1
|
Savelieva EM, Arkhipov DV, Kozinova AV, Romanov GA, Lomin SN. Non-Canonical Inter-Protein Interactions of Key Proteins Belonging to Cytokinin Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2025; 14:1485. [PMID: 40431050 PMCID: PMC12115143 DOI: 10.3390/plants14101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
The multistep phosphorelay (MSP) is a conserved signaling system that allows plants to sense and respond to a variety of cues under rapidly changing environmental conditions. The MSP system comprises three main protein types: sensor histidine kinases, phosphotransmitters, and response regulators. There are numerous signaling pathways that use, in whole or in part, this set of proteins to transduce diverse signals. Among them, the cytokinin signal transduction system is the best-studied pathway, which utilizes the entire MSP cascade. Focusing on this system, we review here protein-protein interaction of MSP components that are not directly related to cytokinin signaling. These interactions are likely to play an essential role in hormonal crosstalk and may be promising targets for fine-tuning plant development. In addition, in light of recent advances in the study of cytokinin signaling, we discuss new insights into the putative molecular mechanisms that mediate the pleiotropic action of cytokinins and provide specificity for distinct MSP signals. A detailed network of known non-canonical protein-protein interactions related to cytokinin signaling was demonstrated.
Collapse
Affiliation(s)
| | | | | | | | - Sergey N. Lomin
- Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow 127276, Russia; (E.M.S.); (A.V.K.)
| |
Collapse
|
2
|
Zhao Y, Wang X, Lei Q, Zhang X, Wang Y, Ji H, Ma C, Wang P, Song CP, Zhu X. The SnRK1-JMJ15-CRF6 module integrates energy and mitochondrial signaling to balance growth and the oxidative stress response in Arabidopsis. THE NEW PHYTOLOGIST 2025; 246:158-175. [PMID: 39909830 DOI: 10.1111/nph.20425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Mitochondria support plant growth and adaptation via energy production and signaling pathways. However, how mitochondria control the transition between growth and stress response is largely unknown in plants. Using molecular approaches, we identified the histone H3K4me3 demethylase JMJ15 and the transcription factor CRF6 as targets of SnRK1 in Arabidopsis. By analyzing antimycin A (AA)-triggered mitochondrial stress, we explored how SnRK1, JMJ15, and CRF6 form a regulatory module that gauges mitochondrial status to balance growth and the oxidative stress response. SnRK1a1, a catalytic α-subunit of SnRK1, phosphorylates and destabilizes JMJ15 to inhibit its H3K4me3 demethylase activity. While SnRK1a1 does not phosphorylate CRF6, it promotes its degradation via the proteasome pathway. CRF6 interacts with JMJ15 and prevents its SnRK1a1 phosphorylation-dependent degradation, forming an antagonistic feedback loop. SnRK1a1, JMJ15, and CRF6 are required for transcriptional reprogramming in response to AA stress. The transcriptome profiles of jmj15 and crf6 mutants were highly correlated with those of plants overexpressing SnRK1a1 under both normal and AA stress conditions. Genetic analysis revealed that CRF6 acts downstream of SnRK1 and JMJ15. Our findings identify the SnRK1-JMJ15-CRF6 module that integrates energy and mitochondrial signaling for the growth-defense trade-off, highlighting an epigenetic mechanism underlying mitonuclear communication.
Collapse
Affiliation(s)
- Yanming Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Xinying Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Qianyan Lei
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Xiaoyan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Yubei Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huijia Ji
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Chongyang Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Lei X, Fang J, Zhang Z, Li Z, Xu Y, Xie Q, Wang Y, Liu Z, Wang Y, Gao C. PdbCRF5 Overexpression Negatively Regulates Salt Tolerance by Downregulating PdbbZIP61 to Mediate Reactive Oxygen Species Scavenging and ABA Synthesis in Populus davidiana × P. bolleana. PLANT, CELL & ENVIRONMENT 2025; 48:1088-1106. [PMID: 39403882 DOI: 10.1111/pce.15199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
Salt stress is the main factor limiting the large-scale cultivation of Shanxin poplar; therefore, improving its salt tolerance is crucial. In this study, we identified and characterized a CRF gene (PdbCRF5) in Shanxin poplar. Compared with the wild-type poplar, the Shanxin poplar overexpressing PdbCRF5 were more sensitive to salt stress. The PdbCRF5-silenced plants exhibited improved salt tolerance. ChIP‒PCR, EMSA, and Y1H confirmed that PdbCRF5 can regulate the expression of the PdbbZIP61 by binding to ABRE element. Further analysis revealed that the overexpression of PdbbZIP61 can reduce cell damage by increasing ROS scavenging, and on the other hand, overexpression of PdbbZIP61 can improve the salt tolerance of Shanxin poplar by regulating the expression of the PdbNCED genes to increase the ABA content. In addition, we also demonstrated that PdbCRF5 can inhibit the expression of the PdbbZIP61 in combination with PdbCRF6. The overexpression of PdbCRF6 also reduced the salt tolerance of Shanxin poplar. Therefore, we found that PdbCRF5 negatively regulates the salt tolerance of Shanxin poplar by inhibiting the PdbbZIP61, indicating that PdbCRF5 plays an important role in the tolerance of Shanxin poplar to salt stress and is an important candidate gene for gene editing and breeding in forest trees.
Collapse
Affiliation(s)
- Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jiaru Fang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ziqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhengyang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yumeng Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yanmin Wang
- Forestry Research Institute of Heilongjiang Province, Harbin, China
- Key Laboratory of Fast-Growing Tree Cultivation of Heilongjiang Province, Harbin, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Mughal N, Shoaib N, Chen J, Li Y, He Y, Fu M, Li X, He Y, Guo J, Deng J, Yang W, Liu J. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. CHEMOSPHERE 2024; 364:143189. [PMID: 39191348 DOI: 10.1016/j.chemosphere.2024.143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Innovative agricultural strategies are essential for addressing the urgent challenge of food security in light of climate change, population growth, and various environmental stressors. Cytokinins (CKs) play a pivotal role in enhancing plant resilience and productivity. These compounds, which include isoprenoid and aromatic types, are synthesized through pathways involving key enzymes such as isopentenyl transferase and cytokinin oxidase. Under abiotic stress conditions, CKs regulate critical physiological processes by improving photosynthetic efficiency, enhancing antioxidant enzyme activity, and optimizing root architecture. They also reduce the levels of reactive oxygen species and malondialdehyde, resulting in improved plant performance and yield. CKs interact intricately with other phytohormones, including abscisic acid, ethylene, salicylic acid, and jasmonic acid, to modulate stress-responsive pathways. This hormonal cross-talk is vital for finely tuning plant responses to stress. Additionally, CKs influence nutrient uptake and enhance responses to heavy metal stress, thereby bolstering overall plant resilience. The application of CKs helps plants maintain higher chlorophyll levels, boost antioxidant systems, and promote root and shoot growth. The strategic utilization of CKs presents an adaptive approach for developing robust crops capable of withstanding diverse environmental stressors, thus contributing to sustainable agricultural practices and global food security. Ongoing research into the mechanisms of CK action and their interactions with other hormones is essential for maximizing their agricultural potential. This underscores the necessity for continued innovation and research in agricultural practices, in alignment with global goals of sustainable productivity and food security.
Collapse
Affiliation(s)
- Nishbah Mughal
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhong He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Man Fu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyun Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juncai Deng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China; College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
5
|
Yan Z, Hou J, Leng B, Yao G, Ma C, Sun Y, Zhang F, Mu C, Liu X. Genome-Wide Investigation of the CRF Gene Family in Maize and Functional Analysis of ZmCRF9 in Response to Multiple Abiotic Stresses. Int J Mol Sci 2024; 25:7650. [PMID: 39062894 PMCID: PMC11276700 DOI: 10.3390/ijms25147650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cytokinin response factors (CRFs) are pivotal players in regulating plant growth, development, and responses to diverse stresses. Despite their significance, comprehensive information on CRF genes in the primary food crop, maize, remains scarce. In this study, a genome-wide analysis of CRF genes in maize was conducted, resulting in the identification of 12 members. Subsequently, we assessed the chromosomal locations, gene duplication events, evolutionary relationships, conserved motifs, and gene structures of all ZmCRF members. Analysis of ZmCRF promoter regions indicated the presence of cis-regulatory elements associated with plant growth regulation, hormone response, and various abiotic stress responses. The expression patterns of maize CRF genes, presented in heatmaps, exhibited distinctive patterns of tissue specificity and responsiveness to multiple abiotic stresses. qRT-PCR experiments were conducted on six selected genes and confirmed the involvement of ZmCRF genes in the plant's adaptive responses to diverse environmental challenges. In addition, ZmCRF9 was demonstrated to positively regulate cold and salt tolerance. Ultimately, we explored the putative interaction partners of ZmCRF proteins. In summary, this systematic overview and deep investigation of ZmCRF9 provides a solid foundation for further exploration into how these genes contribute to the complex interplay of plant growth, development, and responses to stress.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| |
Collapse
|
6
|
Kuznetsova X, Dodueva I, Afonin A, Gribchenko E, Danilov L, Gancheva M, Tvorogova V, Galynin N, Lutova L. Whole-Genome Sequencing and Analysis of Tumour-Forming Radish ( Raphanus sativus L.) Line. Int J Mol Sci 2024; 25:6236. [PMID: 38892425 PMCID: PMC11172632 DOI: 10.3390/ijms25116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Spontaneous tumour formation in higher plants can occur in the absence of pathogen invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of two closely related radish inbred lines that differ in their ability to spontaneously form tumours. We identified a large number of single nucleotide variants (amino acid substitutions, insertions or deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity, gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a result, identified two unique radish CLE genes which probably encode proteins with multiple CLE domains. The results obtained provide a basis for investigating the mechanisms of plant tumour formation and also for future genetic and genomic studies of radish.
Collapse
Affiliation(s)
- Xenia Kuznetsova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Irina Dodueva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Emma Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Lavrentii Danilov
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Maria Gancheva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Varvara Tvorogova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| | - Nikita Galynin
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
7
|
Gentile D, Serino G, Frugis G. CRF transcription factors in the trade-off between abiotic stress response and plant developmental processes. Front Genet 2024; 15:1377204. [PMID: 38694876 PMCID: PMC11062136 DOI: 10.3389/fgene.2024.1377204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Climate change-induced environmental stress significantly affects crop yield and quality. In response to environmental stressors, plants use defence mechanisms and growth suppression, creating a resource trade-off between the stress response and development. Although stress-responsive genes have been widely engineered to enhance crop stress tolerance, there is still limited understanding of the interplay between stress signalling and plant growth, a research topic that can provide promising targets for crop genetic improvement. This review focuses on Cytokinin Response Factors (CRFs) transcription factor's role in the balance between abiotic stress adaptation and sustained growth. CRFs, known for their involvement in cytokinin signalling and abiotic stress responses, emerge as potential targets for delaying senescence and mitigating yield penalties under abiotic stress conditions. Understanding the molecular mechanisms regulated by CRFs paves the way for decoupling stress responses from growth inhibition, thus allowing the development of crops that can adapt to abiotic stress without compromising development. This review highlights the importance of unravelling CRF-mediated pathways to address the growing need for resilient crops in the face of evolving climatic conditions.
Collapse
Affiliation(s)
- Davide Gentile
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Serino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
| |
Collapse
|
8
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
9
|
Fu X, Xin Y, Shen G, Luo K, Xu C, Wu N. A cytokinin response factor PtCRF1 is involved in the regulation of wood formation in poplar. TREE PHYSIOLOGY 2024; 44:tpad156. [PMID: 38123505 DOI: 10.1093/treephys/tpad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Wood formation is a complex developmental process under the control of multiple levels of regulatory transcriptional network and hormone signals in trees. It is well known that cytokinin (CK) signaling plays an important role in maintaining the activity of the vascular cambium. The CK response factors (CRFs) encoding a subgroup of AP2 transcription factors have been identified to mediate the CK-dependent regulation in different plant developmental processes. However, the functions of CRFs in wood development remain unclear. Here, we characterized the function of PtCRF1, a CRF transcription factor isolated from poplar, in the process of wood formation. The PtCRF1 is preferentially expressed in secondary vasculature, especially in vascular cambium and secondary phloem, and encodes a transcriptional activator. Overexpression of PtCRF1 in transgenic poplar plants led to a significant reduction in the cell layer number of vascular cambium. The development of wood tissue was largely promoted in the PtCRF1-overexpressing lines, while it was significantly compromised in the CRISPR/Cas9-generated double mutant plants of PtCRF1 and its closest homolog PtCRF2. The RNA sequencing (RNA-seq) and quantitative reverse transcription PCR (RT-qPCR) analyses showed that PtCRF1 repressed the expression of the typical CK-responsive genes. Furthermore, bimolecular fluorescence complementation assays revealed that PtCRF1 competitively inhibits the direct interactions between histidine phosphotransfer proteins and type-B response regulator by binding to PtHP protein. Collectively, these results indicate that PtCRF1 negatively regulates CK signaling and is required for woody cell differentiation in poplar.
Collapse
Affiliation(s)
- Xiaokang Fu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yufeng Xin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Gui Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Nengbiao Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Liao C, Shen H, Gao Z, Wang Y, Zhu Z, Xie Q, Wu T, Chen G, Hu Z. Overexpression of SlCRF6 in tomato inhibits leaf development and affects plant morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111921. [PMID: 37949361 DOI: 10.1016/j.plantsci.2023.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Cytokinin response factors (CRFs) are transcription factors (TFs) that are specific to plants and have diverse functions in plant growth and stress responses. However, the precise roles of CRFs in regulating tomato plant architecture and leaf development have not been comprehensively investigated. Here, we identified a novel CRF, SlCRF6, which is involved in the regulation of plant growth via the gibberellin (GA) signaling pathway. SlCRF6-overexpressing (SlCRF6-OE) plants displayed pleiotropic phenotypic changes, including reduced internode length and leaf size, which caused dwarfism in tomato plants. This dwarfism could be alleviated by application of exogenous GA3. Remarkably, quantitative real-time PCR (qRTPCR), a dual luciferase reporter assay and a yeast one-hybrid (Y1H) assay revealed that SlCRF6 promoted the expression of SlDELLA (a GA signal transduction inhibitor) in vivo. Furthermore, transgenic plants displayed variegated leaves and diminished chlorophyll content, resulting in decreased photosynthetic efficiency and less starch than in wild-type (WT) plants. The results of transient expression assays and Y1H assays indicated that SlCRF6 suppressed the expression of SlPHAN (leaf morphology-related gene). Collectively, these findings suggest that SlCRF6 plays a crucial role in regulating tomato plant morphology, leaf development, and the accumulation of photosynthetic products.
Collapse
Affiliation(s)
- Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
11
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
12
|
Zhao XW, Wang Q, Wang D, Guo W, Hu MX, Liu YL, Zhou GK, Chai GH, Zhao ST, Lu MZ. PagERF81 regulates lignin biosynthesis and xylem cell differentiation in poplar. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1134-1146. [PMID: 36647609 DOI: 10.1111/jipb.13453] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/15/2023] [Indexed: 05/13/2023]
Abstract
Lignin is a major component of plant cell walls and is essential for plant growth and development. Lignin biosynthesis is controlled by a hierarchical regulatory network involving multiple transcription factors. In this study, we showed that the gene encoding an APETALA 2/ethylene-responsive element binding factor (AP2/ERF) transcription factor, PagERF81, from poplar 84 K (Populus alba × P. glandulosa) is highly expressed in expanding secondary xylem cells. Two independent homozygous Pagerf81 mutant lines created by gene editing, produced significantly more but smaller vessel cells and longer fiber cells with more lignin in cell walls, while PagERF81 overexpression lines had less lignin, compared to non-transgenic controls. Transcriptome and reverse transcription quantitative PCR data revealed that multiple lignin biosynthesis genes including Cinnamoyl CoA reductase 1 (PagCCR1), Cinnamyl alcohol dehydrogenase 6 (PagCAD6), and 4-Coumarate-CoA ligase-like 9 (Pag4CLL9) were up-regulated in Pagerf81 mutants, but down-regulated in PagERF81 overexpression lines. In addition, a transient transactivation assay revealed that PagERF81 repressed the transcription of these three genes. Furthermore, yeast one hybrid and electrophoretic mobility shift assays showed that PagERF81 directly bound to a GCC sequence in the PagCCR1 promoter. No known vessel or fiber cell differentiation related genes were differentially expressed, so the smaller vessel cells and longer fiber cells observed in the Pagerf81 lines might be caused by abnormal lignin deposition in the secondary cell walls. This study provides insight into the regulation of lignin biosynthesis, and a molecular tool to engineer wood with high lignin content, which would contribute to the lignin-related chemical industry and carbon sequestration.
Collapse
Affiliation(s)
- Xin-Wei Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiao Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, 271000, China
| | - Meng-Xuan Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gong-Ke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guo-Hua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
13
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
14
|
Ferraz MVF, Neto JCS, Lins RD, Teixeira ES. An artificial neural network model to predict structure-based protein-protein free energy of binding from Rosetta-calculated properties. Phys Chem Chem Phys 2023; 25:7257-7267. [PMID: 36810523 DOI: 10.1039/d2cp05644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The prediction of the free energy (ΔG) of binding for protein-protein complexes is of general scientific interest as it has a variety of applications in the fields of molecular and chemical biology, materials science, and biotechnology. Despite its centrality in understanding protein association phenomena and protein engineering, the ΔG of binding is a daunting quantity to obtain theoretically. In this work, we devise a novel Artificial Neural Network (ANN) model to predict the ΔG of binding for a given three-dimensional structure of a protein-protein complex with Rosetta-calculated properties. Our model was tested using two data sets, and it presented a root-mean-square error ranging from 1.67 kcal mol-1 to 2.45 kcal mol-1, showing a better performance compared to the available state-of-the-art tools. Validation of the model for a variety of protein-protein complexes is showcased.
Collapse
Affiliation(s)
- Matheus V F Ferraz
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, FIOCRUZ, Recife, PE, Brazil.,Department of Fundamental Chemistry, Federal University of Pernambuco, UFPE, Recife, PE, Brazil.,Heidelberg Institute for Theoretical Studies, HITS, Heidelberg, Germany
| | - José C S Neto
- Recife Center for Advanced Studies and Systems, CESAR, Recife, PE, Brazil.
| | - Roberto D Lins
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, FIOCRUZ, Recife, PE, Brazil.,Department of Fundamental Chemistry, Federal University of Pernambuco, UFPE, Recife, PE, Brazil
| | - Erico S Teixeira
- Recife Center for Advanced Studies and Systems, CESAR, Recife, PE, Brazil.
| |
Collapse
|
15
|
Swinka C, Hellmann E, Zwack P, Banda R, Rashotte AM, Heyl A. Cytokinin Response Factor 9 Represses Cytokinin Responses in Flower Development. Int J Mol Sci 2023; 24:4380. [PMID: 36901811 PMCID: PMC10002603 DOI: 10.3390/ijms24054380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A multi-step phosphorelay system is the main conduit of cytokinin signal transduction. However, several groups of additional factors that also play a role in this signaling pathway have been found-among them the Cytokinin Response Factors (CRFs). In a genetic screen, CRF9 was identified as a regulator of the transcriptional cytokinin response. It is mainly expressed in flowers. Mutational analysis indicates that CRF9 plays a role in the transition from vegetative to reproductive growth and silique development. The CRF9 protein is localized in the nucleus and functions as a transcriptional repressor of Arabidopsis Response Regulator 6 (ARR6)-a primary response gene for cytokinin signaling. The experimental data suggest that CRF9 functions as a repressor of cytokinin during reproductive development.
Collapse
Affiliation(s)
- Christine Swinka
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Eva Hellmann
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Paul Zwack
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Ramya Banda
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Alexander Heyl
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| |
Collapse
|
16
|
Guo Z, He L, Sun X, Li C, Su J, Zhou H, Liu X. Genome-Wide Analysis of the Rhododendron AP2/ERF Gene Family: Identification and Expression Profiles in Response to Cold, Salt and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:994. [PMID: 36903855 PMCID: PMC10005251 DOI: 10.3390/plants12050994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The AP2/ERF gene family is one of the most conserved and important transcription factor families mainly occurring in plants with various functions in regulating plant biological and physiological processes. However, little comprehensive research has been conducted on the AP2/ERF gene family in Rhododendron (specifically, Rhododendron simsii), an important ornamental plant. The existing whole-genome sequence of Rhododendron provided data to investigate the AP2/ERF genes in Rhododendron on a genome-wide scale. A total of 120 Rhododendron AP2/ERF genes were identified. The phylogenetic analysis showed that RsAP2 genes were classified into five main subfamilies, AP2, ERF, DREB, RAV and soloist. Cis-acting elements involving plant growth regulators, response to abiotic stress and MYB binding sites were detected in the upstream sequences of RsAP2 genes. A heatmap of RsAP2 gene expression levels showed that these genes had different expression patterns in the five developmental stages of Rhododendron flowers. Twenty RsAP2 genes were selected for quantitative RT-PCR experiments to clarify the expression level changes under cold, salt and drought stress treatments, and the results showed that most of the RsAP2 genes responded to these abiotic stresses. This study generated comprehensive information on the RsAP2 gene family and provides a theoretical basis for future genetic improvement.
Collapse
Affiliation(s)
- Zhenhao Guo
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Lisi He
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaobo Sun
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chang Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jiale Su
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Huimin Zhou
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaoqing Liu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
17
|
Xu Z, Wang R, Kong K, Begum N, Almakas A, Liu J, Li H, Liu B, Zhao T, Zhao T. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:983650. [PMID: 36147224 PMCID: PMC9485679 DOI: 10.3389/fpls.2022.983650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Plant height is one of the key agronomic traits affecting soybean yield. The cytokinin response factors (CRFs), as a branch of the APETALA2/ethylene responsive factor (AP2/ERF) super gene family, have been reported to play important roles in regulating plant growth and development. However, their functions in soybean remain unknown. This study characterized a soybean CRF gene named GmCRF4a by comparing the performance of the homozygous Gmcrf4a-1 mutant, GmCRF4a overexpression (OX) and co-silencing (CS) lines. Phenotypic analysis showed that overexpression of GmCRF4a resulted in taller hypocotyls and epicotyls, more main stem nodes, and higher plant height. While down-regulation of GmCRF4a conferred shorter hypocotyls and epicotyls, as well as a reduction in plant height. The histological analysis results demonstrated that GmCRF4a promotes epicotyl elongation primarily by increasing cell length. Furthermore, GmCRF4a is required for the expression of GmYUCs genes to elevate endogenous auxin levels, which may subsequently enhance stem elongation. Taken together, these observations describe a novel regulatory mechanism in soybean, and provide the basis for elucidating the function of GmCRF4a in auxin biosynthesis pathway and plant heigh regulation in plants.
Collapse
Affiliation(s)
- Zhiyong Xu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruikai Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Bozbuga R. Molecular analysis of nematode-responsive defence genes CRF1, WRKY45, and PR7 in Solanum lycopersicum tissues during the infection of plant-parasitic nematode species of the genus Meloidogyne. Genome 2022; 65:265-275. [PMID: 35112924 DOI: 10.1139/gen-2021-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several pathogens, including nematodes, have severe effects on plant development and growth, and immense populations of parasitic nematodes may cause plant death and crop loss. Obligate plant-parasitic nematodes and root-knot nematodes belonging to the genus Meloidogyne are significant parasites in crops. During nematode infection, damage-associated molecular patterns play a role in the activation of plant defence responses to pathogens. Several genes are involved in Meloidogyne parasitism. However, the expression of nematode-responsive genes CRF1, WRKY45, and PR7 during infection with different parasitic nematode species is not well understood. Therefore, this study aimed to reveal plant responses to differential gene expression of nematode-responsive genes in tomato plants, and their relationship to nematode reproduction and comparative phylogeny. Molecular methods for gene expression, greenhouse work for nematode reproduction, and phylogenetic analysis were used to determine nematode-plant interactions. The results revealed that differential gene expression of CRF1, WRKY45, and PR7 depended on the nematode species. The relative CRF1 gene expression reached its highest level at 3 dpi, following nematode infection. In conclusion, plant defense responses disturbed the expression of nematode-responsive genes, and the differential expression of nematode-responsive genes was affected by nematode species and nematode parasitism.
Collapse
Affiliation(s)
- Refik Bozbuga
- Faculty of Agriculture, Department of Plant Protection, Eskisehir Osmangazi University, 26160, Eskisehir, Turkey.,Faculty of Agriculture, Department of Plant Protection, Eskisehir Osmangazi University, 26160, Eskisehir, Turkey
| |
Collapse
|
19
|
Seyfferth C, Wessels BA, Vahala J, Kangasjärvi J, Delhomme N, Hvidsten TR, Tuominen H, Lundberg-Felten J. PopulusPtERF85 Balances Xylem Cell Expansion and Secondary Cell Wall Formation in Hybrid Aspen. Cells 2021; 10:cells10081971. [PMID: 34440740 PMCID: PMC8393460 DOI: 10.3390/cells10081971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition.
Collapse
Affiliation(s)
- Carolin Seyfferth
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden; (C.S.); (B.A.W.); (T.R.H.)
| | - Bernard A. Wessels
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden; (C.S.); (B.A.W.); (T.R.H.)
| | - Jorma Vahala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland; (J.V.); (J.K.)
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland; (J.V.); (J.K.)
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90184 Umeå, Sweden; (N.D.); (H.T.)
| | - Torgeir R. Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden; (C.S.); (B.A.W.); (T.R.H.)
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90184 Umeå, Sweden; (N.D.); (H.T.)
| | - Judith Lundberg-Felten
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90184 Umeå, Sweden; (N.D.); (H.T.)
- Correspondence:
| |
Collapse
|
20
|
Leuendorf JE, Schmülling T. Meeting at the DNA: Specifying Cytokinin Responses through Transcription Factor Complex Formation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071458. [PMID: 34371661 PMCID: PMC8309282 DOI: 10.3390/plants10071458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Cytokinin is a plant hormone regulating numerous biological processes. Its diverse functions are realized through the expression control of specific target genes. The transcription of the immediate early cytokinin target genes is regulated by type-B response regulator proteins (RRBs), which are transcription factors (TFs) of the Myb family. RRB activity is controlled by phosphorylation and protein degradation. Here, we focus on another step of regulation, the interaction of RRBs among each other or with other TFs to form active or repressive TF complexes. Several examples in Arabidopsis thaliana illustrate that RRBs form homodimers or complexes with other TFs to specify the cytokinin response. This increases the variability of the output response and provides opportunities of crosstalk between the cytokinin signaling pathway and other cellular signaling pathways. We propose that a targeted approach is required to uncover the full extent and impact of RRB interaction with other TFs.
Collapse
|
21
|
Capador-Barreto HD, Bernhardsson C, Milesi P, Vos I, Lundén K, Wu HX, Karlsson B, Ingvarsson PK, Stenlid J, Elfstrand M. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol Ecol 2021; 30:4433-4447. [PMID: 34218489 DOI: 10.1111/mec.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.
Collapse
Affiliation(s)
- Hernán D Capador-Barreto
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Vos
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Pär K Ingvarsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
22
|
Hughes AM, Hallmark HT, Plačková L, Novák O, Rashotte AM. Clade III cytokinin response factors share common roles in response to oxidative stress responses linked to cytokinin synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3294-3306. [PMID: 33617640 DOI: 10.1093/jxb/erab076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Cytokinin response factors (CRFs) are transcription factors that are involved in cytokinin (CK) response, as well as being linked to abiotic stress tolerance. In particular, oxidative stress responses are activated by Clade III CRF members, such as AtCRF6. Here we explored the relationships between Clade III CRFs and oxidative stress. Transcriptomic responses to oxidative stress were determined in two Clade III transcription factors, Arabidopsis AtCRF5 and tomato SlCRF5. AtCRF5 was required for regulated expression of >240 genes that are involved in oxidative stress response. Similarly, SlCRF5 was involved in the regulated expression of nearly 420 oxidative stress response genes. Similarities in gene regulation by these Clade III members in response to oxidative stress were observed between Arabidopsis and tomato, as indicated by Gene Ontology term enrichment. CK levels were also changed in response to oxidative stress in both species. These changes were regulated by Clade III CRFs. Taken together, these findings suggest that Clade III CRFs play a role in oxidative stress response as well as having roles in CK signaling.
Collapse
Affiliation(s)
- Ariel M Hughes
- Department of Biological Sciences, Auburn University, Auburn AL 36849, USA
| | - H Tucker Hallmark
- Department of Biological Sciences, Auburn University, Auburn AL 36849, USA
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Aaron M Rashotte
- Department of Biological Sciences, Auburn University, Auburn AL 36849, USA
| |
Collapse
|
23
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|
24
|
Rashotte AM. The evolution of cytokinin signaling and its role in development before Angiosperms. Semin Cell Dev Biol 2021; 109:31-38. [DOI: 10.1016/j.semcdb.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
|
25
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
26
|
Avni A, Golan Y, Shirron N, Shamai Y, Golumbic Y, Danin-Poleg Y, Gepstein S. From Survival to Productivity Mode: Cytokinins Allow Avoiding the Avoidance Strategy Under Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:879. [PMID: 32714345 PMCID: PMC7343901 DOI: 10.3389/fpls.2020.00879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Growth retardation and stress-induced premature plant senescence are accompanied by a severe yield reduction and raise a major agro-economic concern. To improve biomass and yield in agricultural crops under mild stress conditions, the survival must be changed to productivity mode. Our previous successful attempts to delay premature senescence and growth inhibition under abiotic stress conditions by autoregulation of cytokinins (CKs) levels constitute a generic technology toward the development of highly productive plants. Since this technology is based on the induction of CKs synthesis during the age-dependent senescence phase by a senescence-specific promoter (SARK), which is not necessarily regulated by abiotic stress conditions, we developed autoregulating transgenic plants expressing the IPT gene specifically under abiotic stress conditions. The Arabidopsis promoter of the stress-induced metallothionein gene (AtMT) was isolated, fused to the IPT gene and transformed into tobacco plants. The MT:IPT transgenic tobacco plants displayed comparable elevated biomass productivity and maintained growth under drought conditions. To decipher the role and the molecular mechanisms of CKs in reverting the survival transcriptional program to a sustainable plant growth program, we performed gene expression analysis of candidate stress-related genes and found unexpectedly clear downregulation in the CK-overproducing plants. We also investigated kinase activity after applying exogenous CKs to tobacco cell suspensions that were grown in salinity stress. In-gel kinase activity analysis demonstrated CK-dependent deactivation of several stress-related kinases including two of the MAPK components, SIPK and WIPK and the NtOSAK, a member of SnRK2 kinase family, a key component of the ABA signaling cascade. A comprehensive phosphoproteomics analysis of tobacco cells, treated with exogenous CKs under salinity-stress conditions indicated that >50% of the identified phosphoproteins involved in stress responses were dephosphorylated by CKs. We hypothesize that upregulation of CK levels under stress conditions desensitize stress signaling cues through deactivation of kinases that are normally activated under stress conditions. CK-dependent desensitization of environmental stimuli is suggested to attenuate various pathways of the avoidance syndrome including the characteristic growth arrest and the premature senescence while allowing normal growth and metabolic maintenance.
Collapse
Affiliation(s)
- Avishai Avni
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Golan
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Natali Shirron
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yeela Shamai
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yaela Golumbic
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yael Danin-Poleg
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Shimon Gepstein
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
- Kinneret Academic College, Sea of Galilee, Israel
| |
Collapse
|
27
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
28
|
Sun X, Malhis N, Zhao B, Xue B, Gsponer J, Rikkerink EHA. Computational Disorder Analysis in Ethylene Response Factors Uncovers Binding Motifs Critical to Their Diverse Functions. Int J Mol Sci 2019; 21:ijms21010074. [PMID: 31861935 PMCID: PMC6981732 DOI: 10.3390/ijms21010074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
APETALA2/ETHYLENE RESPONSE FACTOR transcription factors (AP2/ERFs) play crucial roles in adaptation to stresses such as those caused by pathogens, wounding and cold. Although their name suggests a specific role in ethylene signalling, some ERF members also co-ordinate signals regulated by other key plant stress hormones such as jasmonate, abscisic acid and salicylate. We analysed a set of ERF proteins from three divergent plant species for intrinsically disorder regions containing conserved segments involved in protein–protein interaction known as Molecular Recognition Features (MoRFs). Then we correlated the MoRFs identified with a number of known functional features where these could be identified. Our analyses suggest that MoRFs, with plasticity in their disordered surroundings, are highly functional and may have been shuffled between related protein families driven by selection. A particularly important role may be played by the alpha helical component of the structured DNA binding domain to permit specificity. We also present examples of computationally identified MoRFs that have no known function and provide a valuable conceptual framework to link both disordered and ordered structural features within this family to diverse function.
Collapse
Affiliation(s)
- Xiaolin Sun
- The New Zealand Institute for Plant & Food Research Ltd., 120 Mt. Albert Rd, Private Bag 92169, 1025 Auckland, New Zealand;
| | - Nawar Malhis
- Michael Smith Laboratories—Centre for High-Throughput Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (N.M.); (J.G.)
| | - Bi Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA; (B.Z.); (B.X.)
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA; (B.Z.); (B.X.)
| | - Joerg Gsponer
- Michael Smith Laboratories—Centre for High-Throughput Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (N.M.); (J.G.)
| | - Erik H. A. Rikkerink
- The New Zealand Institute for Plant & Food Research Ltd., 120 Mt. Albert Rd, Private Bag 92169, 1025 Auckland, New Zealand;
- Correspondence: ; Tel.: +64-9-925-7157
| |
Collapse
|
29
|
Héricourt F, Larcher M, Chefdor F, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Tanigawa M, Maeda T, Depierreux C, Lamblin F, Glévarec G, Carpin S. New Insight into HPts as Hubs in Poplar Cytokinin and Osmosensing Multistep Phosphorelays: Cytokinin Pathway Uses Specific HPts. PLANTS 2019; 8:plants8120591. [PMID: 31835814 PMCID: PMC6963366 DOI: 10.3390/plants8120591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.
Collapse
Affiliation(s)
- François Héricourt
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Mélanie Larcher
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Françoise Chefdor
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Konstantinos Koudounas
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Inês Carqueijeiro
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Pamela Lemos Cruz
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Vincent Courdavault
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Mirai Tanigawa
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Christiane Depierreux
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Frédéric Lamblin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Gaëlle Glévarec
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Sabine Carpin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
- Correspondence: ; Tel.: +33-2-3849-4804
| |
Collapse
|
30
|
Wang L, Ma H, Lin J. Angiosperm-Wide and Family-Level Analyses of AP2/ ERF Genes Reveal Differential Retention and Sequence Divergence After Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2019; 10:196. [PMID: 30863419 PMCID: PMC6399210 DOI: 10.3389/fpls.2019.00196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
Plants are immobile and often face stressful environmental conditions, prompting the evolution of genes regulating environmental responses. Such evolution is achieved largely through gene duplication and subsequent divergence. One of the most important gene families involved in regulating plant environmental responses and development is the AP2/ERF superfamily; however, the evolutionary history of these genes is unclear across angiosperms and in major angiosperm families adapted to various ecological niches. Specifically, the impact on gene copy number of whole-genome duplication events occurring around the time of the origins of several plant families is unknown. Here, we present the first angiosperm-wide comparative study of AP2/ERF genes, identifying 75 Angiosperm OrthoGroups (AOGs), each derived from an ancestral angiosperm gene copy. Among these AOGs, 21 retain duplicates with increased copy number in many angiosperm lineages, while the remaining 54 AOGs tend to maintain low copy number. Further analyses of multiple species in the Brassicaceae family indicated that family-specific duplicates experienced differential selective pressures in coding regions, with some paralogs showing signs of positive selection. Further, cis regulatory elements also exhibit extensive divergence between duplicates in Arabidopsis. Moreover, comparison of expression levels suggested that AP2/ERF genes with frequently retained duplicates are enriched for broad expression patterns, offering increased opportunities for functional diversification via changes in expression patterns, and providing a mechanism for repeated duplicate retention in some AOGs. Our results represent the most comprehensive evolutionary history of the AP2/ERF gene family, and support the hypothesis that AP2/ERF genes with broader expression patterns are more likely to be retained as duplicates than those with narrower expression profiles, which could lead to a higher chance of duplicate gene subfunctionalization. The greater tendency of some AOGs to retain duplicates, allowing expression and functional divergence, may facilitate the evolution of complex signaling networks in response to new environmental conditions.
Collapse
Affiliation(s)
- Linbo Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Juan Lin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Chefdor F, Héricourt F, Koudounas K, Carqueijeiro I, Courdavault V, Mascagni F, Bertheau L, Larcher M, Depierreux C, Lamblin F, Racchi ML, Carpin S. Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:68-78. [PMID: 30466602 DOI: 10.1016/j.plantsci.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP.
Collapse
Affiliation(s)
- F Chefdor
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - F Mascagni
- Università di Pisa, Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Via del Borghetto 80, 56124 Pisa, Italy
| | - L Bertheau
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M L Racchi
- Scienze delle Produzioni Agroalimentari e dell'Ambiente, sezione di Genetica agraria, via Maragliano, 75 50144 Firenze, Italy
| | - S Carpin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France.
| |
Collapse
|
32
|
Wang L, Liu L, Ma Y, Li S, Dong S, Zu W. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Comput Biol Chem 2018; 77:413-429. [PMID: 30476702 DOI: 10.1016/j.compbiolchem.2018.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
Abstract
Heat and drought are the two major abiotic stress limiting soybean growth and output worldwide. Knowledge of the molecular mechanisms underlying the responses to heat, drought, and combined stress is essential for soybean molecular breeding. In this study, RNA-sequencing was used to determine the transcriptional responses of soybean to heat, drought and combined stress. RNA-sequencing analysis demonstrated that many genes involved in the defense response, photosynthesis, metabolic process, etc. are differentially expressed in response to drought and heat. However, 1468 and 1220 up-regulated and 1146 and 686 down-regulated genes were confirmed as overlapping differentially expressed genes at 8 h and 24 h after treatment, and these genes are mainly involved in transport, binding and defense response. Furthermore, we compared the heat, drought and the combined stress-responsive genes and identified potential new targets for enhancing stress tolerance of soybean. Comparison of single and combined stress suggests the combined stress did not result in a simple additive response, and that there may be a synergistic response to the combination of drought and heat in soybean.
Collapse
Affiliation(s)
- Libin Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Lijun Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuling Ma
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Zu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
33
|
Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF, Lopez-Diaz I, Alonso JM, Perez-Amador MA. Gibberellins negatively modulate ovule number in plants. Development 2018; 145:dev163865. [PMID: 29914969 PMCID: PMC6053663 DOI: 10.1242/dev.163865] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023]
Abstract
Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed.
Collapse
Affiliation(s)
- Maria D Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Ernesto Escoms
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Maite Saura-Sánchez
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1417DSE, Argentina
| | - Ines Sánchez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Isabel Lopez-Diaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - José M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Miguel A Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| |
Collapse
|
34
|
Daudu D, Allion E, Liesecke F, Papon N, Courdavault V, Dugé de Bernonville T, Mélin C, Oudin A, Clastre M, Lanoue A, Courtois M, Pichon O, Giron D, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1614. [PMID: 28979279 PMCID: PMC5611679 DOI: 10.3389/fpls.2017.01614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 05/07/2023]
Abstract
Cytokinin signaling is a key regulatory pathway of many aspects in plant development and environmental stresses. Herein, we initiated the identification and functional characterization of the five CHASE-containing histidine kinases (CHK) in the economically important Malus domestica species. These cytokinin receptors named MdCHK2, MdCHK3a/MdCHK3b, and MdCHK4a/MdCHK4b by homology with Arabidopsis AHK clearly displayed three distinct profiles. The three groups exhibited architectural variations, especially in the N-terminal part including the cytokinin sensing domain. Using a yeast complementation assay, we showed that MdCHK2 perceives a broad spectrum of cytokinins with a substantial sensitivity whereas both MdCHK4 homologs exhibit a narrow spectrum. Both MdCHK3 homologs perceived some cytokinins but surprisingly they exhibited a basal constitutive activity. Interaction studies revealed that MdCHK2, MdCHK4a, and MdCHK4b homodimerized whereas MdCHK3a and MdCHK3b did not. Finally, qPCR analysis and bioinformatics approach pointed out contrasted expression patterns among the three MdCHK groups as well as distinct sets of co-expressed genes. Our study characterized for the first time the five cytokinin receptors in apple tree and provided a framework for their further functional studies.
Collapse
Affiliation(s)
- Dimitri Daudu
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Elsa Allion
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Franziska Liesecke
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Nicolas Papon
- EA 3142 Groupe d’Etude des Interactions Hôte-Pathogène, Université AngersAngers, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | | | - Céline Mélin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Martine Courtois
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Olivier Pichon
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - David Giron
- UMR 7261 Institut de Recherche sur la Biologie de l’Insecte, Centre National de la Recherche Scientifique (CNRS), Université François-RabelaisTours, France
| | - Sabine Carpin
- EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’OrléansOrléans, France
| | | | - Joël Crèche
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Gaëlle Glévarec
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| |
Collapse
|
35
|
Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA. The evening complex coordinates environmental and endogenous signals in Arabidopsis. NATURE PLANTS 2017; 3:17087. [PMID: 28650433 PMCID: PMC5495178 DOI: 10.1038/nplants.2017.87] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Plants maximize their fitness by adjusting their growth and development in response to signals such as light and temperature. The circadian clock provides a mechanism for plants to anticipate events such as sunrise and adjust their transcriptional programmes. However, the underlying mechanisms by which plants coordinate environmental signals with endogenous pathways are not fully understood. Using RNA-sequencing and chromatin immunoprecipitation sequencing experiments, we show that the evening complex (EC) of the circadian clock plays a major role in directly coordinating the expression of hundreds of key regulators of photosynthesis, the circadian clock, phytohormone signalling, growth and response to the environment. We find that the ability of the EC to bind targets genome-wide depends on temperature. In addition, co-occurrence of phytochrome B (phyB) at multiple sites where the EC is bound provides a mechanism for integrating environmental information. Hence, our results show that the EC plays a central role in coordinating endogenous and environmental signals in Arabidopsis.
Collapse
Affiliation(s)
- Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Hui Lan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Surojit Biswas
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Laura Gregoire
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Mathew S. Box
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) center, Mahidol University, Bangkok 10400, Thailand
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Xuelei Lai
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Dorothee Stöckle
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Chloe Zubieta
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Katja E. Jaeger
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Philip A. Wigge
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Correspondence to:
| |
Collapse
|
36
|
Hellmann E, Swinka C, Heyl A. Novel in vivo screening design for the rapid and cost-effective identification of transcriptional regulators. PHYSIOLOGIA PLANTARUM 2017; 160:2-10. [PMID: 28116793 DOI: 10.1111/ppl.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Genetic screens are a common tool to identify new modulators in a defined context, e.g. hormonal response or environmental stress. However, most screens are either in vitro or laborious and time-and-space inefficient. Here we present a novel in planta screening approach that shortens the time from the actual screening process to the identification of a new modulator and simultaneously reduces space requirements and costs. The basic features of this screening approach are the creation of luciferase reporter plants which enable a non-invasive readout in a streamlined multiplate reader process, the transformation of those plants with an inducible, Gateway™-compatible expression vector, and a screening setup, in which whole plants at the seedling stage are screened in 96-multiwell plates in the first transformed generation without the use of an expensive charge-coupled device (CCD) camera system. The screening itself and the verification of candidates can be done in as little as 2-3 weeks. The screen enables the analysis of reporter gene activity upon different treatments. Primary positive plants can immediately be selected and grown further. In this study a fast, simple, cost- and space-efficient in planta screening system to detect novel mediators of a given transcriptional response was developed and successfully tested using the cytokinin signal transduction as a test case.
Collapse
Affiliation(s)
- Eva Hellmann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, 14195, Germany
| | - Christine Swinka
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, 14195, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, 14195, Germany
- Biology Department, Adelphi University, Garden City, NY, 11530-070, US
| |
Collapse
|
37
|
Striberny B, Melton AE, Schwacke R, Krause K, Fischer K, Goertzen LR, Rashotte AM. Cytokinin Response Factor 5 has transcriptional activity governed by its C-terminal domain. PLANT SIGNALING & BEHAVIOR 2017; 12:e1276684. [PMID: 28045578 PMCID: PMC5351726 DOI: 10.1080/15592324.2016.1276684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 05/26/2023]
Abstract
Cytokinin Response Factors (CRFs) are AP2/ERF transcription factors involved in cytokinin signal transduction. CRF proteins consist of a N-terminal dimerization domain (CRF domain), an AP2 DNA-binding domain, and a clade-specific C-terminal region of unknown function. Using a series of sequential deletions in yeast-2-hybrid assays, we provide evidence that the C-terminal region of Arabidopsis CRF5 can confer transactivation activity. Although comparative analyses identified evolutionarily conserved protein sequence within the C-terminal region, deletion experiments suggest that this transactivation domain has a partially redundant modular structure required for activation of target gene transcription.
Collapse
Affiliation(s)
- Bernd Striberny
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
- ArcticZymes AS, Sykehusveien, Tromsø, Norway
| | - Anthony E. Melton
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Rainer Schwacke
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway in Tromsø, Dramsvegen, Tromsø, Norway
| | | | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
38
|
Kim J. CYTOKININ RESPONSE FACTORs Gating Environmental Signals and Hormones. TRENDS IN PLANT SCIENCE 2016; 21:993-996. [PMID: 27773669 DOI: 10.1016/j.tplants.2016.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
CYTOKININ RESPONSE FACTORs (CRFs) encode transcription factors belonging to a small family within the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) superfamily. Recent studies have revealed the biological functions of some arabidopsis CRFs, providing insight into the role of these plant transcription factors in integrating environmental and hormonal signals for plant adaptation.
Collapse
Affiliation(s)
- Jungmook Kim
- Chonnam National University, Bioenergy Science and Technology, 77 Yongbongro, Buk-gu, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
39
|
The ERF transcription factor family in cassava: genome-wide characterization and expression analyses against drought stress. Sci Rep 2016; 6:37379. [PMID: 27869212 PMCID: PMC5116755 DOI: 10.1038/srep37379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Cassava (Manihot esculenta) shows strong tolerance to drought stress; however, the mechanisms underlying this tolerance are poorly understood. Ethylene response factor (ERF) family genes play a crucial role in plants responding to abiotic stress. Currently, less information is known regarding the ERF family in cassava. Herein, 147 ERF genes were characterized from cassava based on the complete genome data, which was further supported by phylogenetic relationship, gene structure, and conserved motif analyses. Transcriptome analysis suggested that most of the MeERF genes have similar expression profiles between W14 and Arg7 during organ development. Comparative expression profiles revealed that the function of MeERFs in drought tolerance may be differentiated in roots and leaves of different genotypes. W14 maintained strong tolerance by activating more MeERF genes in roots compared to Arg7 and SC124, whereas Arg7 and SC124 maintained drought tolerance by inducing more MeERF genes in leaves relative to W14. Expression analyses of the selected MeERF genes showed that most of them are significantly upregulated by osmotic and salt stresses, whereas slightly induced by cold stress. Taken together, this study identified candidate MeERF genes for genetic improvement of abiotic stress tolerance and provided new insights into ERF-mediated cassava tolerance to drought stress.
Collapse
|
40
|
Alberto D, Serra AA, Sulmon C, Gouesbet G, Couée I. Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1618-1628. [PMID: 27318518 DOI: 10.1016/j.scitotenv.2016.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 05/13/2023]
Abstract
Herbicide impact is usually assessed as the result of a unilinear mode of action on a specific biochemical target with a typical dose-response dynamics. Recent developments in plant molecular signaling and crosstalk between nutritional, hormonal and environmental stress cues are however revealing a more complex picture of inclusive toxicity. Herbicides induce large-scale metabolic and gene-expression effects that go far beyond the expected consequences of unilinear herbicide-target-damage mechanisms. Moreover, groundbreaking studies have revealed that herbicide action and responses strongly interact with hormone signaling pathways, with numerous regulatory protein-kinases and -phosphatases, with metabolic and circadian clock regulators and with oxidative stress signaling pathways. These interactions are likely to result in mechanisms of adjustment that can determine the level of sensitivity or tolerance to a given herbicide or to a mixture of herbicides depending on the environmental and developmental status of the plant. Such regulations can be described as rheostatic and their importance is discussed in relation with herbicide use strategies, environmental risk assessment and global change assessment challenges.
Collapse
Affiliation(s)
- Diana Alberto
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Anne-Antonella Serra
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Ivan Couée
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France.
| |
Collapse
|
41
|
Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Parish AM, Benkova E, Mukhtar MS, Van Breusegem F, Rashotte AM. Cytokinin Response Factor 6 Represses Cytokinin-Associated Genes during Oxidative Stress. PLANT PHYSIOLOGY 2016; 172:1249-1258. [PMID: 27550996 PMCID: PMC5047073 DOI: 10.1104/pp.16.00415] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/18/2016] [Indexed: 05/04/2023]
Abstract
Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H2O2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H2O2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6-dependent genes and establishes a novel connection between cytokinin and oxidative stress response.
Collapse
Affiliation(s)
- Paul J Zwack
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Inge De Clercq
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Timothy C Howton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - H Tucker Hallmark
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Andrej Hurny
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Erika A Keshishian
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Alyssa M Parish
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Eva Benkova
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - M Shahid Mukhtar
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Frank Van Breusegem
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| | - Aaron M Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 (P.J.Z., H.T.H., E.A.K., A.M.P., A.M.R.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Biology, University of Alabama, Birmingham, AL 35294 (T.C.H., M.S.M.); and Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria (A.H., E.B.)
| |
Collapse
|
42
|
Li Y, Zhang J, Zhao F, Ren H, Zhu L, Xi D, Lin H. The interaction between Turnip crinkle virus p38 and Cucumber mosaic virus 2b and its critical domains. Virus Res 2016; 222:94-105. [PMID: 27288723 DOI: 10.1016/j.virusres.2016.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
Cross protection is a common phenomenon among closely related strain viruses in co-infected plants. However, unrelated viruses, Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV), also show an antagonistic effect in co-infected Arabidopsis plants. In many cases, viral suppressors of RNA silencing (VSRs) have important roles in the interactions between viruses in mixed infections. CMV 2b and TCV p38 are multifunctional proteins and both of them are well characterized VSRs and have important roles in operation synergistic interactions with other viruses. Here, we demonstrated antagonistic effects of TCV toward CMV and showed that RNA silencing-mediated resistance protein, RCY1 and TCV-interacting protein (TIP) of Arabidopsis plants did not affect this antagonism effect. We further showed that TCV p38 and CMV 2b could interact with each other in vivo but not in vitro. Further mutational analysis showed that C-terminal of 2b and middle domains of p38 had more important roles in the interaction between the two viruses.
Collapse
Affiliation(s)
- Yanan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Jing Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Feifei Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Han Ren
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Lin Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Dehui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China.
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
43
|
Abstract
Cytokinin is an essential plant hormone that is involved in a wide range of plant growth and developmental processes which are controlled through its signalling pathway. Cytokinins are a class of molecules that are N(6)-substituted adenine derivatives, such as isopentenyl adenine, and trans- and cis-zeatin, which are common in most plants. The ability to perceive and respond to cytokinin occurs through a modified bacterial two-component pathway that functions via a multi-step phosphorelay. This cytokinin signalling process is a crucial part of almost all stages of plant life, from embryo patterning to apical meristem regulation, organ development and eventually senescence. The cytokinin signalling pathway involves the co-ordination of three types of proteins: histidine kinase receptors to perceive the signal, histidine phosphotransfer proteins to relay the signal, and response regulators to provide signal output. This pathway contains both positive and negative elements that function in a complex co-ordinated manner to control cytokinin-regulated plant responses. Although much is known about how this cytokinin signal is perceived and initially regulated, there are still many avenues that need to be explored before the role of cytokinin in the control of plant processes is fully understood.
Collapse
|
44
|
Hopper DW, Ghan R, Schlauch KA, Cramer GR. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. BMC PLANT BIOLOGY 2016; 16:118. [PMID: 27215785 PMCID: PMC4877820 DOI: 10.1186/s12870-016-0804-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/17/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Grapevine is a major food crop that is affected by global climate change. Consistent with field studies, dehydration assays of grapevine leaves can reveal valuable information of the plant's response at physiological, transcript, and protein levels. There are well-known differences in grapevine rootstocks responses to dehydration. We used time-series transcriptomic approaches combined with network analyses to elucidate and identify important physiological processes and network hubs that responded to dehydration in three different grapevine species differing in their drought tolerance. RESULTS Transcriptomic analyses of the leaves of Cabernet Sauvignon, Riparia Gloire, and Ramsey were evaluated at different times during a 24-h controlled dehydration. Analysis of variance (ANOVA) revealed that approximately 11,000 transcripts changed significantly with respect to the genotype x treatment interaction term and approximately 6000 transcripts changed significantly according to the genotype x treatment x time interaction term indicating massive differential changes in gene expression over time. Standard analyses determined substantial effects on the transcript abundance of genes involved in the metabolism and signaling of two known plant stress hormones, abscisic acid (ABA) and ethylene. ABA and ethylene signaling maps were constructed and revealed specific changes in transcript abundance that were associated with the known drought tolerance of the genotypes including genes such as VviABI5, VviABF2, VviACS2, and VviWRKY22. Weighted-gene coexpression network analysis (WGCNA) confirmed these results. In particular, WGCNA identified 30 different modules, some of which had highly enriched gene ontology (GO) categories for photosynthesis, phenylpropanoid metabolism, ABA and ethylene signaling. The ABA signaling transcription factors, VviABI5 and VviABF2, were highly connected hubs in two modules, one being enriched in gaseous transport and the other in ethylene signaling. VviABI5 was distinctly correlated with an early response and high expression for the drought tolerant Ramsey and with little response from the drought sensitive Riparia Gloire. These ABA signaling transcription factors were highly connected to VviSnRK1 and other gene hubs associated with sugar, ethylene and ABA signaling. CONCLUSION A leaf dehydration assay provided transcriptomic evidence for differential leaf responses to dehydration between genotypes differing in their drought tolerance. WGCNA proved to be a powerful network analysis approach; it identified 30 distinct modules (networks) with highly enriched GO categories and enabled the identification of gene hubs in these modules. Some of these genes were highly connected hubs in both the ABA and ethylene signaling pathways, supporting the hypothesis that there is substantial crosstalk between the two hormone pathways. This study identifies solid gene candidates for future investigations of drought tolerance in grapevine.
Collapse
Affiliation(s)
- Daniel W Hopper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
45
|
Walper E, Weiste C, Mueller MJ, Hamberg M, Dröge-Laser W. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins. PLoS One 2016; 11:e0153216. [PMID: 27073862 PMCID: PMC4830619 DOI: 10.1371/journal.pone.0153216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/27/2016] [Indexed: 11/29/2022] Open
Abstract
13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (ArabidopsisthalianaTranscription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins.
Collapse
Affiliation(s)
- Elisabeth Walper
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
- * E-mail:
| |
Collapse
|
46
|
Zürcher E, Müller B. Cytokinin Synthesis, Signaling, and Function--Advances and New Insights. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:1-38. [PMID: 27017005 DOI: 10.1016/bs.ircmb.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plant hormones referred to as cytokinins are chemical signals that control numerous developmental processes throughout the plant life cycle, including gametogenesis, root meristem specification, vascular development, shoot and root growth, meristem homeostasis, senescence, and more. In addition, they mediate responses to environmental cues such as light, stress, and nutrient conditions. The core mechanistics of cytokinin metabolism and signaling have been elucidated, but more layers of regulation, additional functions, and interactions with other signals are continuously discovered and described. In this chapter, we recapitulate the highlights of over 100 years of cytokinin research covering its isolation, the elucidation of phosphorelay signaling, and how cytokinin functions in various developmental contexts including its interaction with other pathways. Additionally, given cytokinin's paracrine signaling mechanism, we postulate that cellular exporters for cytokinins exist.
Collapse
Affiliation(s)
- E Zürcher
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland
| | - B Müller
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland.
| |
Collapse
|
47
|
Zwack PJ, Compton MA, Adams CI, Rashotte AM. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. PLANT CELL REPORTS 2016; 35:573-84. [PMID: 26650835 DOI: 10.1007/s00299-015-1904-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 05/19/2023]
Abstract
Cytokinin response factor 4 (CRF4) shows a short-term induction by cold (4 °C) that appears to play a role in non-acclimated freezing tolerance as seen in mutant and overexpression lines. Responses to abiotic stresses, such as cold stress, are critical to plant growth and optimal production. Examination of Arabidopsis cytokinin response factors (CRFs) showed transcriptional induction after exposure to cold (4 °C). In particular, CRF4 was strongly induced in both root and shoot tissues. As CRF4 is one of several CRFs not transcriptionally regulated by cytokinin, we further investigated its response to cold. Peak CRF4 induction occurred 6 h post cold exposure, after which expression was maintained at moderately elevated levels during extended cold and subsequent treatment recovery. Examination of CRF4 mutant and overexpression lines under standard (non-cold) conditions revealed little difference from WT. One exception was a small, but significant increase in primary root growth of overexpression plants (CRF4OX). Under cold conditions, the only phenotype observed was a reduction in the rate of germination of CRF4OX seeds. The pattern of CRF4 expression along with the lack of strong phenotype at 4 °C led us to hypothesize that cold induction of CRF4 could play a role in short-term cold acclimation leading to increased freeze tolerance. Examination of CRF4OX and crf4 plants exposed to freezing temperatures revealed mutants lacking expression of CRF4 were more sensitive to freezing, while CRF4OXs with increased levels CRF4 levels were more tolerant. Altered transcript expression of CBF and COR15a cold signaling pathway genes in crf4 mutant and overexpression lines suggest that CRF4 may be potentially connected to this pathway. Overall this indicates that CRF4 plays an important role in both cold response and freezing stress.
Collapse
Affiliation(s)
- Paul J Zwack
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL, 36849, USA
| | - Margaret A Compton
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL, 36849, USA
| | - Cami I Adams
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL, 36849, USA
| | - Aaron M Rashotte
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL, 36849, USA.
| |
Collapse
|
48
|
Chen L, Han J, Deng X, Tan S, Li L, Li L, Zhou J, Peng H, Yang G, He G, Zhang W. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon. Sci Rep 2016; 6:21623. [PMID: 26869021 PMCID: PMC4751504 DOI: 10.1038/srep21623] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/26/2016] [Indexed: 11/09/2022] Open
Abstract
APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plant, and play essential roles in growth, development and stress response. Except a few members, the AP2/EREBP family has not been characterized in Brachypodium distachyon, a model plant of Poaceae. We performed a genome-wide study of this family in B. distachyon by phylogenetic analyses, transactivation assays and transcript profiling. A total of 149 AP2/EREBP genes were identified and divided into four subfamilies, i.e., ERF (ethylene responsive factor), DREB (dehydration responsive element binding gene), RAV (related to ABI3/VP) and AP2. Tandem duplication was a major force in expanding B. distachyon AP2/EREBP (BdAP2/EREBP) family. Despite a significant expansion, genomic organizations of BdAP2/EREBPs were monotonous as the majority of them, except those of AP2 subfamily, had no intron. An analysis of transcription activities of several closely related and duplicated BdDREB genes showed their functional divergence and redundancy in evolution. The expression of BdAP2/EREBPs in different tissues and the expression of DREB/ERF subfamilies in B. distachyon, wheat and rice under abiotic stresses were investigated by next-generation sequencing and microarray profiling. Our results are valuable for further function analysis of stress tolerant AP2/EREBP genes in B. distachyon.
Collapse
Affiliation(s)
- Lihong Chen
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Jiapeng Han
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science &Technology (HUST), Wuhan 430074, China
| | - Xiaomin Deng
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan 430205, China
| | - Lili Li
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Lun Li
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Junfei Zhou
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Hai Peng
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science &Technology (HUST), Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science &Technology (HUST), Wuhan 430074, China
| | - Weixiong Zhang
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China.,Department of Computer Science and Engineering and Department of Genetics, Washington University, St. Louis, MO 36130, USA
| |
Collapse
|
49
|
Pekárová B, Szmitkowska A, Dopitová R, Degtjarik O, Žídek L, Hejátko J. Structural Aspects of Multistep Phosphorelay-Mediated Signaling in Plants. MOLECULAR PLANT 2016; 9:71-85. [PMID: 26633861 DOI: 10.1016/j.molp.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/16/2023]
Abstract
The multistep phosphorelay (MSP) is a central signaling pathway in plants integrating a wide spectrum of hormonal and environmental inputs and controlling numerous developmental adaptations. For the thorough comprehension of the molecular mechanisms underlying the MSP-mediated signal recognition and transduction, the detailed structural characterization of individual members of the pathway is critical. In this review we describe and discuss the recently known crystal and nuclear magnetic resonance structures of proteins acting in MSP signaling in higher plants, focusing particularly on cytokinin and ethylene signaling in Arabidopsis thaliana. We discuss the range of functional aspects of available structural information including determination of ligand specificity, activation of the receptor via its autophosphorylation, and downstream signal transduction through the phosphorelay. We compare the plant structures with their bacterial counterparts and show that although the overall similarity is high, the differences in structural details are frequent and functionally important. Finally, we discuss emerging knowledge on molecular recognition mechanisms in the MSP, and mention the latest findings regarding structural determinants of signaling specificity in the Arabidopsis MSP that could serve as a general model of this pathway in all higher plants.
Collapse
Affiliation(s)
- Blanka Pekárová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Agnieszka Szmitkowska
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radka Dopitová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Oksana Degtjarik
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Lukáš Žídek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Hejátko
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
50
|
Raines T, Shanks C, Cheng CY, McPherson D, Argueso CT, Kim HJ, Franco-Zorrilla JM, López-Vidriero I, Solano R, Vaňková R, Schaller GE, Kieber JJ. The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:134-47. [PMID: 26662515 DOI: 10.1111/tpj.13097] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 05/23/2023]
Abstract
The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.
Collapse
Affiliation(s)
- Tracy Raines
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Carly Shanks
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chia-Yi Cheng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Duncan McPherson
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cristiana T Argueso
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hyo J Kim
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - José M Franco-Zorrilla
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Irene López-Vidriero
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Roberto Solano
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Radomíra Vaňková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02, Prague, Czech Republic
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|