1
|
Zhu J, Huang H, Xu X, Wang X, Zhu G, Wang B, Zhu J, Yuan F. LbMYB368 from the recretohalophyte Limonium bicolor promotes salt gland development and salinity tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112486. [PMID: 40164311 DOI: 10.1016/j.plantsci.2025.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Halophytes can grow and reproduce normally in an environment containing more than 200 mM NaCl, offering untapped gene resources for improving crop salinity tolerance. As a recretohalophyte, Limonium bicolor can secrete excess Na+ through salt glands, specialized structures on the leaf and stem epidermis. Here, we identified a MYB transcription factor gene, LbMYB368, that is highly expressed during salt gland development. We confirmed its expression in salt glands using RNA in situ hybridization and a promoter reporter construct. To investigate in detail the roles of LbMYB368 in salinity tolerance, we overexpressed and knocked down the gene, via virus-induced gene silencing (VIGS), in L. bicolor. The transgenic L. bicolor overexpression lines developed more salt glands, while the VIGS plants had fewer salt glands. The salt secretion ability and salt tolerance of these plants were correlated with the changes in salt gland development, indicating that LbMYB368 plays an important role in the salt tolerance of L. bicolor by enhancing salt gland development and salt secretion. We also investigated the effect of LbMYB368 on enhanced salinity tolerance when heterologously expressed in Arabidopsis to assess its potential applications in non-halophytes for future conferring salinity tolerance in crops.
Collapse
Affiliation(s)
- Jianglu Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Haoxuan Huang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiaojing Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Guoyong Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Jingwen Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China.
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China.
| |
Collapse
|
2
|
Ma Y, Chen Q, Javeed A, Wang Z, Liu S, Lin F, Zhang C, Liu C. Functional and transcriptomic characterization of the receptor-like protein kinase gene GmHSL1b involved in salt stress tolerance in soybean roots. PHYSIOLOGIA PLANTARUM 2025; 177:e70197. [PMID: 40207830 DOI: 10.1111/ppl.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The survival and adaptation of plants to adverse environmental conditions is crucial and is facilitated by receptor-like kinases, which act as cell surface receptors for a variety of signals. In this study, we identified a gene, GmHSL1b, encoding a receptor-like protein kinase that is responsive to abscisic acid (ABA) hormonal signals and is involved in the plant's response to drought and salt stresses. Subcellular localization assays have demonstrated that the GmHSL1b protein is located in the plasma membrane. Overexpression of the GmHSL1b gene in soybean enhanced root growth and development, as well as the plant's tolerance to salt stress, while the gmhsl1b mutant revealed increased sensitivity to salt stress. Comparative transcriptome analysis showed that some genes associated with various biological processes, such as mitogen-activated protein kinase (MAPK) cascade signaling, plant hormone signaling, cell wall remodeling, calcium signaling, and defense response mechanisms are differentially expressed in GmHSL1b overexpressing roots. Our research indicated that GmHSL1b can regulate the expression level of the candidate aquaporin GmPIP2-1, thereby affecting cell water content and the accumulation of reactive oxygen species (ROS) under salt stress. These findings indicate that the GmHSL1b participates in regulating root development and enhancing the tolerance to salt stress, thus offering insights for boosting crop adaptability to environmental stresses.
Collapse
Affiliation(s)
- Yuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ansar Javeed
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of life sciences and medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou, China
| | - Zhenghao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Sijia Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Pandey M, Verma L, Kohli PS, Singh B, Kochi A, Giri J. A lipid synthase maintains metabolic flux for jasmonate synthesis to regulate root growth and phosphate homeostasis. PLANT PHYSIOLOGY 2025; 197:kiae453. [PMID: 39190806 DOI: 10.1093/plphys/kiae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Plants require phosphate (Pi) for proper growth and development but often face scarcity of this vital nutrient in the soil. Pi starvation triggers membrane lipid remodeling to utilize the membrane phospholipid-bound Pi in plants. In this process, phospholipids are replaced by non-Pi-containing galactolipids (monogalactosyldiacylglycerol, MGDG; digalactosyldiacylglycerol, DGDG) and sulfolipids. The galactolipids ratio (MGDG:DGDG) is suggested to influence jasmonic acid (JA) biosynthesis. However, how the MGDG:DGDG ratio, JA levels, and root growth are coordinated under Pi deficiency in rice (Oryza sativa) remains unknown. Here, we characterized DGDG synthase 1 (OsDGD1) for its role in regulating root development by maintaining metabolic flux for JA biosynthesis. We showed that OsDGD1 is responsive under low Pi and is under the direct control of Phosphate Starvation Response 2, the master regulator of low Pi adaptations. Further, OsDGD1 knockout (KO) lines showed marked phenotypic differences compared to the wild type, including a significant reduction in root length and biomass, leading to reduced Pi uptake. Further, lipidome analyses revealed reduced DGDG levels in the KO line, leading to reduced membrane remodeling, thus affecting P utilization efficiency. We also observed an increase in the MGDG:DGDG ratio in KO lines, which enhanced the endogenous JA levels and signaling. This imbalance of JA in KO plants led to changes in auxin levels, causing drastic root growth inhibition. These findings indicate the critical role of OsDGD1 in maintaining optimum levels of JA during Pi deficiency for conducive root growth. Besides acting as signaling molecules and structural components, our study widens the role of lipids as metabolic flux controllers for phytohormone biosynthesis.
Collapse
Affiliation(s)
- Mandavi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhagat Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhijith Kochi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
4
|
Zang F, Wu Q, Li Z, Li L, Xie X, Tong B, Yu S, Liang Z, Chu C, Zang D, Ma Y. RrWRKY1, a Transcription Factor, Is Involved in the Regulation of the Salt Stress Response in Rosa rugosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:2973. [PMID: 39519892 PMCID: PMC11547762 DOI: 10.3390/plants13212973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Salt stress has become a major environmental problem affecting plant growth and development. Some WRKY transcription factors have been reported to be involved in the salt stress response in plants. However, there are few studies on the involvement of WRKYs in the salt stress response in Rosa rugosa. In this study, we isolated a salt tolerance gene, RrWRKY1, from R. rugosa. RrWRKY1 was found to belong to Group I of the WRKY family, and it was specifically expressed in leaves and petals. RrWRKY1 expression was upregulated under NaCl stress in rose leaves. After silencing RrWRKY1 in R. rugosa, transgenic plants showed dry leaves and black and brown veins, indicating sensitivity to salt stress. At the same time, the transcription levels of the salt tolerance-related genes RrNHX1, RrABF2, RrRD22, RrNCED1, and RrHKT1 also changed significantly. The superoxide dismutase (SOD) and peroxidase (POD) activities decreased, the proline content decreased, and the malondialdehyde (MDA) content in the gene-silenced plants increased, indicating that RrWRKY1 regulates the salt tolerance of R. rugosa. In addition, the overexpression of RrWRKY1 in Arabidopsis thaliana improved the germination rate and the average of the main root and lateral root lengths, and the transgenic plants had a larger number of lateral roots than the WT plants under salt stress. This study provides candidate gene resources for salinity tolerance breeding and a theoretical basis for analyzing the salinity tolerance mechanism of the WRKY gene.
Collapse
Affiliation(s)
- Fengqi Zang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Qichao Wu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Zhe Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Ling Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Shuhan Yu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Zhaoan Liang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Chunxue Chu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Dekui Zang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Yan Ma
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
5
|
Lombardi M, Bellucci M, Cimini S, Locato V, Loreto F, De Gara L. Exploring Natural Variations in Arabidopsis thaliana: Plant Adaptability to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1069. [PMID: 38674478 PMCID: PMC11054533 DOI: 10.3390/plants13081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
The increase in soil salinization represents a current challenge for plant productivity, as most plants, including crops, are mainly salt-sensitive species. The identification of molecular traits underpinning salt tolerance represents a primary goal for breeding programs. In this scenario, the study of intraspecific variability represents a valid tool for investigating natural genetic resources evolved by plants in different environmental conditions. As a model system, Arabidopsis thaliana, including over 750 natural accessions, represents a species extensively studied at phenotypic, metabolic, and genomic levels under different environmental conditions. Two haplogroups showing opposite root architecture (shallow or deep roots) in response to auxin flux perturbation were identified and associated with EXO70A3 locus variations. Here, we studied the influence of these genetic backgrounds on plant salt tolerance. Eight accessions belonging to the two haplogroups were tested for salt sensitivity by exposing them to moderate (75 mM NaCl) or severe (150 mM NaCl) salt stress. Salt-tolerant accessions were found in both haplogroups, and all of them showed efficient ROS-scavenging ability. Even if an exclusive relation between salt tolerance and haplogroup membership was not observed, the modulation of root system architecture might also contribute to salt tolerance.
Collapse
Affiliation(s)
- Marco Lombardi
- Unit of Food Science and Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.); (M.B.); (S.C.); (L.D.G.)
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Manuel Bellucci
- Unit of Food Science and Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.); (M.B.); (S.C.); (L.D.G.)
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Sara Cimini
- Unit of Food Science and Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.); (M.B.); (S.C.); (L.D.G.)
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy;
| | - Vittoria Locato
- Unit of Food Science and Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.); (M.B.); (S.C.); (L.D.G.)
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy;
| | - Francesco Loreto
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy;
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Laura De Gara
- Unit of Food Science and Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.); (M.B.); (S.C.); (L.D.G.)
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy;
| |
Collapse
|
6
|
Zhang Y, Li Y, de Zeeuw T, Duijts K, Kawa D, Lamers J, Munzert KS, Li H, Zou Y, Meyer AJ, Yan J, Verstappen F, Wang Y, Gijsberts T, Wang J, Gigli-Bisceglia N, Engelsdorf T, van Dijk ADJ, Testerink C. Root branching under high salinity requires auxin-independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function. THE PLANT CELL 2024; 36:899-918. [PMID: 38142228 PMCID: PMC10980347 DOI: 10.1093/plcell/koad317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions. Here, we show that under high-salt conditions, an alternative pathway regulates LBD16 expression. Salt represses auxin signaling but, in parallel, activates ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6), a transcriptional activator of LBD16. ZAT6 activates LBD16 expression, thus contributing to downstream cell wall remodeling and promoting LR development under high-salt conditions. Our study thus shows that the integration of auxin-dependent repressive and salt-activated auxin-independent pathways converging on LBD16 modulates root branching under high-salt conditions.
Collapse
Affiliation(s)
- Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Yiyun Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Dorota Kawa
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kristina S Munzert
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jinxuan Yan
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yixuan Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Tom Gijsberts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jielin Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Wang H, Ye L, Zhou L, Yu J, Pang B, Zuo D, Gu L, Zhu B, Du X, Wang H. Co-Expression Network Analysis of the Transcriptome Identified Hub Genes and Pathways Responding to Saline-Alkaline Stress in Sorghum bicolor L. Int J Mol Sci 2023; 24:16831. [PMID: 38069156 PMCID: PMC10706439 DOI: 10.3390/ijms242316831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Soil salinization, an intractable problem, is becoming increasingly serious and threatening fragile natural ecosystems and even the security of human food supplies. Sorghum (Sorghum bicolor L.) is one of the main crops growing in salinized soil. However, the tolerance mechanisms of sorghum to saline-alkaline soil are still ambiguous. In this study, RNA sequencing was carried out to explore the gene expression profiles of sorghum treated with sodium bicarbonate (150 mM, pH = 8.0, treated for 0, 6, 12 and 24 h). The results show that 6045, 5122, 6804, 7978, 8080 and 12,899 differentially expressed genes (DEGs) were detected in shoots and roots after 6, 12 and 24 h treatments, respectively. GO, KEGG and weighted gene co-expression analyses indicate that the DEGs generated by saline-alkaline stress were primarily enriched in plant hormone signal transduction, the MAPK signaling pathway, starch and sucrose metabolism, glutathione metabolism and phenylpropanoid biosynthesis. Key pathway and hub genes (TPP1, WRKY61, YSL1 and NHX7) are mainly related to intracellular ion transport and lignin synthesis. The molecular and physiological regulation processes of saline-alkali-tolerant sorghum are shown by these results, which also provide useful knowledge for improving sorghum yield and quality under saline-alkaline conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (L.Y.); (L.Z.); (J.Y.); (B.P.); (D.Z.); (L.G.); (B.Z.)
| | - Huinan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (L.Y.); (L.Z.); (J.Y.); (B.P.); (D.Z.); (L.G.); (B.Z.)
| |
Collapse
|
8
|
Brunetti SC, Arseneault MKM, Gulick PJ. The caleosin RD20/CLO3 regulates lateral root development in response to abscisic acid and regulates flowering time in conjunction with the caleosin CLO7. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154102. [PMID: 37812854 DOI: 10.1016/j.jplph.2023.154102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
The caleosins are encoded by multi-gene families in Arabidopsis thaliana and other plant species. This work investigates the role of two family members, RD20/CLO3 and CLO7, in flowering transition and in root development in response to ABA treatment. Gene expression of the caleosin RD20/CLO3 is induced by ABA in the root tissues and RD20/CLO3 has a negative affect on the total number of lateral roots as well as the length of the lateral roots in response to ABA treatment. The rd20/clo3 mutant has more and longer lateral roots in response to ABA treatment compared to the wild-type, showing that RD20/CLO3 plays a role in the ABA signaling pathway affecting this trait. In contrast, the caleosin CLO7 is not expressed in the roots and does not affect root architecture in response to ABA treatment. The disruption of both RD20/CLO3 and CLO7 together causes a dramatic early-flowering phenotype under long-day conditions, whereas single mutations in these genes do not affect flowering time under these conditions. Both yeast two-hybrid and bimolecular fluorescence complementation showed that both RD20/CLO3 and CLO7 interact with each other and can form homodimers and heterodimers. Taken together, these findings suggest that members of the caleosin gene family play both different and redundant roles in plant development.
Collapse
Affiliation(s)
- Sabrina C Brunetti
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, H4B 1R6, Canada
| | - Michelle K M Arseneault
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, H4B 1R6, Canada
| | - Patrick J Gulick
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
9
|
Do BH, Hiep NT, Lao TD, Nguyen NH. Loss-of-Function Mutation of ACTIN-RELATED PROTEIN 6 (ARP6) Impairs Root Growth in Response to Salinity Stress. Mol Biotechnol 2023; 65:1414-1420. [PMID: 36627550 DOI: 10.1007/s12033-023-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
H2A.Z-containing nucleosomes have been found to function in various developmental programs in Arabidopsis (e.g., floral transition, warm ambient temperature, and drought stress responses). The SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) complex is known to control the deposition of H2A.Z, and it has been unraveled that ACTIN-RELATED PROTEIN 6 (ARP6) is one component of this SWR1 complex. Previous studies showed that the arp6 mutant exhibited some distinguished phenotypes such as early flowering, leaf serration, elongated hypocotyl, and reduced seed germination rate in response to osmotic stress. In this study, we aimed to investigate the changes of arp6 mutant when the plants were grown in salt stress condition. The phenotypic observation showed that the arp6 mutant was more sensitive to salt stress than the wild type. Upon salt stress condition, this mutant exhibited attenuated root phenotypes such as shorter primary root length and fewer lateral root numbers. The transcript levels of stress-responsive genes, ABA INSENSITIVE 1 (ABI1) and ABI2, were found to be impaired in the arp6 mutant in comparison with wild-type plants in response to salt stress. In addition, a meta-analysis of published data indicated a number of genes involved in auxin response were induced in arp6 mutant grown in non-stress condition. These imply that the loss of H2A.Z balance (in arp6 mutant) may lead to change stress and auxin responses resulting in alternative root morphogenesis upon both normal and salinity stress conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam.
| |
Collapse
|
10
|
Djemal R, Bradai M, Amor F, Hanin M, Ebel C. Wheat type one protein phosphatase promotes salt and osmotic stress tolerance in arabidopsis via auxin-mediated remodelling of the root system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107832. [PMID: 37327648 DOI: 10.1016/j.plaphy.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
The control of optimal root growth and plant stress responses depends largely on a variety of phytohormones among which auxin and brassinosteroids (BRs) are the most influential. We have previously reported that the durum wheat type 1 protein phosphatase TdPP1 participates in the control of root growth by modulating BR signaling. In this study, we pursue our understanding of how TdPP1 fulfills this regulatory function on root growth by evaluating the physiological and molecular responses of Arabidopsis TdPP1 over-expressing lines to abiotic stresses. Our results showed that when exposed to 300 mM Mannitol or 100 mM NaCl, the seedlings of TdPP1 over-expressors exhibit modified root architecture with higher lateral root density, and longer root hairs concomitant with a lower inhibition of the primary root growth. These lines also exhibit faster gravitropic response and a decrease in primary root growth inhibition when exposed to high concentrations of exogenous IAA. On another hand, a cross between TdPP1 overexpressors and DR5:GUS marker line was performed to monitor auxin accumulation in roots. Remarkably, the TdPP1 overexpression resulted in an enhanced auxin gradient under salt stress with a higher accumulation in primary and lateral root tips. Moreover, TdPP1 transgenics exhibit a significant induction of a subset of auxin-responsive genes under salt stress conditions. Therefore, our results reveal a role of PP1 in enhancing auxin signaling to help shape greater root plasticity thus improving plant stress resilience.
Collapse
Affiliation(s)
- Rania Djemal
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Mariem Bradai
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Fatma Amor
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
11
|
Spies FP, Perotti MF, Cho Y, Jo CI, Hong JC, Chan RL. A complex tissue-specific interplay between the Arabidopsis transcription factors AtMYB68, AtHB23, and AtPHL1 modulates primary and lateral root development and adaptation to salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:952-966. [PMID: 37165773 DOI: 10.1111/tpj.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Adaptation to different soil conditions is a well-regulated process vital for plant life. AtHB23 is a homeodomain-leucine zipper I transcription factor (TF) that was previously revealed as crucial for plant survival under salinity conditions. We wondered whether this TF has partners to perform this essential function. Therefore, TF cDNA library screening, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays were complemented with expression analyses and phenotypic characterization of silenced, mutant, overexpression, and crossed plants in normal and salinity conditions. We revealed that AtHB23, AtPHL1, and AtMYB68 interact with each other, modulating root development and the salinity response. The encoding genes are coexpressed in specific root tissues and at specific developmental stages. In normal conditions, amiR68 silenced plants have fewer initiated roots, the opposite phenotype to that shown by amiR23 plants. AtMYB68 and AtPHL1 play opposite roles in lateral root elongation. Under salinity conditions, AtHB23 plays a crucial positive role in cooperating with AtMYB68, whereas AtPHL1 acts oppositely by obstructing the function of the former, impacting the plant's survival ability. Such interplay supports the complex interaction between these TF in primary and lateral roots. The root adaptation capability is associated with the amyloplast state. We identified new molecular players that through a complex relationship determine Arabidopsis root architecture and survival in salinity conditions.
Collapse
Affiliation(s)
- Fiorella Paola Spies
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Yuhan Cho
- Division of Life Science, Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Chang Ig Jo
- Division of Life Science, Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, South Carolina, MO 65211-7310, USA
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
12
|
Mishra V, Sarkar AK. Serotonin: A frontline player in plant growth and stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13968. [PMID: 37402164 DOI: 10.1111/ppl.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.
Collapse
Affiliation(s)
- Vishnu Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ananda K Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Xiang ZX, Li W, Lu YT, Yuan TT. Hydrogen sulfide alleviates osmotic stress-induced root growth inhibition by promoting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1369-1384. [PMID: 36948886 DOI: 10.1111/tpj.16198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/09/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2 S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H2 S to enhance abiotic stress resistance. However, the role of DCD-mediated H2 S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H2 S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis. Osmotic stress up-regulated DCD gene transcript and DCD protein levels and thus H2 S production in roots. When subjected to osmotic stress, a dcd mutant showed more severe root growth inhibition, whereas the transgenic lines DCDox overexpressing DCD exhibited less sensitivity to osmotic stress in terms of longer root compared to the wild-type. Moreover, osmotic stress inhibited root growth through repressing auxin signaling, whereas H2 S treatment significantly alleviated osmotic stress-mediated inhibition of auxin. Under osmotic stress, auxin accumulation was increased in DCDox but decreased in dcd mutant. H2 S promoted auxin biosynthesis gene expression and auxin efflux carrier PIN-FORMED 1 (PIN1) protein level under osmotic stress. Taken together, our results reveal that mannitol-induced DCD and H2 S in roots promote auxin homeostasis, contributing to alleviating the inhibition of root growth under osmotic stress.
Collapse
Affiliation(s)
- Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
14
|
Tessi TM, Maurino VG, Shahriari M, Meissner E, Novak O, Pasternak T, Schumacher BS, Ditengou F, Li Z, Duerr J, Flubacher NS, Nautscher M, Williams A, Kazimierczak Z, Strnad M, Thumfart JO, Palme K, Desimone M, Teale WD. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. THE NEW PHYTOLOGIST 2023; 238:1924-1941. [PMID: 36918499 DOI: 10.1111/nph.18879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/29/2023] [Indexed: 05/04/2023]
Abstract
An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.
Collapse
Affiliation(s)
- Tomás M Tessi
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mojgan Shahriari
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Esther Meissner
- Conservation Ecology, Department Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Taras Pasternak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benjamin S Schumacher
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franck Ditengou
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zenglin Li
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jasmin Duerr
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Noemi S Flubacher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Moritz Nautscher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Alyssa Williams
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zuzanna Kazimierczak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jörg-Oliver Thumfart
- Faculty of Medicine, Institute of Physiology II, University of Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Labormedizinisches Zentrum Ostschweiz, Lagerstrasse 30, 9470, Buchs, SG, Switzerland
| | - Klaus Palme
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Centre of Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Marcelo Desimone
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - William D Teale
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
15
|
Karmakar K, Chakraborty S, Kumar JR, Nath U, Nataraja KN, Chakravortty D. Role of lactoyl-glutathione lyase of Salmonella in the colonization of plants under salinity stress. Res Microbiol 2023; 174:104045. [PMID: 36842715 DOI: 10.1016/j.resmic.2023.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Salmonella, a foodborne human pathogen, can colonize the members of the kingdom Plantae. However, the basis of the persistence of Salmonella in plants is largely unknown. Plants encounter various biotic and abiotic stress agents in soil. We conjectured that methylglyoxal (MG), one of the common metabolites that accumulate in plants during both biotic and abiotic stress, plays a role in regulating the plant-Salmonella interaction. The interaction of Salmonella Typhimurium with plants under salinity stress was investigated. It was observed that wild-type Salmonella Typhimurium can efficiently colonize the root, but mutant bacteria lacking MG detoxifying enzyme, lactoyl-glutathione lyase (Lgl), showed lower colonization in roots exclusively under salinity stress. This colonization defect is due to the poor viability of the mutated bacterial strains under these conditions. This is the first report to prove the role of MG-detoxification genes in the colonization of stressed plants and highlights the possible involvement of metabolic genes in the evolution of the plant-associated life of Salmonella.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar-736165, India.
| | - Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Jyothsna R Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Science, Bangalore 560012, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Adjunct Faculty, School of Biology, Indian Institute of Science and Educational Research, Thiruvananthapuram 695551, India.
| |
Collapse
|
16
|
Shelden MC, Munns R. Crop root system plasticity for improved yields in saline soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1120583. [PMID: 36909408 PMCID: PMC9999379 DOI: 10.3389/fpls.2023.1120583] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Crop yields must increase to meet the demands of a growing world population. Soil salinization is increasing due to the impacts of climate change, reducing the area of arable land for crop production. Plant root systems are plastic, and their architecture can be modulated to (1) acquire nutrients and water for growth, and (2) respond to hostile soil environments. Saline soils inhibit primary root growth and alter root system architecture (RSA) of crop plants. In this review, we explore how crop root systems respond and adapt to salinity, focusing predominately on the staple cereal crops wheat, maize, rice, and barley, that all play a major role in global food security. Cereal crops are classified as glycophytes (salt-sensitive) however salt-tolerance can differ both between species and within a species. In the past, due to the inherent difficulties associated with visualising and measuring root traits, crop breeding strategies have tended to focus on optimising shoot traits. High-resolution phenotyping techniques now make it possible to visualise and measure root traits in soil systems. A steep, deep and cheap root ideotype has been proposed for water and nitrogen capture. Changes in RSA can be an adaptive strategy to avoid saline soils whilst optimising nutrient and water acquisition. In this review we propose a new model for designing crops with a salt-tolerant root ideotype. The proposed root ideotype would exhibit root plasticity to adapt to saline soils, root anatomical changes to conserve energy and restrict sodium (Na+) uptake, and transport mechanisms to reduce the amount of Na+ transported to leaves. In the future, combining high-resolution root phenotyping with advances in crop genetics will allow us to uncover root traits in complex crop species such as wheat, that can be incorporated into crop breeding programs for yield stability in saline soils.
Collapse
Affiliation(s)
- Megan C. Shelden
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
17
|
Singh D, Debnath P, Sane AP, Sane VA. Tomato (Solanum lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by modulating the ethylene and auxin pathways in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:330-340. [PMID: 36669348 DOI: 10.1016/j.plaphy.2023.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress is one of the biggest problems in agriculture, which adversely affects crop productivity. Plants adopt several strategies to overcome osmotic stresses that include transcriptional reprogramming and activation of stress responses mediated by different transcription factors and phytohormones. We have identified a WRKY transcription factor from tomato, SlWRKY23, which is induced by mannitol and NaCl treatment. Over-expression of SlWRKY23 in transgenic Arabidopsis enhances osmotic stress tolerance to mannitol and NaCl and affects root growth and lateral root number. Transgenic Arabidopsis over-expressing SlWRKY23 showed reduced electrolyte leakage and higher relative water content than Col-0 plants upon mannitol and NaCl treatment. These lines also showed better membrane integrity with lower MDA content and higher proline content than Col-0. Responses to mannitol were governed by auxin as treatment with TIBA (auxin transport inhibitor) negatively affected the osmotic tolerance in transgenic lines by inhibiting lateral root growth. Similarly, responses to NaCl were controlled by ethylene as treatment with AgNO3 (ethylene perception inhibitor) inhibited the stress response to NaCl by suppressing primary and lateral root growth. The study shows that SlWRKY23, a osmotic stress inducible gene in tomato, imparts tolerance to mannitol and NaCl stress through interaction of the auxin and ethylene pathways.
Collapse
Affiliation(s)
- Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pratima Debnath
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Ortega-Albero N, González-Orenga S, Vicente O, Rodríguez-Burruezo A, Fita A. Responses to Salt Stress of the Interspecific Hybrid Solanum insanum × Solanum melongena and Its Parental Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020295. [PMID: 36679008 PMCID: PMC9867010 DOI: 10.3390/plants12020295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 05/14/2023]
Abstract
Soil salinity is becoming one of the most critical problems for agriculture in the current climate change scenario. Growth parameters, such as plant height, root length and fresh weight, and several biochemical stress markers (chlorophylls, total flavonoids and proline), have been determined in young plants of Solanum melongena, its wild relative Solanum insanum, and their interspecific hybrid, grown in the presence of 200 and 400 mM of NaCl, and in adult plants in the long-term presence of 80 mM of NaCl, in order to assess their responses to salt stress. Cultivated eggplant showed a relatively high salt tolerance, compared to most common crops, primarily based on the control of ion transport and osmolyte biosynthesis. S. insanum exhibited some specific responses, such as the salt-induced increase in leaf K+ contents (653.8 μmol g-1 dry weight) compared to S. melongena (403 μmol g-1 dry weight) at 400 mM of NaCl. Although there were no substantial differences in growth in the presence of salt, biochemical evidence of a better response to salt stress of the wild relative was detected, such as a higher proline content. The hybrid showed higher tolerance than either of the parents with better growth parameters, such as plant height increment (7.3 cm) and fresh weight (240.4% root fresh weight and 113.3% shoot fresh weight) at intermediate levels of salt stress. For most biochemical variables, the hybrid showed an intermediate behaviour between the two parent species, but for proline it was closer to S. insanum (ca. 2200 μmol g-1 dry weight at 200 mM NaCl). These results show the possibility of developing new salt tolerance varieties in eggplant by introducing genes from S. insanum.
Collapse
Affiliation(s)
- Neus Ortega-Albero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Sara González-Orenga
- Department of Plant Biology and Soil Science, Faculty of Biology, Universidad de Vigo, Campus Lagoas-Marcosendre, 36310 Vigo, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Adrián Rodríguez-Burruezo
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
- Correspondence:
| |
Collapse
|
19
|
Adaptive Response and Transcriptomic Analysis of Flax (Linum usitatissimum L.) Seedlings to Salt Stress. Genes (Basel) 2022; 13:genes13101904. [DOI: 10.3390/genes13101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Soil salinity constrains agricultural development in arid regions. Flax is an economically important crop in many countries, and screening or breeding salinity-resistant flax cultivars is necessary. Based on the previous screening of flaxseed cultivars C71 (salt-sensitive) and C116 (salt-tolerant) as test materials, flax seedlings stressed with different concentrations of NaCl (0, 100, 150, 200, and 250 mmol/L) for 21 days were used to investigate the effects of salt stress on the growth characteristics, osmotic regulators, and antioxidant capacity of these flax seedlings and to reveal the adaptive responses of flax seedlings to salt stress. The results showed that plant height and root length of flax were inhibited, with C116 showing lower growth than C71. The concentrations of osmotic adjustment substances such as soluble sugars, soluble proteins, and proline were higher in the resistant material, C116, than in the sensitive material, C71, under different concentrations of salt stress. Consistently, C116 showed a better rapid scavenging ability for reactive oxygen species (ROS) and maintained higher activities of antioxidant enzymes to balance salt injury stress by inhibiting growth under salt stress. A transcriptome analysis of flax revealed that genes related to defense and senescence were significantly upregulated, and genes related to the growth and development processes were significantly downregulated under salt stress. Our results indicated that one of the important adaptations to tolerance to high salt stress is complex physiological remediation by rapidly promoting transcriptional regulation in flax.
Collapse
|
20
|
Rivera P, Moya C, O’Brien JA. Low Salt Treatment Results in Plant Growth Enhancement in Tomato Seedlings. PLANTS 2022; 11:plants11060807. [PMID: 35336689 PMCID: PMC8954722 DOI: 10.3390/plants11060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Climate change together with excessive fertilization and poor water quality can affect soil quality and salinization. In plants, high salinity causes osmotic stress, ionic toxicity, and oxidative stress. Consequently, salt stress limits plant development, growth, productivity, and yield. Tomatoes are a very common agricultural product, and some cultivars can partially tolerate salinity. However, most studies are focused on salt excess, which does not necessarily extrapolate on how plants develop in soils with low concentrations of salts. Thus, this study characterizes plant growth and the development of different salt concentrations from 25 to 200 mM in Solanum lycopersicum cv. Moneymaker. Tomato seedlings grown in Murashige and Skoog medium supplied with different NaCl concentrations (0, 25, 50, 75, 100, 125, 150, 175, and 200 mM) showed that low salt concentrations (25 and 50 mM) have a positive impact on lateral root development. This was further observed in physiological parameters such as shoot length, primary root length, and proliferation of lateral roots versus controls. Interestingly, no significant changes in Na+ concentration were observed in 25 mM NaCl in roots or shoots versus controls. Overall, our results suggest that non-toxic salt concentrations can have a positive impact on plant development.
Collapse
Affiliation(s)
- Paola Rivera
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.R.); (C.M.)
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Cristian Moya
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.R.); (C.M.)
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - José A. O’Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.R.); (C.M.)
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
21
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
22
|
Cackett L, Cannistraci CV, Meier S, Ferrandi P, Pěnčík A, Gehring C, Novák O, Ingle RA, Donaldson L. Salt-Specific Gene Expression Reveals Elevated Auxin Levels in Arabidopsis thaliana Plants Grown Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:804716. [PMID: 35222469 PMCID: PMC8866861 DOI: 10.3389/fpls.2022.804716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Soil salinization is increasing globally, driving a reduction in crop yields that threatens food security. Salinity stress reduces plant growth by exerting two stresses on plants: rapid shoot ion-independent effects which are largely osmotic and delayed ionic effects that are specific to salinity stress. In this study we set out to delineate the osmotic from the ionic effects of salinity stress. Arabidopsis thaliana plants were germinated and grown for two weeks in media supplemented with 50, 75, 100, or 125 mM NaCl (that imposes both an ionic and osmotic stress) or iso-osmolar concentrations (100, 150, 200, or 250 mM) of sorbitol, that imposes only an osmotic stress. A subsequent transcriptional analysis was performed to identify sets of genes that are differentially expressed in plants grown in (1) NaCl or (2) sorbitol compared to controls. A comparison of the gene sets identified genes that are differentially expressed under both challenge conditions (osmotic genes) and genes that are only differentially expressed in plants grown on NaCl (ionic genes, hereafter referred to as salt-specific genes). A pathway analysis of the osmotic and salt-specific gene lists revealed that distinct biological processes are modulated during growth under the two conditions. The list of salt-specific genes was enriched in the gene ontology (GO) term "response to auxin." Quantification of the predominant auxin, indole-3-acetic acid (IAA) and IAA biosynthetic intermediates revealed that IAA levels are elevated in a salt-specific manner through increased IAA biosynthesis. Furthermore, the expression of NITRILASE 2 (NIT2), which hydrolyses indole-3-acetonitile (IAN) into IAA, increased in a salt-specific manner. Overexpression of NIT2 resulted in increased IAA levels, improved Na:K ratios and enhanced survival and growth of Arabidopsis under saline conditions. Overall, our data suggest that auxin is involved in maintaining growth during the ionic stress imposed by saline conditions.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Carlo Vittorio Cannistraci
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science, Tsinghua University, Beijing, China
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Stuart Meier
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Paul Ferrandi
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| |
Collapse
|
23
|
Li Q, You J, Qiao T, Zhong DB, Yu X. Sodium chloride stimulates the biomass and astaxanthin production by Haematococcus pluvialis via a two-stage cultivation strategy. BIORESOURCE TECHNOLOGY 2022; 344:126214. [PMID: 34715336 DOI: 10.1016/j.biortech.2021.126214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
A major challenge facing by astaxanthin industrialization is the low productivity and high production costs. This study established a two-stage cultivation strategy based on the application of NaCl to improve the production of biomass and astaxanthin by Haematococcus pluvialis. During the first growth stage, 12.5 mg L-1 NaCl led to a remarkable enhancement in biomass, which was 1.28 times compared with the control. Moreover, 2 g L-1 NaCl stimulated the astaxanthin content from 12.18 mg g-1 to 25.92 mg g-1 during the second induction stage. Simultaneously, salinity stress application increased the lipids and GABA contents, as well as the levels of Ca2+ and carotenogenic genes' expression, but suppressed the contents of carbohydrate and protein and high-light induced-ROS. This study proposed a simple and convenient strategy for efficient coproduction of biomass and astaxanthin and provides insights into the underlying mechanism of astaxanthin biosynthesis in H. pluvialis induced by salinity stress.
Collapse
Affiliation(s)
- Qingqing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, China
| | - Tengsheng Qiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming 650217, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
24
|
Jain N, Farhat S, Kumar R, Singh N, Singh S, Sreevathsa R, Kalia S, Singh NK, Teruhiro T, Rai V. Alteration of proteome in germinating seedlings of piegonpea ( Cajanus cajan) after salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2833-2848. [PMID: 35035139 PMCID: PMC8720132 DOI: 10.1007/s12298-021-01116-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Pigeonpea (Cajanus cajan) is an important crop in semi-arid regions and a significant source of dietary proteins in India. The plant is sensitive to salinity stress, which adversely affects its productivity. Based on the dosage-dependent influence of salinity stress on the growth and ion contents in the young seedlings of pigeonpea, a comparative proteome analysis of control and salt stressed (150 mM NaCl) plants was conducted using 7 days-old seedlings. Among various amino acids, serine, aspartate and asparagine were the amino acids that showed increment in the root, whereas serine, aspartate and phenylalanine showed an upward trend in shoots under salt stress. Furthermore, a label-free and gel-free comparative Q-Tof, Liquid Chromatography-Mass spectrometry (LC-MS) revealed total of 118 differentially abundant proteins in roots and shoots with and without salt stress conditions. Proteins related to DNA-binding with one finger (Dof) transcription factor family and glycine betaine (GB) biosynthesis were differentially expressed in the shoot and root of the salinity-stressed seedlings. Exogenous application of choline on GB accumulation under salt stress showed the increase of GB pathway in C. cajan. Gene expression analysis for differentially abundant proteins revealed the higher induction of ethanolamine kinase (CcEthKin), choline-phosphate cytidylyltransferase 1-like (CcChoPh), serine hydroxymethyltransferase (CcSHMT) and Dof protein (CcDof29). The results indicate the importance of, choline precursor, serine biosynthetic pathways and glycine betaine synthesis in salinity stress tolerance. The glycine betaine protects plant from cellular damages and acts as osmoticum under stress condition. Protein interaction network (PIN) analysis demonstrated that 61% of the differentially expressed proteins exhibited positive interactions and 10% of them formed the center of the PIN. Further, The PIN analysis also highlighted the potential roles of the cytochrome c oxidases in sensing and signaling cascades governing salinity stress responses in pigeonpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01116-w.
Collapse
Affiliation(s)
- Neha Jain
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Sufia Farhat
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
- IK Gujral Punjab Technical University, Jalandhar, Punjab India
| | - Ram Kumar
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Nisha Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Sangeeta Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | | | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Takabe Teruhiro
- Research Institute, Meijo University, Nagoya, 468-8502 Japan
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| |
Collapse
|
25
|
Yuan TT, Xiang ZX, Li W, Gao X, Lu YT. Osmotic stress represses root growth by modulating the transcriptional regulation of PIN-FORMED3. THE NEW PHYTOLOGIST 2021; 232:1661-1673. [PMID: 34420215 DOI: 10.1111/nph.17687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress influences root system architecture, and polar auxin transport (PAT) is well established to regulate root growth and development. However, how PAT responds to osmotic stress at the molecular level remains poorly understood. In this study, we explored whether and how the auxin efflux carrier PIN-FORMED3 (PIN3) participates in osmotic stress-induced root growth inhibition in Arabidopsis (Arabidopsis thaliana). We observed that osmotic stress induces a HD-ZIP II transcription factor-encoding gene HOMEODOMAIN ARABIDOPSIS THALIANA2 (HAT2) expression in roots. The hat2 loss-of-function mutant is less sensitive to osmotic stress in terms of root meristem growth. Consistent with this phenotype, whereas the auxin response is downregulated in wild-type roots under osmotic stress, the inhibition of auxin response by osmotic stress was alleviated in hat2 roots. Conversely, transgenic lines overexpressing HAT2 (Pro35S::HAT2) had shorter roots and reduced auxin accumulation compared with wild-type plants. PIN3 expression was significantly reduced in the Pro35S::HAT2 lines. We determined that osmotic stress-mediated repression of PIN3 was alleviated in the hat2 mutant because HAT2 normally binds to the promoter of PIN3 and inhibits its expression. Taken together, our data revealed that osmotic stress inhibits root growth via HAT2, which regulates auxin activity by directly repressing PIN3 transcription.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
26
|
Wu J, Yu C, Huang L, Gan Y. A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. PHYSIOLOGIA PLANTARUM 2021; 173:1120-1135. [PMID: 34287928 DOI: 10.1111/ppl.13508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 05/24/2023]
Abstract
MADS-box transcription factors (TFs) play indispensable roles in various aspects of plant growth, development as well as in response to environmental stresses. Several MADS-box genes have been reported to be involved in the salt tolerance in different plant species. However, the role of the transcription factor OsMADS57 under salinity stress is still unknown. Here, the results of this study showed that OsMADS57 was mainly expressed in roots and leaves of rice plants (Oryza sativa). Gene expression pattern analysis revealed that OsMADS57 was induced by NaCl. Overexpression of OsMADS57 in both Arabidopsis thaliana (A. thaliana) and rice could improve their salt tolerance, which was demonstrated by higher germination rates, longer root length and better growth status of overexpression plants than wild type (WT) under salinity conditions. In contrast, RNA interference (RNAi) lines of rice showed more sensitivity towards salinity. Moreover, less reactive oxygen species (ROS) accumulated in OsMADS57 overexpressing lines when exposed to salt stress, as measured by 3, 3'-diaminobenzidine (DAB) or nitroblue tetrazolium (NBT) staining. Further experiments exhibited that overexpression of OsMADS57 in rice significantly increased the tolerance ability of plants to oxidative damage under salt stress, mainly by increasing the activities of antioxidative enzymes such as superoxide dismutase (SOD) and peroxidase (POD), reducing malonaldehyde (MDA) content and improving the expression of stress-related genes. Taken together, these results demonstrated that OsMADS57 plays a positive role in enhancing salt tolerance by activating the antioxidant system.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chunyan Yu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ludong University, College of Agriculture, Yantai, China
| | - Linli Huang
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
27
|
Leftley N, Banda J, Pandey B, Bennett M, Voß U. Uncovering How Auxin Optimizes Root Systems Architecture in Response to Environmental Stresses. Cold Spring Harb Perspect Biol 2021; 13:a040014. [PMID: 33903159 PMCID: PMC8559545 DOI: 10.1101/cshperspect.a040014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since colonizing land, plants have developed mechanisms to tolerate a broad range of abiotic stresses that include flooding, drought, high salinity, and nutrient limitation. Roots play a key role acclimating plants to these as their developmental plasticity enables them to grow toward more favorable conditions and away from limiting or harmful stresses. The phytohormone auxin plays a key role translating these environmental signals into developmental outputs. This is achieved by modulating auxin levels and/or signaling, often through cross talk with other hormone signals like abscisic acid (ABA) or ethylene. In our review, we discuss how auxin controls root responses to water, osmotic and nutrient-related stresses, and describe how the synthesis, degradation, transport, and response of this key signaling hormone helps optimize root architecture to maximize resource acquisition while limiting the impact of abiotic stresses.
Collapse
Affiliation(s)
- Nicola Leftley
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Bipin Pandey
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Ute Voß
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
28
|
Gupta BK, Sahoo KK, Anwar K, Nongpiur RC, Deshmukh R, Pareek A, Singla-Pareek SL. Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:593-604. [PMID: 34186283 DOI: 10.1016/j.plaphy.2021.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
In rice (Oryza sativa), Si nutrition is known to improve salinity tolerance; however, limited efforts have been made to elucidate the underlying mechanism. Salt-Overly Sensitive (SOS) pathway contributes to salinity tolerance in plants in a major way which works primarily through Na+ exclusion from the cytosol. SOS1, a vital component of SOS pathway is a Na+/H+ antiporter that maintains ion homeostasis. In this study, we evaluated the effect of overexpression of Oryza sativa SOS1 (OsSOS1) in tobacco (cv. Petit Havana) and rice (cv. IR64) for modulating its response towards salinity further exploring its correlation with Si nutrition. OsSOS1 transgenic tobacco plants showed enhanced tolerance to salinity as evident by its high chlorophyll content and maintaining favorable ion homeostasis under salinity stress. Similarly, transgenic rice overexpressing OsSOS1 also showed improved salinity stress tolerance as shown by higher seed germination percentage, seedling survival and low Na+ accumulation under salinity stress. At their mature stage, compared with the non-transgenic plants, the transgenic rice plants showed better growth and maintained better photosynthetic efficiency with reduced chlorophyll loss under stress. Also, roots of transgenic rice plants showed reduced accumulation of Na+ leading to reduced oxidative damage and cell death under salinity stress which ultimately resulted in improved agronomic traits such as higher number of panicles and fertile spikelets per panicle. Si nutrition was found to improve the growth of salinity stressed OsSOS1 rice by upregulating the expression of Si transporters (Lsi1 and Lsi2) that leads to more uptake and accumulation of Si in the rice shoots. Metabolite profiling showed better stress regulatory machinery in the transgenic rice, since they maintained higher abundance of most of the osmolytes and free amino acids.
Collapse
Affiliation(s)
- Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Khirod K Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ramsong C Nongpiur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
29
|
Ninmanont P, Wongchai C, Pfeiffer W, Chaidee A. Salt stress of two rice varieties: root border cell response and multi-logistic quantification. PROTOPLASMA 2021; 258:1119-1131. [PMID: 33677735 DOI: 10.1007/s00709-021-01629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
How to capture the rice varieties salt stress sensitivity? Here, we measure responses of root border cells (1 day, ± 60 mM NaCl) and apply multi-logistic quantification of growth variables (21 days, ± 60 mM NaCl) to two rice varieties, salt-sensitive IR29 and tolerant Pokkali. Thus, logistic models determine the maximum response velocities (Vmax) and times of half-maximum (T0) for root border cell (RBC) and growth parameters. Thereof, seven variables show logistic models (0.58 < R ≤ 1) and monotonous responses in both Pokkali and IR29: root to shoot ratio by water content, primary root length, shoot water, adventitious root number, shoot dry and fresh weight, and root dry weight. Moreover, the regression to lognormal distribution (R = 0.99) of these seven Vmax fractionated by T0 represents the rice variety's comprehensive response. Its quotient IR29/Pokkali is peaking at 98-fold higher velocity of IR29, thus capturing the variety's sensitivity. Consequently, our finding of 66-fold higher Vmax of primary root length response of IR29 indicates an essential salt sensor in the root, including RBC. Finally, the effects of salt stress on RBC confirm multi-logistic quantification, showing 36% decrease of RBC mucilage layer in IR29, without change in Pokkali. Inversely, RBC number of Pokkali increases 43% without change in IR29. Briefly, this suggests both RBC and multi-logistic quantification for the screening for salt tolerance in two thousand rice varieties.
Collapse
Affiliation(s)
- Ployphilin Ninmanont
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchawal Wongchai
- Division of Biology, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Wolfgang Pfeiffer
- Fachbereich Biowissenschaften, Universität Salzburg, 5020, Salzburg, Austria
| | - Anchalee Chaidee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Analysis of Phytohormone Signal Transduction in Sophora alopecuroides under Salt Stress. Int J Mol Sci 2021; 22:ijms22147313. [PMID: 34298928 PMCID: PMC8304577 DOI: 10.3390/ijms22147313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.
Collapse
|
31
|
Overexpression of Cassava MeAnn2 Enhances the Salt and IAA Tolerance of Transgenic Arabidopsis. PLANTS 2021; 10:plants10050941. [PMID: 34066809 PMCID: PMC8150822 DOI: 10.3390/plants10050941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Annexins are a superfamily of soluble calcium-dependent phospholipid-binding proteins that have considerable regulatory effects in plants, especially in response to adversity and stress. The Arabidopsis thaliana AtAnn1 gene has been reported to play a significant role in various abiotic stress responses. In our study, the cDNA of an annexin gene highly similar to AtAnn1 was isolated from the cassava genome and named MeAnn2. It contains domains specific to annexins, including four annexin repeat sequences (I–IV), a Ca2+-binding sequence, Ca2+-independent membrane-binding-related tryptophan residues, and a salt bridge-related domain. MeAnn2 is localized in the cell membrane and cytoplasm, and it was found to be preferentially expressed in the storage roots of cassava. The overexpression of MeAnn2 reduced the sensitivity of transgenic Arabidopsis to various Ca2+, NaCl, and indole-3-acetic acid (IAA) concentrations. The expression of the stress resistance-related gene AtRD29B and auxin signaling pathway-related genes AtIAA4 and AtLBD18 in transgenic Arabidopsis was significantly increased under salt stress, while the Malondialdehyde (MDA) content was significantly lower than that of the control. These results indicate that the MeAnn2 gene may increase the salt tolerance of transgenic Arabidopsis via the IAA signaling pathway.
Collapse
|
32
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
33
|
Yang Y, Li N, Hui W, Yuan B, Fan P, Liu J, Wang H, Feng D. Seed-specific expression of TaYUC10 significantly increases auxin and protein content in wheat seeds. PLANT CELL REPORTS 2021; 40:301-314. [PMID: 33179162 DOI: 10.1007/s00299-020-02631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Present study revealed that specific expression of TaYUC10.3 in wheat young seeds could increase the content of auxin, and protein. Auxin is a vital endogenous hormone in plants, which is involved in the regulation of various physiological and biochemical processes in plants. The flavin-containing monooxygenase encoded by the YUCCA gene is a rate-limiting enzyme in the tryptophan-dependent pathway of auxin synthesis. TaYUC10.3 was identified, cloned and found that it was abundantly expressed in wheat young seeds. In this study, a seed-specific expression vector of TaYUC10.3 was constructed with the promoter of 1Bx17 glutenin subunit gene and transformed wheat using the particle bombardment method. The quantitative RT-PCR showed that TaYUC10.3 was expressed in a large amount in young seeds of the transgenic lines. Plant hormone-targeted metabolomics showed that the auxin content of the transgenic lines was significantly increased compared with controls. The GC / MS non-targeted metabolite multiple statistical analyses showed that the variable importance in projection (VIP) of tryptophan reduced in the transgenic lines. Simultaneously, the VIP of indole acetic acid increased. The precursor amino acids for synthesizing some proteins and carbohydrates were upregulated in the transgenic lines. Subsequently, it was found that the protein content of the seeds of the transgenic TaYUC10.3 wheat was significantly higher than that of the control. The wet gluten content and sedimentation value of the transgenic TaYUC10.3 wheat were also high. This result indicated that TaYUC10.3 might participate in auxin synthesis and affects the protein content of wheat seeds.
Collapse
Affiliation(s)
- Yanlin Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Na Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenrong Hui
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Binjie Yuan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Pan Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingxia Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Deshun Feng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
34
|
Gandullo J, Ahmad S, Darwish E, Karlova R, Testerink C. Phenotyping Tomato Root Developmental Plasticity in Response to Salinity in Soil Rhizotrons. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:2760532. [PMID: 33575670 PMCID: PMC7869940 DOI: 10.34133/2021/2760532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/25/2020] [Indexed: 05/23/2023]
Abstract
Plants have developed multiple strategies to respond to salt stress. In order to identify new traits related to salt tolerance, with potential breeding application, the research focus has recently been shifted to include root system architecture (RSA) and root plasticity. Using a simple but effective root phenotyping system containing soil (rhizotrons), RSA of several tomato cultivars and their response to salinity was investigated. We observed a high level of root plasticity of tomato seedlings under salt stress. The general root architecture was substantially modified in response to salt, especially with respect to position of the lateral roots in the soil. At the soil surface, where salt accumulates, lateral root emergence was most strongly inhibited. Within the set of tomato cultivars, H1015 was the most tolerant to salinity in both developmental stages studied. A significant correlation between several root traits and aboveground growth parameters was observed, highlighting a possible role for regulation of both ion content and root architecture in salt stress resilience.
Collapse
Affiliation(s)
- Jacinto Gandullo
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Departamento de Biología Vegetal y Ecología, Área de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Safarina Ahmad
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Essam Darwish
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, Netherlands
| | - Christa Testerink
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, Netherlands
| |
Collapse
|
35
|
Ruffing AM, Anthony SM, Strickland LM, Lubkin I, Dietz CR. Identification of Metal Stresses in Arabidopsis thaliana Using Hyperspectral Reflectance Imaging. FRONTIERS IN PLANT SCIENCE 2021; 12:624656. [PMID: 33664759 PMCID: PMC7921809 DOI: 10.3389/fpls.2021.624656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/27/2021] [Indexed: 05/14/2023]
Abstract
Industrial accidents, such as the Fukushima and Chernobyl disasters, release harmful chemicals into the environment, covering large geographical areas. Natural flora may serve as biological sensors for detecting metal contamination, such as cesium. Spectral detection of plant stresses typically employs a few select wavelengths and often cannot distinguish between different stress phenotypes. In this study, we apply hyperspectral reflectance imaging in the visible and near-infrared along with multivariate curve resolution (MCR) analysis to identify unique spectral signatures of three stresses in Arabidopsis thaliana: salt, copper, and cesium. While all stress conditions result in common stress physiology, hyperspectral reflectance imaging and MCR analysis produced unique spectral signatures that enabled classification of each stress. As the level of potassium was previously shown to affect cesium stress in plants, the response of A. thaliana to cesium stress under variable levels of potassium was also investigated. Increased levels of potassium reduced the spectral response of A. thaliana to cesium and prevented changes to chloroplast cellular organization. While metal stress mechanisms may vary under different environmental conditions, this study demonstrates that hyperspectral reflectance imaging with MCR analysis can distinguish metal stress phenotypes, providing the potential to detect metal contamination across large geographical areas.
Collapse
Affiliation(s)
- Anne M. Ruffing
- Department of Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM, United States
- *Correspondence: Anne M. Ruffing,
| | - Stephen M. Anthony
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM, United States
| | - Lucas M. Strickland
- Department of Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM, United States
| | - Ian Lubkin
- Department of Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM, United States
| | - Carter R. Dietz
- Department of Electrical and Computer Engineering, Sandia National Laboratories, Albuquerque, NM, United States
| |
Collapse
|
36
|
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How Plant Hormones Mediate Salt Stress Responses. TRENDS IN PLANT SCIENCE 2020; 25:1117-1130. [PMID: 32675014 DOI: 10.1016/j.tplants.2020.06.008] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 05/20/2023]
Abstract
Salt stress is one of the major environmental stresses limiting plant growth and productivity. To adapt to salt stress, plants have developed various strategies to integrate exogenous salinity stress signals with endogenous developmental cues to optimize the balance of growth and stress responses. Accumulating evidence indicates that phytohormones, besides controlling plant growth and development under normal conditions, also mediate various environmental stresses, including salt stress, and thus regulate plant growth adaptation. In this review, we mainly discuss and summarize how plant hormones mediate salinity signals to regulate plant growth adaptation. We also highlight how, in response to salt stress, plants build a defense system by orchestrating the synthesis, signaling, and metabolism of various hormones via multiple crosstalks.
Collapse
Affiliation(s)
- Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiangbo Duan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Lu Luo
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
37
|
Temme AA, Kerr KL, Masalia RR, Burke JM, Donovan LA. Key Traits and Genes Associate with Salinity Tolerance Independent from Vigor in Cultivated Sunflower. PLANT PHYSIOLOGY 2020; 184:865-880. [PMID: 32788300 PMCID: PMC7536684 DOI: 10.1104/pp.20.00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 05/20/2023]
Abstract
With rising food demands, crop production on salinized lands is increasingly necessary. Sunflower (Helianthus annuus), a moderately salt-tolerant crop, exhibits a tradeoff where more vigorous, high-performing genotypes have a greater proportional decline in biomass under salinity stress. Prior research has found deviations from this relationship across genotypes. Here, we identified the traits and genomic regions underlying variation in this expectation-deviation tolerance (the magnitude and direction of deviations from the expected effect of salinity). We grew a sunflower diversity panel under control and salt-stressed conditions and measured a suite of morphological (growth, mass allocation, plant and leaf morphology) and leaf ionomic traits. The genetic basis of variation and plasticity in these traits was investigated via genome-wide association, which also enabled the identification of genomic regions (i.e. haplotypic blocks) influencing multiple traits. We found that the magnitude and direction of plasticity in whole-root mass fraction, fine root mass fraction, and chlorophyll content, as well as leaf sodium and potassium content under saline conditions, were most strongly correlated with expectation-deviation tolerance. We identified multiple genomic regions underlying these traits as well as a single alpha-mannosidase gene directly associated with this tolerance metric. Our results show that, by taking the vigor-salinity effect tradeoff into account, we can identify unique traits and genes associated with salinity tolerance. Since these traits and genomic regions are distinct from those associated with high vigor (i.e. growth in benign conditions), they provide an avenue for increasing salinity tolerance in high-performing sunflower genotypes without compromising vigor.
Collapse
Affiliation(s)
- Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Kelly L Kerr
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Rishi R Masalia
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
38
|
Pandey S, Prasad A, Sharma N, Prasad M. Linking the plant stress responses with RNA helicases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110607. [PMID: 32900445 DOI: 10.1016/j.plantsci.2020.110607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 05/21/2023]
Abstract
RNA helicases are omnipresent plant proteins across all kingdoms and have been demonstrated to play an essential role in all cellular processes involving nucleic acids. Currently, these proteins emerged as a new tool for plant molecular biologists to modulate plant stress responses. Here, we review the crucial role of RNA helicases triggered by biotic, abiotic, and multiple stress conditions. In this review, the emphasis has been given on the role of these proteins upon viral stress. Further, we have explored RNA helicase mediated regulation of RNA metabolism, starting from ribosome biogenesis to its decay upon stress induction. We also highlighted the cross-talk between RNA helicase, phytohormones, and ROS. Different overexpression and transgenic studies have been provided in the text to indicate the stress tolerance abilities of these proteins.
Collapse
Affiliation(s)
- Saurabh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
39
|
Miloradovic van Doorn M, Merl-Pham J, Ghirardo A, Fink S, Polle A, Schnitzler JP, Rosenkranz M. Root isoprene formation alters lateral root development. PLANT, CELL & ENVIRONMENT 2020; 43:2207-2223. [PMID: 32495947 DOI: 10.1111/pce.13814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Isoprene is a C5 volatile organic compound, which can protect aboveground plant tissue from abiotic stress such as short-term high temperatures and accumulation of reactive oxygen species (ROS). Here, we uncover new roles for isoprene in the plant belowground tissues. By analysing Populus x canescens isoprene synthase (PcISPS) promoter reporter plants, we discovered PcISPS promoter activity in certain regions of the roots including the vascular tissue, the differentiation zone and the root cap. Treatment of roots with auxin or salt increased PcISPS promoter activity at these sites, especially in the developing lateral roots (LR). Transgenic, isoprene non-emitting poplar roots revealed an accumulation of O2- in the same root regions where PcISPS promoter activity was localized. Absence of isoprene emission, moreover, increased the formation of LRs. Inhibition of NAD(P)H oxidase activity suppressed LR development, suggesting the involvement of ROS in this process. The analysis of the fine root proteome revealed a constitutive shift in the amount of several redox balance, signalling and development related proteins, such as superoxide dismutase, various peroxidases and linoleate 9S-lipoxygenase, in isoprene non-emitting poplar roots. Together our results indicate for isoprene a ROS-related function, eventually co-regulating the plant-internal signalling network and development processes in root tissue.
Collapse
Affiliation(s)
- Maja Miloradovic van Doorn
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Siegfried Fink
- Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
40
|
Kim SH, Bahk S, An J, Hussain S, Nguyen NT, Do HL, Kim JY, Hong JC, Chung WS. A Gain-of-Function Mutant of IAA15 Inhibits Lateral Root Development by Transcriptional Repression of LBD Genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1239. [PMID: 32903377 PMCID: PMC7434933 DOI: 10.3389/fpls.2020.01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Lateral root development is known to be regulated by Aux/IAA-ARF modules in Arabidopsis thaliana. As components, several Aux/IAAs have participated in these Aux/IAA-ARF modules. In this study, to identify the biological function of IAA15 in plant developments, transgenic plant overexpressing the gain-of-function mutant of IAA15 (IAA15P75S OX) under the control of dexamethasone (DEX) inducible promoter, in which IAA15 protein was mutated by changing Pro-75 residue to Ser at the degron motif in conserved domain II, was constructed. As a result, we found that IAA15P75S OX plants show a decreased number of lateral roots. Coincidently, IAA15 promoter-GUS reporter analysis revealed that IAA15 transcripts were highly detected in all stages of developing lateral root tissues. It was also verified that the IAA15P75S protein is strongly stabilized against proteasome-mediated protein degradation by inhibiting its poly-ubiquitination, resulting in the transcriptional repression of auxin-responsive genes. In particular, transcript levels of LBD16 and LBD29, which are positive regulators of lateral root formation, dramatically repressed in IAA15P75S OX plants. Furthermore, it was elucidated that IAA15 interacts with ARF7 and ARF19 and binds to the promoters of LBD16 and LBD29, strongly suggesting that IAA15 represses lateral root formation through the transcriptional suppression of LBD16 and LBD29 by inhibiting ARF7 and ARF19 activity. Taken together, this study suggests that IAA15 also plays a key negative role in lateral root formation as a component of Aux/IAA-ARF modules.
Collapse
|
41
|
Zeng D, Cui J, Yin Y, Zhang M, Shan S, Liu MY, Cheng D, Lu W, Sun Y. Proteomic analysis in different development stages on SP0 generation of rice seeds after space flight. LIFE SCIENCES IN SPACE RESEARCH 2020; 26:34-45. [PMID: 32718685 DOI: 10.1016/j.lssr.2020.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 06/11/2023]
Abstract
The space biological effects of plants will drive the development of aerospace science and breeding science. The aim of this study is to reveal changes in the proteome of contemporary plants at different growth and development stages after space flight of rice seeds. We carried the rice seeds (DN416) through the SJ-10 returning satellite and returned to the ground for planting to the three-leaf stage (TLP) and tillering stage (TS) after a 12.5-day orbital flight. We found that the space flight caused the rice germination rate, the TLP plant height, and the number of tillers in the TS decreased by 11.64%, 9.75%, and 9.80%, respectively. In addition, the treatment group ROS and MDA level increased in the TLP and TS. The abundance patterns of proteins in these leaves identified 214 proteins in the TLP and 286 in the TS leaves that were markedly changed. Moreover, our study identified D14 proteins that control plant height and tiller. Our results show that the space environment may affect the downstream signaling mechanism by regulating the level of ROS in the body to achieve a response to the space environment. Meanwhile, the space environment may affect the plant height and tiller of rice by altering the expression of D14 protein and hormone-regulated proteins. Our results reveal changes in the proteome of different growth stages of rice plants, and also reveal the molecular mechanism of space environment regulation of rice plant height and tiller, which provides a new direction for further understanding of space biological effects and space mutation breeding.
Collapse
Affiliation(s)
- Deyong Zeng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Jie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Yishu Yin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Meng Zhang
- Environment System Biological Institute, Dalian Maritime University, Dalian 116026, China.
| | - Shan Shan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Meng Yao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Yeqing Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China; Environment System Biological Institute, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
42
|
Waidmann S, Sarkel E, Kleine-Vehn J. Same same, but different: growth responses of primary and lateral roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2397-2411. [PMID: 31956903 PMCID: PMC7178446 DOI: 10.1093/jxb/eraa027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
The root system architecture describes the shape and spatial arrangement of roots within the soil. Its spatial distribution depends on growth and branching rates as well as directional organ growth. The embryonic primary root gives rise to lateral (secondary) roots, and the ratio of both root types changes over the life span of a plant. Most studies have focused on the growth of primary roots and the development of lateral root primordia. Comparably less is known about the growth regulation of secondary root organs. Here, we review similarities and differences between primary and lateral root organ growth, and emphasize particularly how external stimuli and internal signals differentially integrate root system growth.
Collapse
Affiliation(s)
- Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Elizabeth Sarkel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
43
|
López-Salmerón V, Cho H, Tonn N, Greb T. The Phloem as a Mediator of Plant Growth Plasticity. Curr Biol 2020; 29:R173-R181. [PMID: 30836090 DOI: 10.1016/j.cub.2019.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental plasticity, defined as the capacity to respond to changing environmental conditions, is an inherent feature of plant growth. Recent studies have brought the phloem tissue, the quintessential conduit for energy metabolites and inter-organ communication, into focus as an instructive developmental system. Those studies have clarified long-standing questions about essential aspects of phloem development and function, such as the pressure flow hypothesis, mechanisms of phloem unloading, and source-sink relationships. Interestingly, plants with impaired phloem development show characteristic changes in body architecture, thereby highlighting the capacity of the phloem to integrate environmental cues and to fine-tune plant development. Therefore, understanding the plasticity of phloem development provides scenarios of how environmental stimuli are translated into differential plant growth. In this Review, we summarize novel insights into how phloem identity is established and how phloem cells fulfil their core function as transport units. Moreover, we discuss possible interfaces between phloem physiology and development as sites for mediating the plastic growth mode of plants.
Collapse
Affiliation(s)
- Vadir López-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Hyunwoo Cho
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Nina Tonn
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Goswami K, Mittal D, Gautam B, Sopory SK, Sanan-Mishra N. Mapping the Salt Stress-Induced Changes in the Root miRNome in Pokkali Rice. Biomolecules 2020; 10:E498. [PMID: 32218214 PMCID: PMC7226372 DOI: 10.3390/biom10040498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
A plant's response to stress conditions is governed by intricately coordinated gene expression. The microRNAs (miRs) have emerged as relatively new players in the genetic network, regulating gene expression at the transcriptional and post-transcriptional level. In this study, we performed comprehensive profiling of miRs in roots of the naturally salt-tolerant Pokkali rice variety to understand their role in regulating plant physiology in the presence of salt. For comparisons, root miR profiles of the salt-sensitive rice variety Pusa Basmati were generated. It was seen that the expression levels of 65 miRs were similar for roots of Pokkali grown in the absence of salt (PKNR) and Pusa Basmati grown in the presence of salt (PBSR). The salt-induced dis-regulations in expression profiles of miRs showed controlled changes in the roots of Pokkali (PKSR) as compared to larger variations seen in the roots of Pusa Basmati. Target analysis of salt-deregulated miRs identified key transcription factors, ion-transporters, and signaling molecules that act to maintain cellular Ca2+ homeostasis and limit ROS production. These miR:mRNA nodes were mapped to the Quantitative trait loci (QTLs) to identify the correlated root traits for understanding their significance in plant physiology. The results obtained indicate that the adaptability of Pokkali to excess salt may be due to the genetic regulation of different cellular components by a variety of miRs.
Collapse
Affiliation(s)
- Kavita Goswami
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
- Department of Computational Biology and Bioinformatics, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom university of Agriculture, Technology and Sciences, Prayagraj (Formally Allahabad) 211007, India
| | - Deepti Mittal
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom university of Agriculture, Technology and Sciences, Prayagraj (Formally Allahabad) 211007, India
| | - Sudhir K. Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
| |
Collapse
|
45
|
Laterals take it better - Emerging and young lateral roots survive lethal salinity longer than the primary root in Arabidopsis. Sci Rep 2020; 10:3291. [PMID: 32094490 PMCID: PMC7040039 DOI: 10.1038/s41598-020-60163-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
Plant responses to salinity have been extensively studied over the last decades. Despite the vast accumulated knowledge, the ways Arabidopsis lateral roots (LR) cope with lethal salinity has not been fully resolved. Here we compared the primary root (PR) and the LR responses during events leading to lethal salinity (NaCl 200 mM) in Arabidopsis. We found that the PR and young LR responded differently to lethal salinity: While the PR died, emerging and young LR’s remained strikingly viable. Moreover, “age acquired salt tolerance” (AAST) was observed in the PR. During the 2 days after germination (DAG) the PR was highly sensitive, but at 8 DAG there was a significant increase in the PR cell survival. Nevertheless, the young LR exhibited an opposite pattern and completely lost its salinity tolerance, as it elongated beyond 400 µm. Examination of several cell death signatures investigated in the young LR showed no signs of an active programmed cell death (PCD) during lethal salinity. However, Autophagic PCD (A-PCD) but not apoptosis-like PCD (AL-PCD) was found to be activated in the PR during the high salinity conditions. We further found that salinity induced NADPH oxidase activated ROS, which were more highly distributed in the young LR compared to the PR, is required for the improved viability of the LR during lethal salinity conditions. Our data demonstrated a position-dependent resistance of Arabidopsis young LR to high salinity. This response can lead to identification of novel salt stress coping mechanisms needed by agriculture during the soil salinization challenge.
Collapse
|
46
|
Munns R, Day DA, Fricke W, Watt M, Arsova B, Barkla BJ, Bose J, Byrt CS, Chen ZH, Foster KJ, Gilliham M, Henderson SW, Jenkins CLD, Kronzucker HJ, Miklavcic SJ, Plett D, Roy SJ, Shabala S, Shelden MC, Soole KL, Taylor NL, Tester M, Wege S, Wegner LH, Tyerman SD. Energy costs of salt tolerance in crop plants. THE NEW PHYTOLOGIST 2020; 225:1072-1090. [PMID: 31004496 DOI: 10.1111/nph.15864] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 05/21/2023]
Abstract
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
Collapse
Affiliation(s)
- Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Dublin, 4, Ireland
| | - Michelle Watt
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Borjana Arsova
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2481, Australia
| | - Jayakumar Bose
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Caitlin S Byrt
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Kylie J Foster
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Matthew Gilliham
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Sam W Henderson
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Urrbrae, SA, 5064, Australia
| | - Colin L D Jenkins
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Darren Plett
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stuart J Roy
- Australian Research Council (ARC) Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Megan C Shelden
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Nicolas L Taylor
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark Tester
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefanie Wege
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
47
|
Sustr M, Soukup A, Tylova E. Potassium in Root Growth and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E435. [PMID: 31652570 PMCID: PMC6843428 DOI: 10.3390/plants8100435] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.
Collapse
Affiliation(s)
- Marek Sustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Ales Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Edita Tylova
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
48
|
Téllez-Robledo B, Manzano C, Saez A, Navarro-Neila S, Silva-Navas J, de Lorenzo L, González-García MP, Toribio R, Hunt AG, Baigorri R, Casimiro I, Brady SM, Castellano MM, Del Pozo JC. The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1203-1219. [PMID: 31111599 DOI: 10.1111/tpj.14416] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 05/28/2023]
Abstract
Root development and its response to environmental changes is crucial for whole plant adaptation. These responses include changes in transcript levels. Here, we show that the alternative polyadenylation (APA) of mRNA is important for root development and responses. Mutations in FIP1, a component of polyadenylation machinery, affects plant development, cell division and elongation, and response to different abiotic stresses. Salt treatment increases the amount of poly(A) site usage within the coding region and 5' untranslated regions (5'-UTRs), and the lack of FIP1 activity reduces the poly(A) site usage within these non-canonical sites. Gene ontology analyses of transcripts displaying APA in response to salt show an enrichment in ABA signaling, and in the response to stresses such as salt or cadmium (Cd), among others. Root growth assays show that fip1-2 is more tolerant to salt but is hypersensitive to ABA or Cd. Our data indicate that FIP1-mediated alternative polyadenylation is important for plant development and stress responses.
Collapse
Affiliation(s)
- Barbara Téllez-Robledo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Concepcion Manzano
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Angela Saez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- DTD, Timac Agro Spain, Lodosa, 31580, Navarra, Spain
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Javier Silva-Navas
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | | | - Ilda Casimiro
- Facultad de Ciencias, Department de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - J Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
49
|
Rubilar-Hernández C, Osorio-Navarro C, Cabello F, Norambuena L. PI4KIII β Activity Regulates Lateral Root Formation Driven by Endocytic Trafficking to the Vacuole. PLANT PHYSIOLOGY 2019; 181:112-126. [PMID: 31285293 PMCID: PMC6716240 DOI: 10.1104/pp.19.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 06/01/2023]
Abstract
Lateral roots (LRs) increase the contact area of the root with the rhizosphere and thereby improve water and nutrient uptake from the soil. LRs are generated either via a developmentally controlled mechanism or through induction by external stimuli, such as water and nutrient availability. Auxin regulates LR organogenesis via transcriptional activation by an auxin complex receptor. Endocytic trafficking to the vacuole positively regulates LR organogenesis independently of the auxin complex receptor in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that phosphatidylinositol 4-phosphate (PI4P) biosynthesis regulated by the phosphatidylinositol 4-kinases PI4KIIIβ1 and PI4KIIIβ2 is essential for the LR organogenesis driven by endocytic trafficking to the vacuole. Stimulation with Sortin2, a biomodulator that promotes protein targeting to the vacuole, altered PI4P abundance at both the plasma membrane and endosomal compartments, a process dependent on PI4K activity. These findings suggest that endocytic trafficking to the vacuole regulated by the enzymatic activities of PI4KIIIβ1 and PI4KIIIβ2 participates in a mechanism independent of the auxin complex receptor that regulates LR organogenesis in Arabidopsis. Surprisingly, loss-of-function of PI4KIIIβ1 and PI4KIIIβ2 induced both LR primordium formation and endocytic trafficking toward the vacuole. This LR primordium induction was alleviated by exogenous PI4P, suggesting that PI4KIIIβ1 and PI4KIIIβ2 activity constitutively negatively regulates LR primordium formation. Overall, this research demonstrates a dual role of PI4KIIIβ1 and PI4KIIIβ2 in LR primordium formation in Arabidopsis.
Collapse
Affiliation(s)
- Carlos Rubilar-Hernández
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Francisca Cabello
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
50
|
Yuan S, Kim SC, Deng X, Hong Y, Wang X. Diacylglycerol kinase and associated lipid mediators modulate rice root architecture. THE NEW PHYTOLOGIST 2019; 223:261-276. [PMID: 30887532 DOI: 10.1111/nph.15801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/08/2019] [Indexed: 05/07/2023]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA), and both DAG and PA are lipid mediators in the cell. Here we show that DGK1 in rice (Oryza sativa) plays important roles in root growth and development. Two independent OsDGK1-knockout (dgk1) lines exhibited a higher density of lateral roots (LRs) and thinner seminal roots (SRs), whereas OsDGK1-overexpressing plants displayed a lower LR density and thicker SRs than wild-type (WT) plants. Overexpression of OsDGK1 led to a decline in the DGK substrate DAG whereas specific PA species decreased in dgk1 roots. Supplementation of DAG to OsDGK1-overexpressing seedlings restored the LR density and SR thickness whereas application of PA to dgk1 seedlings restored the LR density and SR thickness to those of the WT. In addition, treatment of rice seedlings with the DGK inhibitor R59022 increased the level of DAG and decreased PA, which also restored the root phenotype of OsDGK1-overexpressing seedlings close to that of the WT. Together, these results indicate that DGK1 and associated lipid mediators modulate rice root architecture; DAG promotes LR formation and suppresses SR growth whereas PA suppresses LR number and promotes SR thickness.
Collapse
Affiliation(s)
- Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
| | - Sang-Chul Kim
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
| | - Xianjun Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
| |
Collapse
|