybrids, which contributed to K+ homeostasis and heterosis in tobacco leaves. CONCLUSIONS K+ homeostasis and accumulation in tobacco hybrids were collectively improved. The overdominant expression of K+ transport and homeostasis-related genes conducted a crucial role in the heterosis of K+ content in tobacco leaves.
Collapse
Affiliation(s)
- Kai Pi
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Wen Luo
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Zejun Mo
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
- College of Agriculture, Guizhou University, 550025, Guiyang, P. R. China
| | - Lili Duan
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
- College of Agriculture, Guizhou University, 550025, Guiyang, P. R. China
| | - Yuzhou Ke
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Pingsong Wang
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
- College of Agriculture, Guizhou University, 550025, Guiyang, P. R. China
| | - Shuaibo Zeng
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Yin Huang
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China.
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China.
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China.
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China.
| |
Collapse
|
14
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
15
|
Tiika RJ, Wei J, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide characterization and functional analysis of Xyloglucan endo-transglycosylase/hydrolase (XTH) gene family of Salicornia europaea L. under salinity and drought stress. BMC PLANT BIOLOGY 2021; 21:491. [PMID: 34696719 PMCID: PMC8547092 DOI: 10.1186/s12870-021-03269-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. However, no systematic study of the XTH gene family in S. europaea is well known. PacBio Iso-Seq transcriptome sequence data were used for bioinformatics and gene expression analysis using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Transcriptome sequencing (PacBio Iso-Seq system) generated 16,465,671 sub-reads and after quality control of Iso-Seq, 29,520 isoforms were obtained with an average length of 2112 bp. A total of 24,869 unigenes, with 98% of which were obtained using coding sequences (CDSs), and 6398 possible transcription factors (TFs) were identified. Thirty-five (35) non-redundant potential SeXTH proteins were identified in S. europaea and categorized into group I/II and group III based on their genetic relatedness. Prediction of the conserved motif revealed that the DE(I/L/F/V)DF(I)EFLG domain was conserved in the S. europaea proteins and a potential N-linked glycosylation domain N(T)V(R/L/T/I)T(S/K/R/F/P)G was also located near the catalytic residues. All SeXTH genes exhibited discrete expression patterns in different tissues, at different times, and under different stresses. For example, 27 and 15 SeXTH genes were positively expressed under salt stress in shoots and roots at 200 mM NaCl in 24 h, and 34 SeXTH genes were also positively regulated under 48 h of drought stress in shoots and roots. This indicates their function in adaptation to salt and drought stress. CONCLUSION The present study discovered SeXTH gene family traits that are potential stress resistance regulators in S. europaea, and this provides a basis for future functional diversity research.
Collapse
Affiliation(s)
- Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
16
|
Tu Y, Fu L, Wang F, Wu D, Shen Q, Zhang G. GWAS and transcriptomic integrating analysis reveals key salt-responding genes controlling Na + content in barley roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:596-606. [PMID: 34464826 DOI: 10.1016/j.plaphy.2021.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Salt stress is one of the major environmental restricts for crop production and food safety. Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop, which could be the pioneer for shifting agricultural crop production to marginal saline lands. However, probably due to high genetic complexity of salinity tolerance trait, the progress in the identification of salt-tolerant locus or genes of barley roots moves slowly. Here, we determined physiological and ionic changes in mini-core barley accessions under salt conditions. Na+ content was lower in whole-plant but higher in roots of the salt tolerant genotypes than sensitive ones under salt stress. Genome-wide association study (GWAS) analysis identified 43 significant SNPs out of 12,564 SNPs and 215 candidate genes (P < 10-3) in the roots of worldwide barley accessions, highly associated with root relative dry weight (RDW) and Na+ content after hydroponic salinity in greenhouse and growth chamber. Meanwhile, transcriptomic analysis (RNA-Seq) identified 3217 differentially expression genes (DEGs) in barley roots induced by salt stress, mainly enriched in metabolism and transport processes. After GWAS and RNA-Seq integrating analysis, 39 DEGs were verified by qRT-PCR as salt-responding genes, including CYPs, LRR-KISS and CML genes, mostly related to the signal regulation. Taken together, current results provide genetic map-based genes or new locus useful for improving salt tolerance in crop and contributing to the utilization of saline soils.
Collapse
Affiliation(s)
- Yishan Tu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Fengyue Wang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Li L, Lu H, Wang H, Bhanbhro N, Yang C. Genome-wide DNA methylation analysis and biochemical responses provide insights into the initial domestication of halophyte Puccinellia tenuiflora. PLANT CELL REPORTS 2021; 40:1181-1197. [PMID: 33945005 DOI: 10.1007/s00299-021-02701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Puccinellia tenuiflora was domesticated for two years by growing it under non-saline conditions, providing epigenetic and biochemical insights into the initial domestication of extreme halophytes. Some halophytes have economic value as crop species. The domestication of halophytes may offer hope in solving the problem of soil salinization. We domesticated a wild halophyte, Puccinellia tenuiflora, for two years by growing it under non-saline conditions in a greenhouse and used re-sequencing, genome-wide DNA methylation, biochemical, and transcriptome analyses to uncover the mechanisms underlying alterations in the halophyte's tolerance to saline following domestication. Our results showed that non-saline domestication altered the methylation status for a number of genes and transposable elements, resulting in a much higher frequency of hypomethylation than hypermethylation. These modifications to DNA methylation were observed in many critical salinity-tolerance genes, particularly their promoter regions or transcriptional start sites. Twenty-nine potassium channel genes were hypomethylated and three were hypermethylated, suggesting that the DNA methylation status of potassium channel genes was influenced by domestication. The accelerated uptake of potassium is a major salinity tolerance characteristic of P. tenuiflora. We propose that modifications to the DNA methylation of potassium channel genes may be associated with the development of salinity tolerance in this species. By assessing whether non-saline domestication could change the salinity tolerance of P. tenuiflora, we demonstrated that non-saline domesticated plants are less tolerant to saline, which may be attributable to altered sucrose metabolism. DNA methylation and transposable elements may, therefore, be integrated into an environment-sensitive molecular engine that promotes the rapid domestication of P. tenuiflora to enable its use as a crop plant.
Collapse
Affiliation(s)
- Luhao Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huiying Lu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130018, China
| | - Nadeem Bhanbhro
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
18
|
Guo R, Zhao L, Zhang K, Lu H, Bhanbhro N, Yang C. Comparative Genomics and Transcriptomics of the Extreme Halophyte Puccinellia tenuiflora Provides Insights Into Salinity Tolerance Differentiation Between Halophytes and Glycophytes. FRONTIERS IN PLANT SCIENCE 2021; 12:649001. [PMID: 33968105 PMCID: PMC8100201 DOI: 10.3389/fpls.2021.649001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/06/2021] [Indexed: 05/25/2023]
Abstract
Halophytes and glycophytes exhibit clear differences in their tolerance to high levels of salinity. The genetic mechanisms underlying this differentiation, however, remain unclear. To unveil these mechanisms, we surveyed the evolution of salinity-tolerant gene families through comparative genomic analyses between the model halophyte Puccinellia tenuiflora and glycophytic Gramineae plants, and compared their transcriptional and physiological responses to salinity stress. Under salinity stress, the K+ concentration in the root was slightly enhanced in P. tenuiflora, but it was greatly reduced in the glycophytic Gramineae plants, which provided a physiological explanation for differences in salinity tolerance between P. tenuiflora and these glycophytes. Interestingly, several K+ uptake gene families from P. tenuiflora experienced family expansion and positive selection during evolutionary history. This gene family expansion and the elevated expression of K+ uptake genes accelerated K+ accumulation and decreased Na+ toxicity in P. tenuiflora roots under salinity stress. Positively selected P. tenuiflora K+ uptake genes may have evolved new functions that contributed to development of P. tenuiflora salinity tolerance. In addition, the expansion of the gene families involved in pentose phosphate pathway, sucrose biosynthesis, and flavonoid biosynthesis assisted the adaptation of P. tenuiflora to survival under high salinity conditions.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kaijian Zhang
- Beijing Novogene Bioinformatics Technology Ltd., Beijing, China
| | - Huiying Lu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Nadeem Bhanbhro
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
19
|
Basu S, Kumar A, Benazir I, Kumar G. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. PHYSIOLOGIA PLANTARUM 2021; 171:502-519. [PMID: 32320060 DOI: 10.1111/ppl.13112] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 05/23/2023]
Abstract
Soil salinity is a constraint for major agricultural crops leading to severe yield loss, which may increase with the changing climatic conditions. Disruption in the cellular ionic homeostasis is one of the primary responses induced by elevated sodium ions (Na+ ). Therefore, unraveling the mechanism of Na+ uptake and transport in plants along with the characterization of the candidate genes facilitating ion homeostasis is obligatory for enhancing salinity tolerance in crops. This review summarizes the current advances in understanding the ion homeostasis mechanism in crop plants, emphasizing the role of transporters involved in the regulation of cytosolic Na+ level along with the conservation of K+ /Na+ ratio. Furthermore, expression profiles of the candidate genes for ion homeostasis were also explored under various developmental stages and tissues of Oryza sativa based on the publicly available microarray data. The review also gives an up-to-date summary on the efforts to increase salinity tolerance in crops by manipulating selected stress-associated genes. Overall, this review gives a combined view on both the ionomic and molecular background of salt stress tolerance in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Alok Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| | - Ibtesham Benazir
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| |
Collapse
|
20
|
Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO J 2021; 40:e105086. [PMID: 33347628 PMCID: PMC7849171 DOI: 10.15252/embj.2020105086] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
The roles of clock components in salt stress tolerance remain incompletely characterized in rice. Here, we show that, among OsPRR (Oryza sativa Pseudo-Response Regulator) family members, OsPRR73 specifically confers salt tolerance in rice. Notably, the grain size and yield of osprr73 null mutants were significantly decreased in the presence of salt stress, with accumulated higher level of reactive oxygen species and sodium ions. RNA sequencing and biochemical assays identified OsHKT2;1, encoding a plasma membrane-localized Na+ transporter, as a transcriptional target of OsPRR73 in mediating salt tolerance. Correspondingly, null mutants of OsHKT2;1 displayed an increased tolerance to salt stress. Immunoprecipitation-mass spectrometry (IP-MS) assays further identified HDAC10 as nuclear interactor of OsPRR73 and co-repressor of OsHKT2;1. Consistently, H3K9ac histone marks at OsHKT2;1 promoter regions were significantly reduced in osprr73 mutant. Together, our findings reveal that salt-induced OsPRR73 expression confers salt tolerance by recruiting HDAC10 to transcriptionally repress OsHKT2;1, thus reducing cellular Na+ accumulation. This exemplifies a new molecular link between clock components and salt stress tolerance in rice.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiling Wang
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuqing He
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hang Xu
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lei Wang
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
21
|
Tada Y, Ohnuma A. Comparative Functional Analysis of Class II Potassium Transporters, SvHKT2;1, SvHKT2;2, and HvHKT2;1, on Ionic Transport and Salt Tolerance in Transgenic Arabidopsis. PLANTS 2020; 9:plants9060786. [PMID: 32585860 PMCID: PMC7356169 DOI: 10.3390/plants9060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
Abstract
Class II high-affinity potassium transporters (HKT2s) mediate Na+–K+ cotransport and Na+/K+ homeostasis under K+-starved or saline conditions. Their functions have been studied in yeast and X. laevis oocytes; however, little is known about their respective properties in plant cells. In this study, we characterized the Na+ and K+ transport properties of SvHKT2;1, SvHKT2;2 and HvHKT2;1 in Arabidopsis under different ionic conditions. The differences were detected in shoot K+ accumulation and root K+ uptake under salt stress conditions, K+ accumulation in roots and phloem sap under K+-starved conditions, and shoot and root Na+ accumulation under K+-starved conditions among the HKT2s transgenic lines and WT plants. These results indicate the diverse ionic transport properties of these HKT2s in plant cells, which could not be detected using yeast or X. laevis oocytes. Furthermore, Arabidopsis expressing HKT2s showed reduced salt tolerance, while over-expression of HvHKT2;1 in barley, which has the ability to sequestrate Na+, showed enhanced salt tolerance by accumulating Na+ in the shoots. These results suggest that the coordinated enhancement of Na+ accumulation and sequestration mechanisms in shoots could be a promising strategy to confer salt tolerance to glycophytes.
Collapse
|
22
|
Guo R, Zhao L, Zhang K, Gao D, Yang C. Genome of extreme halophyte Puccinellia tenuiflora. BMC Genomics 2020; 21:311. [PMID: 32306894 PMCID: PMC7168874 DOI: 10.1186/s12864-020-6727-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
Background Puccinellia tenuiflora, a forage grass, is considered a model halophyte given its strong tolerance for multiple stress conditions and its close genetic relationship with cereals. This halophyte has enormous values for improving our understanding of salinity tolerance mechanisms. The genetic information of P. tenuiflora also is a potential resource that can be used for improving the salinity tolerance of cereals. Results Here, we sequenced and assembled the P. tenuiflora genome (2n = 14) through the combined strategy of Illumina, PacBio, and 10× genomic technique. We generated 43.2× PacBio long reads, 123.87× 10× genomic reads, and 312.6× Illumina reads. Finally, we assembled 2638 scaffolds with a total size of 1.107 Gb, contig N50 of 117 kb, and scaffold N50 of 950 kb. We predicted 39,725 protein-coding genes, and identified 692 tRNAs, 68 rRNAs, 702 snRNAs, 1376 microRNAs, and 691 Mb transposable elements. Conclusions We deposited the genome sequence in NCBI and the Genome Warehouse in National Genomics Data Center. Our work may improve current understanding of plant salinity tolerance, and provides extensive genetic resources necessary for improving the salinity and drought tolerance of cereals.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Zhao
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaijian Zhang
- Beijing Novogene Bioinformatics Technology Ltd, Beijing, 100083, China
| | - Dan Gao
- Beijing Novogene Bioinformatics Technology Ltd, Beijing, 100083, China
| | - Chunwu Yang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
23
|
Zhang W, Liu J, Zhang Y, Qiu J, Li Y, Zheng B, Hu F, Dai S, Huang X. A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1269-1282. [DOI: 10.1007/s11427-020-1662-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023]
|
24
|
Hmidi D, Messedi D, Corratgï-Faillie C, Marhuenda TO, Fizames CC, Zorrig W, Abdelly C, Sentenac H, Vï Ry AAN. Investigation of Na+ and K+ Transport in Halophytes: Functional Analysis of the HmHKT2;1 Transporter from Hordeum maritimum and Expression under Saline Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:2423-2435. [PMID: 31292634 DOI: 10.1093/pcp/pcz136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
Control of K+ and Na+ transport plays a central role in plant adaptation to salinity. In the halophyte Hordeum maritimum, we have characterized a transporter gene, named HmHKT2;1, whose homolog HvHKT2;1 in cultivated barley, Hordeum vulgare, was known to give rise to increased salt tolerance when overexpressed. The encoded protein is strictly identical in two H. maritimum ecotypes, from two biotopes (Tunisian sebkhas) affected by different levels of salinity. These two ecotypes were found to display distinctive responses to salt stress in terms of biomass production, Na+ contents, K+ contents and K+ absorption efficiency. Electrophysiological analysis of HmHKT2;1 in Xenopus oocytes revealed distinctive properties when compared with HvHKT2;1 and other transporters from the same group, especially a much higher affinity for both Na+ and K+, and an Na+-K+ symporter behavior in a very broad range of Na+ and K+ concentrations, due to reduced K+ blockage of the transport pathway. Domain swapping experiments identified the region including the fifth transmembrane segment and the adjacent extracellular loop as playing a major role in the determination of the affinity for Na+ and the level of K+ blockage in these HKT2;1 transporters. The analysis (quantitative reverse transcription-PCR; qRT-PCR) of HmHKT2;1 expression in the two ecotypes submitted to saline conditions revealed that the levels of HmHKT2;1 transcripts were maintained constant in the most salt-tolerant ecotype whereas they decreased in the less tolerant one. Both the unique functional properties of HmHKT2;1 and the regulation of the expression of the encoding gene could contribute to H. maritimum adaptation to salinity.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Dorsaf Messedi
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Claire Corratgï-Faillie
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Thï O Marhuenda
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Cï Cile Fizames
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Walid Zorrig
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia
| | - Hervï Sentenac
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| | - Anne-Aliï Nor Vï Ry
- Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France
| |
Collapse
|
25
|
Park YC, Lim SD, Moon JC, Jang CS. A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. PLANT, CELL & ENVIRONMENT 2019; 42:3061-3076. [PMID: 31325169 DOI: 10.1111/pce.13619] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2-type E3 ligase, OsSIRH2-14 (previously named OsRFPH2-14), which plays a positive role in salinity tolerance by regulating salt-related proteins including an HKT-type Na+ transporter (OsHKT2;1). OsSIRH2-14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2-14-EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull-down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2-14 interacts with salt-related proteins, including OsHKT2;1. OsSIRH2-14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2-14-overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2-14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt-related proteins.
Collapse
Affiliation(s)
- Yong Chan Park
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung Don Lim
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Cheol Moon
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
26
|
Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Zhang J, Wang D, Gan Y. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC PLANT BIOLOGY 2019; 19:357. [PMID: 31419943 PMCID: PMC6697938 DOI: 10.1186/s12870-019-1963-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 08/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Survival of plants in response to salinity stress is typically related to Na+ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). RESULTS In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing Na+ content and improving K+/Na+ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol L- 1 NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. CONCLUSIONS We conclude that the constitutive overexpression of AtHKT1 reduces Na+ accumulation in potato leaves and promotes the K+/Na+ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity.
Collapse
Affiliation(s)
- Li Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
| | - Dan Li
- Longdong University, Qingyang, 745000 Gansu China
| | - Shoujiang Feng
- Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jingjing Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070 China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Di Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yantai Gan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2 Canada
| |
Collapse
|
27
|
Li N, Du C, Ma B, Gao Z, Wu Z, Zheng L, Niu Y, Wang Y. Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna. PLANT & CELL PHYSIOLOGY 2019; 60:85-106. [PMID: 30239906 DOI: 10.1093/pcp/pcy187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 05/13/2023]
Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+-low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+-K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+-more K+, more Na+ and more Na+-K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+-K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion-transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.
Collapse
Affiliation(s)
- Ningning Li
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Chao Du
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Ziqi Gao
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Zhigang Wu
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Yiding Niu
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| |
Collapse
|
28
|
Tada Y, Endo C, Katsuhara M, Horie T, Shibasaka M, Nakahara Y, Kurusu T. High-Affinity K+ Transporters from a Halophyte, Sporobolus virginicus, Mediate Both K+ and Na+ Transport in Transgenic Arabidopsis, X. laevis Oocytes and Yeast. PLANT & CELL PHYSIOLOGY 2019; 60:176-187. [PMID: 30325438 DOI: 10.1093/pcp/pcy202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Class II high-affinity potassium transporters (HKTs) have been proposed to mediate Na+-K+ co-transport in plants, as well as Na+ and K+ homeostasis under K+-starved and saline environments. We identified class II HKTs, namely SvHKT2;1 and SvHKT2;2 (SvHKTs), from the halophytic turf grass, Sporobolus virginicus. SvHKT2;2 expression in S. virginicus was up-regulated by NaCl treatment, while SvHKT2;1 expression was assumed to be up-regulated by K+ starvation and down-regulated by NaCl treatment. Localization analysis revealed SvHKTs predominantly targeted the plasma membrane. SvHKTs complemented K+ uptake deficiency in mutant yeast, and showed both inward and outward K+ and Na+ transport activity in Xenopus laevis oocytes. When constitutively expressed in Arabidopsis, SvHKTs mediated K+ and Na+ accumulation in shoots under K+-starved conditions, and the K+ concentration in xylem saps of transformants was also higher than in those of wild-type plants. These results suggest transporter-enhanced K+ and Na+ uploading to the xylem from xylem parenchyma cells. Together, our data demonstrate that SvHKTs mediate both outward and inward K+ and Na+ transport in X. laevis oocytes, and possibly in plant and yeast cells, depending on the ionic conditions.
Collapse
Affiliation(s)
- Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, Japan
| | - Chisato Endo
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Mineo Shibasaka
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, Japan
| | - Yoshiki Nakahara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, Japan
| | - Takamitsu Kurusu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, Japan
| |
Collapse
|
29
|
Wang L, Liu Y, Feng S, Wang Z, Zhang J, Zhang J, Wang D, Gan Y. AtHKT1 gene regulating K + state in whole plant improves salt tolerance in transgenic tobacco plants. Sci Rep 2018; 8:16585. [PMID: 30410009 PMCID: PMC6224463 DOI: 10.1038/s41598-018-34660-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
The status of K+ is important for plant health. However, little is known about if high-affinity potassium transporter HKTs may help K+ retention under salt stress. Here, we determined the effect of Arabidopsis thaliana transporter gene (AtHKT1) on the K+ status, Na+-induced toxicity, and salt tolerance in tobacco (Nicotiana tabacum L.). Six AtHKT1 transformed tobacco lines (T1, T2, … T6) were contrasted with a non-transgenic plantlet at the whole-plant and molecule levels. AtHKT1 gene was expressed in the xylems of stem, root and leaf vein in the transgenic tobacco, with the line T3 having highest expression. At Day 15, in the 200 mmol L-1 NaCl stress treatment, the transgenic plants remained a healthy K+ status, while the control plants decreased K+ content by 70% and Na+ contents in leaves and stems were 1.7 times that in the transgenic line. The AtHKT1 expression enhanced the activities of SOD, CAT and POD, raised chlorophyll and soluble sugar contents and root activity, and decreased MDA and proline contents and electrolyte leakage destruction. The constitutive over-expression of AtHKT1 that helps maintain a healthy K+ status while reducing Na+ toxicity may serve as a possible mechanism in maximizing productivity of tobacco under salt stress.
Collapse
Affiliation(s)
- Li Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shoujiang Feng
- Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zhuoyu Wang
- Centre de Recherche CHUM, Montreal, H2X0A9, Canada
| | - Jinwen Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Di Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yantai Gan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, S9H3X2, Canada
| |
Collapse
|
30
|
Yu J, Zhang Y, Liu J, Wang L, Liu P, Yin Z, Guo S, Ma J, Lu Z, Wang T, She Y, Miao Y, Ma L, Chen S, Li Y, Dai S. Proteomic discovery of H 2O 2 response in roots and functional characterization of PutGLP gene from alkaligrass. PLANTA 2018; 248:1079-1099. [PMID: 30039231 DOI: 10.1007/s00425-018-2940-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen peroxide-responsive pathways in roots of alkaligrass analyzed by proteomic studies and PutGLP enhance the plant tolerance to saline-, alkali- and cadmium-induced oxidative stresses. Oxidative stress adaptation is critical for plants in response to various stress environments. The halophyte alkaligrass (Puccinellia tenuiflora) is an outstanding pasture with strong tolerance to salt and alkali stresses. In this study, iTRAQ- and 2DE-based proteomics approaches, as well as qRT-PCR and molecular genetics, were employed to investigate H2O2-responsive mechanisms in alkaligrass roots. The evaluation of membrane integrity and reactive oxygen species (ROS)-scavenging systems, as well as abundance patterns of H2O2-responsive proteins/genes indicated that Ca2+-mediated kinase signaling pathways, ROS homeostasis, osmotic modulation, and transcriptional regulation were pivotal for oxidative adaptation in alkaligrass roots. Overexpressing a P. tenuiflora germin-like protein (PutGLP) gene in Arabidopsis seedlings revealed that the apoplastic PutGLP with activities of oxalate oxidase and superoxide dismutase was predominantly expressed in roots and played important roles in ROS scavenging in response to salinity-, alkali-, and CdCl2-induced oxidative stresses. The results provide insights into the fine-tuned redox-responsive networks in halophyte roots.
Collapse
Affiliation(s)
- Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongxue Zhang
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junming Liu
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Lin Wang
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Panpan Liu
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zepeng Yin
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhuang Lu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tai Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yimin She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Ling Ma
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Ying Li
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
31
|
Kakeshpour T, Monfared SR, Ebrahimi A, Beyraghdar Kashkooli A, Ebrahimie E. Expression analyses of salinity stress- associated ESTs in Aeluropus littoralis. Gene Expr Patterns 2017. [PMID: 28625895 DOI: 10.1016/j.gep.2017.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salinity is among the most important abiotic stresses affecting crop production throughout the earth. Halophyte plants can sustain high salinity levels, therefore elucidating molecular mechanisms underlying their salinity resistance is beneficial for crop improvement. Aeluropus littoralis, a halophyte weed, is a great genetic resource for this purpose. Isolated expressed sequence taq (EST) sequences from A. littoralis under salinity stress, have given us the chance to find and analyze transcripts of genes involved in response to salinity. Transcriptome analyses indicated the expression levels of mRNAs corresponding to 10 of sequences were increased under treatments. All mRNAs were significantly induced under salt treatment with the highest peaks observed at different hours of treatments. Moreover, the full-length cDNA of vacuolar H+-pyrophosphatase (VP) was isolated utilizing 3' and 5' rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) and characterized (GenBank accession number of KT253223.1). The extracted full-length of VP was 2732 bp, which contained ORF of 2292 bp encoding 763 amino acids.
Collapse
Affiliation(s)
- Tayebeh Kakeshpour
- Plant Breeding and Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14977-13111, Iran.
| | - Sajad Rashidi Monfared
- Plant Breeding and Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14977-13111, Iran.
| | - Amin Ebrahimi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, 3619995161, Iran.
| | - Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University, Wageningen, 6700AA, The Netherlands; Department of Horticultural Science, Tarbiat Modares University, Terhran, Iran.
| | - Esmaeil Ebrahimie
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, Australia; Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| |
Collapse
|
32
|
Ke Q, Kim HS, Wang Z, Ji CY, Jeong JC, Lee H, Choi Y, Xu B, Deng X, Yun D, Kwak S. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:331-343. [PMID: 27565626 PMCID: PMC5316923 DOI: 10.1111/pbi.12628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/21/2016] [Indexed: 05/02/2023]
Abstract
The flowering time regulator GIGANTEA (GI) connects networks involved in developmental stage transitions and environmental stress responses in Arabidopsis. However, little is known about the role of GI in growth, development and responses to environmental challenges in the perennial plant poplar. Here, we identified and functionally characterized three GI-like genes (PagGIa, PagGIb and PagGIc) from poplar (Populus alba × Populus glandulosa). PagGIs are predominantly nuclear localized and their transcripts are rhythmically expressed, with a peak around zeitgeber time 12 under long-day conditions. Overexpressing PagGIs in wild-type (WT) Arabidopsis induced early flowering and salt sensitivity, while overexpressing PagGIs in the gi-2 mutant completely or partially rescued its delayed flowering and enhanced salt tolerance phenotypes. Furthermore, the PagGIs-PagSOS2 complexes inhibited PagSOS2-regulated phosphorylation of PagSOS1 in the absence of stress, whereas these inhibitions were eliminated due to the degradation of PagGIs under salt stress. Down-regulation of PagGIs by RNA interference led to vigorous growth, higher biomass and enhanced salt stress tolerance in transgenic poplar plants. Taken together, these results indicate that several functions of Arabidopsis GI are conserved in its poplar orthologues, and they lay the foundation for developing new approaches to producing salt-tolerant trees for sustainable development on marginal lands worldwide.
Collapse
Affiliation(s)
- Qingbo Ke
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Ho Soo Kim
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
| | - Zhi Wang
- Institute of Soil and Water ConservationChinese Academy of Science and Ministry of Water ResourcesNorthwest A & F UniversityShaanxiChina
| | - Chang Yoon Ji
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Haeng‐Soon Lee
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Young‐Im Choi
- Division of Forest BiotechnologyKorea Forest Research InstituteSuwonKorea
| | - Bingcheng Xu
- Institute of Soil and Water ConservationChinese Academy of Science and Ministry of Water ResourcesNorthwest A & F UniversityShaanxiChina
| | - Xiping Deng
- Institute of Soil and Water ConservationChinese Academy of Science and Ministry of Water ResourcesNorthwest A & F UniversityShaanxiChina
| | - Dae‐Jin Yun
- Division of Applied Life Science (BK21plus Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Sang‐Soo Kwak
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| |
Collapse
|
33
|
Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep 2016; 6:32717. [PMID: 27596441 PMCID: PMC5011731 DOI: 10.1038/srep32717] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
Soil alkalization severely affects crop growth and agricultural productivity. Alkali salts impose ionic, osmotic, and high pH stresses on plants. The alkali tolerance molecular mechanism in roots from halophyte Puccinellia tenuiflora is still unclear. Here, the changes associated with Na2CO3 tolerance in P. tenuiflora roots were assessed using physiological and iTRAQ-based quantitative proteomic analyses. We set up the first protein dataset in P. tenuiflora roots containing 2,671 non-redundant proteins. Our results showed that Na2CO3 slightly inhibited root growth, caused ROS accumulation, cell membrane damage, and ion imbalance, as well as reduction of transport and protein synthesis/turnover. The Na2CO3-responsive patterns of 72 proteins highlighted specific signaling and metabolic pathways in roots. Ca2+ signaling was activated to transmit alkali stress signals as inferred by the accumulation of calcium-binding proteins. Additionally, the activities of peroxidase and glutathione peroxidase, and the peroxiredoxin abundance were increased for ROS scavenging. Furthermore, ion toxicity was relieved through Na+ influx restriction and compartmentalization, and osmotic homeostasis reestablishment due to glycine betaine accumulation. Importantly, two transcription factors were increased for regulating specific alkali-responsive gene expression. Carbohydrate metabolism-related enzymes were increased for providing energy and carbon skeletons for cellular metabolism. All these provide new insights into alkali-tolerant mechanisms in roots.
Collapse
|
34
|
Li Y, Liu P, Takano T, Liu S. A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO₃ Tolerance by Decreasing H₂O₂ Accumulation. Int J Mol Sci 2016; 17:ijms17060804. [PMID: 27248998 PMCID: PMC4926338 DOI: 10.3390/ijms17060804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022] Open
Abstract
Rubredoxin is one of the simplest iron–sulfur (Fe–S) proteins. It is found primarily in strict anaerobic bacteria and acts as a mediator of electron transfer participation in different biochemical reactions. The PutRUB gene encoding a chloroplast-localized rubredoxin family protein was screened from a yeast full-length cDNA library of Puccinellia tenuiflora under NaCl and NaHCO3 stress. We found that PutRUB expression was induced by abiotic stresses such as NaCl, NaHCO3, CuCl2 and H2O2. These findings suggested that PutRUB might be involved in plant responses to adversity. In order to study the function of this gene, we analyzed the phenotypic and physiological characteristics of PutRUB transgenic plants treated with NaCl and NaHCO3. The results showed that PutRUB overexpression inhibited H2O2 accumulation, and enhanced transgenic plant adaptability to NaCl and NaHCO3 stresses. This indicated PutRUB might be involved in maintaining normal electron transfer to reduce reactive oxygen species (ROS) accumulation.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Panpan Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| |
Collapse
|
35
|
Meng X, Zhao Q, Jin Y, Yu J, Yin Z, Chen S, Dai S. Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. J Proteomics 2016; 143:365-381. [PMID: 27130536 DOI: 10.1016/j.jprot.2016.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 11/28/2022]
Abstract
Alkali grass (Puccinellia tenuiflora), a monocotyledonous perennial halophyte species, is a good pasture with great nutritional value for livestocks. It can thrive under low temperature in the saline-alkali soil of Songnen plain in northeastern China. In the present study, the chilling-responsive mechanism in P. tenuiflora leaves was investigated using physiological and proteomic approaches. After treatment of 10°C for 10 and 20days, photosynthesis, biomass, contents of osmolytes and antioxidants, and activities of reactive oxygen species scavenging enzymes were analyzed in leaves of 20-day-old seedlings. Besides, 89 chilling-responsive proteins were revealed from proteomic analysis. All the results highlighted that the growth of seedlings was inhibited due to chilling-decreased enzymes in photosynthesis, carbohydrate metabolism, and energy supplying. The accumulation of osmolytes (i.e., proline, soluble sugar, and glycine betaine) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione S-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under the chilling conditions. In addition, protein synthesis and turnover in cytoplasm and chloroplast were altered to cope with the chilling stress. This study provides valuable information for understanding the chilling-responsive and cross-tolerant mechanisms in monocotyledonous halophyte plant species.
Collapse
Affiliation(s)
- Xuejiao Meng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Yudan Jin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Zepeng Yin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
36
|
Shahzad K, Rauf M, Ahmed M, Malik ZA, Habib I, Ahmed Z, Mahmood K, Ali R, Masmoudi K, Lemtiri-Chlieh F, Gehring C, Berkowitz GA, Saeed NA. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:840-51. [PMID: 25631371 DOI: 10.1111/plb.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.
Collapse
Affiliation(s)
- K Shahzad
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Rauf
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Ahmed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z A Malik
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - I Habib
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z Ahmed
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - K Mahmood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - R Ali
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - K Masmoudi
- International Centre for Biosaline Agriculture (ICBA), Dubai, UAE
| | - F Lemtiri-Chlieh
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - C Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - G A Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - N A Saeed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
37
|
Sanadhya P, Agarwal P, Agarwal PK. Ion homeostasis in a salt-secreting halophytic grass. AOB PLANTS 2015; 7:plv055. [PMID: 25990364 PMCID: PMC4512041 DOI: 10.1093/aobpla/plv055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/11/2015] [Indexed: 05/05/2023]
Abstract
Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na(+)) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K(+) starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na(+)/H(+) antiporter, SOS1, and tonoplast Na(+)/H(+) antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides.
Collapse
Affiliation(s)
- Payal Sanadhya
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Parinita Agarwal
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| |
Collapse
|
38
|
Sanadhya P, Agarwal P, Khedia J, Agarwal PK. A Low-Affinity K+ Transporter AlHKT2;1 from Recretohalophyte Aeluropus lagopoides Confers Salt Tolerance in Yeast. Mol Biotechnol 2015; 57:489-98. [DOI: 10.1007/s12033-015-9842-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Kobayashi S, Satone H, Tan E, Kurokochi H, Asakawa S, Liu S, Takano T. Transcriptional responses of a bicarbonate-tolerant monocot, Puccinellia tenuiflora, and a related bicarbonate-sensitive species, Poa annua, to NaHCO3 stress. Int J Mol Sci 2014; 16:496-509. [PMID: 25551599 PMCID: PMC4307258 DOI: 10.3390/ijms16010496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Puccinellia tenuiflora is an alkaline salt-tolerant monocot found in saline-alkali soil in China. To identify the genes which are determining the higher tolerance of P. tenuiflora compared to bicarbonate sensitive species, we examined the responses of P. tenuiflora and a related bicarbonate-sensitive Poeae plant, Poa annua, to two days of 20 mM NaHCO3 stress by RNA-seq analysis. We obtained 28 and 38 million reads for P. tenuiflora and P. annua, respectively. For each species, the reads of both unstressed and stressed samples were combined for de novo assembly of contigs. We obtained 77,329 contigs for P. tenuiflora and 115,335 contigs for P.annua. NaHCO3 stress resulted in greater than two-fold absolute expression value changes in 157 of the P. tenuiflora contigs and 1090 of P. annua contigs. Homologs of the genes involved in Fe acquisition, which are important for the survival of plants under alkaline stress, were up-regulated in P. tenuiflora and down-regulated in P. annua. The smaller number of the genes differentially regulated in P. tenuiflora suggests that the genes regulating bicarbonate tolerance are constitutively expressed in P. tenuiflora.
Collapse
Affiliation(s)
- Shio Kobayashi
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Hina Satone
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Engkong Tan
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Hiroyuki Kurokochi
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shenkui Liu
- Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| |
Collapse
|
40
|
Zhang X, Wang N, Chen P, Gao M, Liu J, Wang Y, Zhao T, Li Y, Gai J. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis. PLoS One 2014; 9:e111120. [PMID: 25364908 PMCID: PMC4218711 DOI: 10.1371/journal.pone.0111120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.
Collapse
Affiliation(s)
- Xiaolian Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pei Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengmeng Gao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juge Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yufeng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Bu Y, Zhao M, Sun B, Zhang X, Takano T, Liu S. An efficient method for stable protein targeting in grasses (Poaceae): a case study in Puccinellia tenuiflora. BMC Biotechnol 2014; 14:52. [PMID: 24898217 PMCID: PMC4064272 DOI: 10.1186/1472-6750-14-52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An efficient transformation method is lacking for most non-model plant species to test gene function. Therefore, subcellular localization of proteins of interest from non-model plants is mainly carried out through transient transformation in homologous cells or in heterologous cells from model species such as Arabidopsis. Although analysis of expression patterns in model organisms like yeast and Arabidopsis can provide important clues about protein localization, these heterologous systems may not always faithfully reflect the native subcellular distribution in other species. On the other hand, transient expression in protoplasts from species of interest has limited ability for detailed sub-cellular localization analysis (e.g., those involving subcellular fractionation or sectioning and immunodetection), as it results in heterogeneous populations comprised of both transformed and untransformed cells. RESULTS We have developed a simple and reliable method for stable transformation of plant cell suspensions that are suitable for protein subcellular localization analyses in the non-model monocotyledonous plant Puccinellia tenuiflora. Optimization of protocols for obtaining suspension-cultured cells followed by Agrobacterium-mediated genetic transformation allowed us to establish stably transformed cell lines, which could be maintained indefinitely in axenic culture supplied with the proper antibiotic. As a case study, protoplasts of transgenic cell lines stably transformed with an ammonium transporter-green fluorescent protein (PutAMT1;1-GFP) fusion were successfully used for subcellular localization analyses in P. tenuiflora. CONCLUSIONS We present a reliable method for the generation of stably transformed P. tenuiflora cell lines, which, being available in virtually unlimited amounts, can be conveniently used for any type of protein subcellular localization analysis required. Given its simplicity, the method can be used as reference for other non-model plant species lacking efficient regeneration protocols.
Collapse
Affiliation(s)
| | | | | | | | | | - Shenkui Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Hexing Road No, 26, Xiangfang District, Harbin City, Heilongjiang Province 150040, China.
| |
Collapse
|
42
|
Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? JOURNAL OF PLANT PHYSIOLOGY 2014; 171:748-69. [PMID: 24666983 DOI: 10.1016/j.jplph.2014.01.011] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 05/20/2023]
Abstract
Cloning and characterizations of plant K(+) transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K(+) transport systems that are active at the plasma membrane: the Shaker K(+) channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K(+) in most environmental conditions, and two families of transporters, the HAK/KUP/KT K(+) transporter family, which includes some high-affinity transporters, and the HKT K(+) and/or Na(+) transporter family, in which K(+)-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.
Collapse
Affiliation(s)
- Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France.
| | - Manuel Nieves-Cordones
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Meriem Daly
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'sik, Université Hassan II-Mohammedia, Avenue Cdt Driss El Harti, BP 7955, Sidi Othmane, Casablanca, Morocco
| | - Imran Khan
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Cécile Fizames
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
43
|
Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. The twins K+ and Na+ in plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:723-31. [PMID: 24810769 DOI: 10.1016/j.jplph.2013.10.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 05/02/2023]
Abstract
In the earth's crust and in seawater, K(+) and Na(+) are by far the most available monovalent inorganic cations. Physico-chemically, K(+) and Na(+) are very similar, but K(+) is widely used by plants whereas Na(+) can easily reach toxic levels. Indeed, salinity is one of the major and growing threats to agricultural production. In this article, we outline the fundamental bases for the differences between Na(+) and K(+). We present the foundation of transporter selectivity and summarize findings on transporters of the HKT type, which are reported to transport Na(+) and/or Na(+) and K(+), and may play a central role in Na(+) utilization and detoxification in plants. Based on the structural differences in the hydration shells of K(+) and Na(+), and by comparison with sodium channels, we present an ad hoc mechanistic model that can account for ion permeation through HKTs.
Collapse
Affiliation(s)
- Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Anna Amtmann
- Institute of Molecular, Cellular and Systems Biology (MCSB), College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | - Tracey Ann Cuin
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, Montpellier, France
| | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
44
|
Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. THE NEW PHYTOLOGIST 2014; 202:35-49. [PMID: 24283512 DOI: 10.1111/nph.12613] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Kouyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Kouyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
45
|
Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC. SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:315-32. [PMID: 24325391 DOI: 10.1111/jipb.12144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/26/2013] [Indexed: 05/04/2023]
Abstract
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K⁺ in the presence of toxic concentrations of Na⁺. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKT1;4, a member of the HKT gene family from Sorghum bicolor. Upon Na⁺ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na⁺ /K⁺ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na⁺ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K⁺, implicating that SbHKT1;4 may mediate K⁺ uptake in the presence of excessive Na⁺. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na⁺ and K⁺ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKT1;4 functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress to the breeding of salt-tolerant glycophytic crops is discussed.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
HKT transporters--state of the art. Int J Mol Sci 2013; 14:20359-85. [PMID: 24129173 PMCID: PMC3821619 DOI: 10.3390/ijms141020359] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/15/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022] Open
Abstract
The increase in soil salinity poses a serious threat to agricultural yields. Under salinity stress, several Na⁺ transporters play an essential role in Na⁺ tolerance in plants. Amongst all Na+ transporters, HKT has been shown to have a crucial role in both mono and dicotyledonous plants in the tolerance to salinity stress. Here we present an overview of the physiological role of HKT transporters in plant Na⁺ homeostasis. HKT regulation and amino acids important to the correct function of HKT transporters are reviewed. The functions of the most recently characterized HKT members from both HKT1 and HKT2 subfamilies are also discussed. Topics that still need to be studied in future research (e.g., HKT regulation) as well as research suggestions (e.g., generation of HKT mutants) are addressed.
Collapse
|
47
|
Ma J, Zhang M, Xiao X, You J, Wang J, Wang T, Yao Y, Tian C. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLoS One 2013; 8:e65877. [PMID: 23825526 PMCID: PMC3692491 DOI: 10.1371/journal.pone.0065877] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/29/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is well adapted to extreme saline environments with more than 1,000 mM NaCl in the soil, so it could serve as an important model species for studying halophilic mechanisms in euhalophytes. To obtain insights into the molecular basis of salt tolerance, we present here the first extensive transcriptome analysis of this species using the Illumina HiSeq™ 2000. PRINCIPAL FINDINGS A total of 41 and 39 million clean reads from the salt-treated (Se200S) and salt-free (SeCKS) tissues of S. europaea shoots were obtained, and de novo assembly produced 97,865 and 101,751 unigenes, respectively. Upon further assembly with EST data from both Se200S and SeCKS, 109,712 high-quality non-redundant unigenes were generated with a mean unigene size of 639 bp. Additionally, a total of 3,979 differentially expressed genes (DEGs) were detected between the Se200S and SeCKS libraries, with 348 unigenes solely expressed in Se200S and 460 unigenes solely expressed in SeCKS. Furthermore, we identified a large number of genes that are involved in ion homeostasis and osmotic adjustment, including cation transporters and proteins for the synthesis of low-molecular compounds. All unigenes were functionally annotated within the COG, GO and KEGG pathways, and 10 genes were validated by qRT-PCR. CONCLUSION Our data contains the extensive sequencing and gene-annotation analysis of S. europaea. This genetic knowledge will be very useful for future studies on the molecular adaptation to abiotic stress in euhalophytes and will facilitate the genetic manipulation of other economically important crops.
Collapse
Affiliation(s)
- Jinbiao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
| | - Meiru Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinlong Xiao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin You
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
| | - Junru Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- College of Resource and Environment Science, Xinjiang University, Urumqi, China
| | - Yinan Yao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- * E-mail: (YY); (CT)
| | - Changyan Tian
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- * E-mail: (YY); (CT)
| |
Collapse
|
48
|
Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance. PHOTOSYNTHESIS RESEARCH 2013. [PMID: 23539361 DOI: 10.1007/s11120-013-9813-9816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Salt tolerance is an important economic trait for crops growing in both irrigated fields and marginal lands. The plant kingdom contains plant species that possess highly distinctive capacities for salt tolerance as a result of evolutionary adaptation to their environments. Yet, the cellular mechanisms contributing to salt tolerance seem to be conserved to some extent in plants although some highly salt-tolerant plants have unique structures that can actively excrete salts. In this review, we begin by summarizing the research in Arabidopsis with a focus on the findings of three membrane transporters that are important for salt tolerance: SOS1, AtHKT1, and AtNHX1. We then review the recent studies in salt tolerance in crops and halophytes. Molecular and physiological mechanisms of salt tolerance in plants revealed by the studies in the model plant, crops, and halophytes are emphasized. Utilization of the Na(+) transporters to improve salt tolerance in plants is also summarized. Perspectives are provided at the end of this review.
Collapse
Affiliation(s)
- Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
49
|
Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance. PHOTOSYNTHESIS RESEARCH 2013; 115:1-22. [PMID: 23539361 DOI: 10.1007/s11120-013-9813-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/21/2023]
Abstract
Salt tolerance is an important economic trait for crops growing in both irrigated fields and marginal lands. The plant kingdom contains plant species that possess highly distinctive capacities for salt tolerance as a result of evolutionary adaptation to their environments. Yet, the cellular mechanisms contributing to salt tolerance seem to be conserved to some extent in plants although some highly salt-tolerant plants have unique structures that can actively excrete salts. In this review, we begin by summarizing the research in Arabidopsis with a focus on the findings of three membrane transporters that are important for salt tolerance: SOS1, AtHKT1, and AtNHX1. We then review the recent studies in salt tolerance in crops and halophytes. Molecular and physiological mechanisms of salt tolerance in plants revealed by the studies in the model plant, crops, and halophytes are emphasized. Utilization of the Na(+) transporters to improve salt tolerance in plants is also summarized. Perspectives are provided at the end of this review.
Collapse
Affiliation(s)
- Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
50
|
Plant High-Affinity Potassium (HKT) Transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci 2013; 14:7660-80. [PMID: 23571493 PMCID: PMC3645709 DOI: 10.3390/ijms14047660] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022] Open
Abstract
High-affinity Potassium Transporters (HKTs) belong to an important class of integral membrane proteins (IMPs) that facilitate cation transport across the plasma membranes of plant cells. Some members of the HKT protein family have been shown to be critical for salinity tolerance in commercially important crop species, particularly in grains, through exclusion of Na+ ions from sensitive shoot tissues in plants. However, given the number of different HKT proteins expressed in plants, it is likely that different members of this protein family perform in a range of functions. Plant breeders and biotechnologists have attempted to manipulate HKT gene expression through genetic engineering and more conventional plant breeding methods to improve the salinity tolerance of commercially important crop plants. Successful manipulation of a biological trait is more likely to be effective after a thorough understanding of how the trait, genes and proteins are interconnected at the whole plant level. This article examines the current structural and functional knowledge relating to plant HKTs and how their structural features may explain their transport selectivity. We also highlight specific areas where new knowledge of plant HKT transporters is needed. Our goal is to present how knowledge of the structure of HKT proteins is helpful in understanding their function and how this understanding can be an invaluable experimental tool. As such, we assert that accurate structural information of plant IMPs will greatly inform functional studies and will lead to a deeper understanding of plant nutrition, signalling and stress tolerance, all of which represent factors that can be manipulated to improve agricultural productivity.
Collapse
|