1
|
Ni Y, Xie K, Shi M, Shan H, Wu W, Wang W, Cheng B, Li X. Genome-Wide Identification of the PHR Gene Family in Six Cucurbitaceae Species and Its Expression Analysis in Cucurbita moschata. PLANTS (BASEL, SWITZERLAND) 2025; 14:1443. [PMID: 40431008 PMCID: PMC12115016 DOI: 10.3390/plants14101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Phosphorus, as an essential nutrient, plays an important role in plant growth and development. Although Phosphate Starvation Response 1 (PHR1) or PHR1-like have been recognized as central regulators of phosphorus (Pi) homeostasis in several plants, they have not been systematically studied in Cucurbitaceae. In this study, 11, 10, 8, 12, 12, and 22 PHR genes were identified in cucumber, melon, bottle gourd, watermelon, wax gourd, and pumpkin, respectively, by genome-wide analysis. Phylogenetic analysis showed that the Cucurbitaceae PHR genes were divided into seven distinct subfamilies. These genes were further phylogenetically analyzed for their chromosomal localization, gene structure, protein structure, and synteny. Genomic homology analysis showed that many PHR genes existed in the corresponding homology blocks of six Cucurbitaceae species. qRT-PCR analysis showed that the CmoPHR genes exhibited differential expression under different concentrations of phosphate treatment. Transcriptional self-activation assays showed that CmoPHR2, CmoPHR9, CmoPHR16, and CmoPHR17 proteins had transcriptional self-activating activity. The results of this study provide a basis for the further cloning and functional validation of genes related to the phosphate regulatory network in pumpkin.
Collapse
Affiliation(s)
- Ying Ni
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (Y.N.); (K.X.); (M.S.); (H.S.); (W.W.)
| | - Kailing Xie
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (Y.N.); (K.X.); (M.S.); (H.S.); (W.W.)
| | - Minghui Shi
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (Y.N.); (K.X.); (M.S.); (H.S.); (W.W.)
| | - Hanchen Shan
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (Y.N.); (K.X.); (M.S.); (H.S.); (W.W.)
| | - Wenxiang Wu
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (Y.N.); (K.X.); (M.S.); (H.S.); (W.W.)
| | - Weiwei Wang
- College of Biology and Food Engineering, Suzhou University, Suzhou 234000, China;
| | - Beijiu Cheng
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (Y.N.); (K.X.); (M.S.); (H.S.); (W.W.)
| | - Xiaoyu Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (Y.N.); (K.X.); (M.S.); (H.S.); (W.W.)
| |
Collapse
|
2
|
Liu N, Chen C, Wang B, Wang X, Zhang D, Zhou G. Exogenous regulation of macronutrients promotes the accumulation of alkaloid yield in anisodus tanguticus (Maxim.) pascher. BMC PLANT BIOLOGY 2024; 24:602. [PMID: 38926662 PMCID: PMC11201296 DOI: 10.1186/s12870-024-05299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Anisodus tanguticus (Maxim.) Pascher (A. tanguticus) is a valuable botanical for extracting tropane alkaloids, which are widely used in the pharmaceutical industry. Implementing appropriate cultivation methods can improve both the quality and yield of A. tanguticus. A two-year field experiment was conducted from 2021 to 2023 using a single-factor randomized complete block design replicated three times. The study examined the effects of different nutrient levels (nitrogen: 0, 75, 150, 225, 300, 375 kg/ha; phosphorus: 0, 600, 750, 900, 1050, 1200 kg/ha; potassium: 0, 75, 112.5, 150, 187.5, 225 kg/ha) on the growth, primary alkaloid contents, and alkaloid yield of A. tanguticus at different growth stages (S-Greening, S-Growing, S-Wilting; T-Greening, T-Growing, and T-Wilting) in both the roots and aboveground portions. RESULTS Our results demonstrate that nutrient levels significantly affect the growth and alkaloid accumulation in A. tanguticus. High nitrogen levels (375 kg/ha) notably increased both root and aboveground biomass, while phosphorus had a minimal effect, especially on aboveground biomass. For alkaloid content (scopolamine, anisodamine, anisodine, atropine), a moderate nitrogen level (225 kg/ha) was most effective, followed by low potassium (75 kg/ha), with phosphorus showing a limited impact. Increased phosphorus levels led to a decrease in scopolamine content. During the T-Growing period, moderate nitrogen addition (225 kg/ha) yielded the highest alkaloid levels per unit area (205.79 kg/ha). In the T-Wilting period, low potassium (75 kg/ha) and low phosphorus (750 kg/ha) resulted in alkaloid levels of 146.91 kg/ha and 142.18 kg/ha, respectively. This indicates nitrogen has the most substantial effect on alkaloid accumulation, followed by potassium and phosphorus. The Douglas production function analysis suggests focusing on root biomass and the accumulation of scopolamine and atropine in roots to maximize alkaloid yield in A. tanguticus cultivation. CONCLUSIONS Our findings show that the optimum harvesting period for A. tanguticus is the T-Wilting period, and that the optimal nitrogen addition is 225 kg/ha, the optimal potassium addition is 75 kg/ha, and the optimal phosphorus addition is 600 kg/ha or less.
Collapse
Affiliation(s)
- Na Liu
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Xiaoyun Wang
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Dengshan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Guoying Zhou
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China.
| |
Collapse
|
3
|
Lee K, Yoon H, Park OS, Seo PJ. ENHANCER OF SHOOT REGENERATION1 promotes de novo root organogenesis after wounding in Arabidopsis leaf explants. THE PLANT CELL 2024; 36:2359-2374. [PMID: 38445764 PMCID: PMC11132873 DOI: 10.1093/plcell/koae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Plants have an astonishing ability to regenerate new organs after wounding. Here, we report that the wound-inducible transcription factor ENHANCER OF SHOOT REGENERATION1 (ESR1) has a dual mode of action in activating ANTHRANILATE SYNTHASE ALPHA SUBUNIT1 (ASA1) expression to ensure auxin-dependent de novo root organogenesis locally at wound sites of Arabidopsis (Arabidopsis thaliana) leaf explants. In the first mode, ESR1 interacts with HISTONE DEACETYLASE6 (HDA6), and the ESR1-HDA6 complex directly binds to the JASMONATE-ZIM DOMAIN5 (JAZ5) locus, inhibiting JAZ5 expression through histone H3 deacetylation. As JAZ5 interferes with the action of ETHYLENE RESPONSE FACTOR109 (ERF109), the transcriptional repression of JAZ5 at the wound site allows ERF109 to activate ASA1 expression. In the second mode, the ESR1 transcriptional activator directly binds to the ASA1 promoter to enhance its expression. Overall, our findings indicate that the dual biochemical function of ESR1, which specifically occurs near wound sites of leaf explants, maximizes local auxin biosynthesis and de novo root organogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hobin Yoon
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Yin X, Guo X, Hu L, Li S, Chen Y, Wang J, Wang RRC, Fan C, Hu Z. Genome-Wide Characterization of DGATs and Their Expression Diversity Analysis in Response to Abiotic Stresses in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1156. [PMID: 35567157 PMCID: PMC9104862 DOI: 10.3390/plants11091156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG) is the most important storage lipid for oil plant seeds. Diacylglycerol acyltransferases (DGATs) are a key group of rate-limiting enzymes in the pathway of TAG biosynthesis. In plants, there are three types of DGATs, namely, DGAT1, DGAT2 and DGAT3. Brassica napus, an allotetraploid plant, is one of the most important oil plants in the world. Previous studies of Brassica napus DGATs (BnaDGATs) have mainly focused on BnaDGAT1s. In this study, four DGAT1s, four DGAT2s and two DGAT3s were identified and cloned from B. napus ZS11. The analyses of sequence identity, chromosomal location and collinearity, phylogenetic tree, exon/intron gene structures, conserved domains and motifs, and transmembrane domain (TMD) revealed that BnaDGAT1, BnaDGAT2 and BnaDGAT3 were derived from three different ancestors and shared little similarity in gene and protein structures. Overexpressing BnaDGATs showed that only four BnaDGAT1s can restore TAG synthesis in yeast H1246 and promote the accumulation of fatty acids in yeast H1246 and INVSc1, suggesting that the three BnaDGAT subfamilies had greater differentiation in function. Transcriptional analysis showed that the expression levels of BnaDGAT1s, BnaDGAT2s and BnaDGAT3s were different during plant development and under different stresses. In addition, analysis of fatty acid contents in roots, stems and leaves under abiotic stresses revealed that P starvation can promote the accumulation of fatty acids, but no obvious relationship was shown between the accumulation of fatty acids with the expression of BnaDGATs under P starvation. This study provides an extensive evaluation of BnaDGATs and a useful foundation for dissecting the functions of BnaDGATs in biochemical and physiological processes.
Collapse
Affiliation(s)
- Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xupeng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizong Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Biology and Agriculture, Zhoukou Normal University, Zhoukou 466001, China
| | - Shuangshuang Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming 650205, China;
| | - Richard R.-C. Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA;
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yadava P, Dayaman V, Agarwal A, Kumar K, Singh I, Verma R, Kaul T. Fine-tuning the transcriptional regulatory model of adaptation response to phosphate stress in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:885-898. [PMID: 35592478 PMCID: PMC9110616 DOI: 10.1007/s12298-022-01155-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 05/11/2023]
Abstract
UNLABELLED The post green revolution agriculture is based on generous application of fertilizers and high-yielding genotypes that are suited for such high input regimes. Cereals, like maize (Zea mays L.) are capable of utilizing less than 20% of the applied inorganic phosphate (Pi) - a non-renewable fertilizer resource. A greater understanding of the molecular mechanisms underlying the acquisition, transportation and utilization of Pi may lead to engineering genotypes with high phosphorus use efficiency. In this study, we carried out functional domain similarity analysis, promoter analysis and comparative transcriptional expression profiling of 12 selected Pi responsive genes in the Pi stress tolerant maize inbred line HKI-163 under sufficient and deficient Pi conditions. Pi starvation led to significant increase in root length; marked proliferation of root hairs and lesser number of crown roots. Eleven genes were significantly up or down regulated in Pi deficient condition. The putative acid phosphatase, ZmACP5 expression was up regulated by 162.81 and 74.40 fold in root and leaf tissues, respectively. The RNase, ZmRNS1 showed 115 fold up regulation in roots under Pi deprivation. Among the two putative high affinity Pi transporters ZmPht1;4 was found specific to root, whereas ZmPht2 was found to be up regulated in both root and leaf tissues. The genes involved in Pi homeostasis pathway (ZmSIZ1, SPX1 and Pho2) were up regulated in root and leaf. In light of the expression profiling of selected regulatory genes, an updated model of transcriptional regulation under Pi starvation in maize has been presented. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01155-x.
Collapse
Affiliation(s)
- Pranjal Yadava
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, 110012 New Delhi, India
| | - Vikram Dayaman
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Astha Agarwal
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Krishan Kumar
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Ishwar Singh
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Rachana Verma
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Tanushri Kaul
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| |
Collapse
|
6
|
Yang Z, Gao Z, Zhou H, He Y, Liu Y, Lai Y, Zheng J, Li X, Liao H. GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:525-543. [PMID: 33960526 DOI: 10.1111/tpj.15307] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Though root architecture modifications may be critically important for improving phosphorus (P) efficiency in crops, the regulatory mechanisms triggering these changes remain unclear. In this study, we demonstrate that genotypic variation in GmEXPB2 expression is strongly correlated with root elongation and P acquisition efficiency, and enhancing its transcription significantly improves soybean yield in the field. Promoter deletion analysis was performed using 5' truncation fragments (P1-P6) of GmEXPB2 fused with the GUS gene in soybean transgenic hairy roots, which revealed that the P1 segment containing three E-box elements significantly enhances induction of gene expression in response to phosphate (Pi) starvation. Further experimentation demonstrated that GmPTF1, a basic-helix-loop-helix transcription factor, is the regulatory factor responsible for the induction of GmEXPB2 expression in response to Pi starvation. In short, Pi starvation induced expression of GmPTF1, with the GmPTF1 product directly binding to the E-box motif in the P1 region of the GmEXPB2 promoter. Plus, both GmPTF1 and GmEXPB2 highly expressed in lateral roots, and were significantly enhanced by P deficiency. Further work with soybean stable transgenic plants through RNA sequencing analysis showed that altering GmPTF1 expression significantly impacted the transcription of a series of cell wall genes, including GmEXPB2, and thereby affected root growth, biomass and P uptake. Taken together, this work identifies a novel regulatory factor, GmPTF1, involved in changing soybean root architecture partially through regulation of the expression of GmEXPB2 by binding the E-box motif in its promoter region.
Collapse
Affiliation(s)
- Zhaojun Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi Gao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiwen Zhou
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying He
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanxing Liu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yelin Lai
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiakun Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
7
|
Wang R, Zhong Y, Liu X, Zhao C, Zhao J, Li M, Ul Hassan M, Yang B, Li D, Liu R, Li X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3846-3863. [PMID: 33765129 DOI: 10.1093/jxb/erab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.
Collapse
Affiliation(s)
- Ruifeng Wang
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Yanting Zhong
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoting Liu
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Cheng Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, ShanghaiChina
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, BeijingChina
| | - Mengfei Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Bo Yang
- State Key Laboratory of Plant physiology and Biochemistry and National Centre of Maize Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, BeijingChina
| | - Dongdong Li
- Department of Crop Genomics and Bioinformatics, National Centre of Maize Genetic Improvement, China Agricultural University, BeijingChina
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, FuzhouChina
| | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Li W, Liu B, Zhao M, Zhang K, He Q, Zhao X, Cheng W, Ding Z, Zhang K, Li K. Isolation and characterization of a 295-bp strong promoter of maize high-affinity phosphate transporter gene ZmPht1; 5 in transgenic Nicotiana benthamiana and Zea mays. PLANTA 2020; 251:106. [PMID: 32424449 DOI: 10.1007/s00425-020-03400-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION The small 295-bp ZmPht1; 5 promoter is sufficient to drive high-intensity expression of target genes, especially under phosphate deprivation conditions, and is therefore useful for crop improvement via transgenic techniques. Phosphate (Pi) deficiency has become a major challenge and limiting factor in world agricultural production. Manipulating the gene expression using appropriate promoters to improve the Pi absorption and utilization efficiency of crops could reduce the requirement for Pi fertilizers. In the study, a 295-bp strong promoter (M2P-7) of maize high-affinity phosphate transporter ZmPht1; 5 was isolated and functionally validated in transgenic Nicotiana benthamiana and maize by analyzing the ZmPht1; 5 promoter (M2P-1) and its 5' truncated variants (M2P-2 ~ M2P-8) in different sizes under normal and Pi-deprivation conditions. The M2P-7 displayed the highest promoter activities among 5' truncated fragments in all tested tissues of transgenic Nicotiana benthamiana at different development stages, which was 1.5 and 3 times higher than the well-used CaMV35S promoter under normal and Pi-deprivation conditions, respectively. In maize, the M2P-7 promoter activity was comparable to the maize ubiquitin1 promoter widely used in monocots under normal condition, which was about 1.3 times that of the ubiquitin1 promoter under Pi-deprivation environments. Moreover, the M2P-7 fragment is only 295 bp in length, thus reducing the construct size, and is therefore beneficial for genetic transformation. Thus, the small promoter M2P-7 of plant origin could be of great use for monocotyledonous and dicotyledonous crop improvement via transgenic techniques based on its promoter activities, expression patterns and small size.
Collapse
Affiliation(s)
- Wendi Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mengsha Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
9
|
Motte H, Vanneste S, Beeckman T. Molecular and Environmental Regulation of Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:465-488. [PMID: 30822115 DOI: 10.1146/annurev-arplant-050718-100423] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the Arabidopsis root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| |
Collapse
|
10
|
Xu Y, Liu F, Han G, Cheng B. Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants. PLANT CELL REPORTS 2018; 37:711-726. [PMID: 29396709 DOI: 10.1007/s00299-018-2262-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
The present study identified several important candidate Pi regulation genes of maize and provides a better understanding on the generation of PHR genes in gramineous plants. Plants have evolved adaptive responses to cope with low phosphate (Pi) soils. The previous studies have indicated that phosphate starvation response (PHR) genes play central roles in regulating plant Pi starvation responses. However, the investigation of PHR family in gramineous plants is limited. In this study, we identified 64 PHR genes in four gramineous plants, including maize, rice, sorghum, and brachypodium, and conducted systematical analyses on phylogenetic, structure, collinearity, and expression pattern of these PHR genes. Genome synteny analysis revealed that a number of PHR genes were present in the corresponding syntenic blocks of maize, rice, sorghum, and brachypodium, indicating that large-scale duplication events contributed significantly to the expansion and evolution of PHR genes in these gramineous plants. Gene expression analysis showed that many PHR genes were expressed in various tissues, suggesting that these genes are involved in Pi redistribution and allocation. In addition, the expression levels of PHR genes from maize and rice under low Pi stress conditions revealed that some PHRs may play an important role in Pi starvation response. Our results provided a better understanding on the generation of PHR genes in gramineous plants and identified several important candidate Pi regulation genes of maize.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Guomin Han
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
11
|
Araceli O, Alfredo C, Javier M, Luis H. A phosphate starvation-driven bidirectional promoter as a potential tool for crop improvement and in vitro plant biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:558-567. [PMID: 27775858 PMCID: PMC5398999 DOI: 10.1111/pbi.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 05/27/2023]
Abstract
Phosphate (Pi)-deficient soils are a major limitant factor for crop production in many regions of the world. Despite that plants have innovated several developmental and biochemical strategies to deal with this stress, there are still massive extensions of land which combine several abiotic stresses, including phosphate starvation, that limit their use for plant growth and food production. In several plant species, a genetic programme underlies the biochemical and developmental responses of the organism to cope with low phosphate (Pi) availability. Both protein- and miRNA-coding genes involved in the adaptative response are transcriptionally activated upon Pi starvation. Several of the responsive genes have been identified as transcriptional targets of PHR1, a transcription factor that binds a conserved cis-element called PHR1-binding site (P1BS). Our group has previously described and characterized a minimal genetic arrangement that includes two P1BS elements, as a phosphate-responsive enhancer (EZ2). Here, we report the engineering and successful use of a phosphate-dependent bidirectional promoter, which has been designed and constructed based on the palindromic sequences of the two P1BS elements present in EZ2. This bidirectional promoter has a potential use in both plant in vitro approaches and in the generation of improved crops adapted to Pi starvation and other abiotic stresses.
Collapse
Affiliation(s)
- Oropeza‐Aburto Araceli
- Metabolic Engineering LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| | - Cruz‐Ramírez Alfredo
- Molecular and Developmental Complexity LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| | - Mora‐Macías Javier
- Metabolic Engineering LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| | - Herrera‐Estrella Luis
- Metabolic Engineering LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| |
Collapse
|
12
|
Araceli OA, Alfredo CR, Javier MM, Luis HE. A phosphate starvation-driven bidirectional promoter as a potential tool for crop improvement and in vitro plant biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:558-567. [PMID: 27775858 DOI: 10.1111/pbi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 05/22/2023]
Abstract
Phosphate (Pi)-deficient soils are a major limitant factor for crop production in many regions of the world. Despite that plants have innovated several developmental and biochemical strategies to deal with this stress, there are still massive extensions of land which combine several abiotic stresses, including phosphate starvation, that limit their use for plant growth and food production. In several plant species, a genetic programme underlies the biochemical and developmental responses of the organism to cope with low phosphate (Pi) availability. Both protein- and miRNA-coding genes involved in the adaptative response are transcriptionally activated upon Pi starvation. Several of the responsive genes have been identified as transcriptional targets of PHR1, a transcription factor that binds a conserved cis-element called PHR1-binding site (P1BS). Our group has previously described and characterized a minimal genetic arrangement that includes two P1BS elements, as a phosphate-responsive enhancer (EZ2). Here, we report the engineering and successful use of a phosphate-dependent bidirectional promoter, which has been designed and constructed based on the palindromic sequences of the two P1BS elements present in EZ2. This bidirectional promoter has a potential use in both plant in vitro approaches and in the generation of improved crops adapted to Pi starvation and other abiotic stresses.
Collapse
Affiliation(s)
- Oropeza-Aburto Araceli
- Metabolic Engineering Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Cruz-Ramírez Alfredo
- Molecular and Developmental Complexity Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Mora-Macías Javier
- Metabolic Engineering Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Herrera-Estrella Luis
- Metabolic Engineering Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| |
Collapse
|
13
|
Li Y, Wu H, Fan H, Zhao T, Ling HQ. Characterization of the AtSPX3 Promoter Elucidates its Complex Regulation in Response to Phosphorus Deficiency. PLANT & CELL PHYSIOLOGY 2016; 57:1767-78. [PMID: 27382128 DOI: 10.1093/pcp/pcw100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/11/2016] [Indexed: 05/14/2023]
Abstract
AtSPX3, responding to phosphate (Pi) deficiency by its expression, is an important gene involved in Pi homeostasis in Arabidopsis. To understand its transcriptional regulation, we characterized the AtSPX3 promoter by distal truncation, internal deletion and mutation of the predicted cis-elements, and identified multiple cis-elements responsive to Pi status. The P1BS (AtPHR-binding site) and AtMyb4 (putative MYB4-binding site) elements were two main cis-elements in the AtSPX3 promoter. P1BS is essential and has a dosage effect for activating expression of the gene under Pi deficiency, while the element AtMyb4 possesses a dual function: one is to enhance AtSPX3 expression in roots under Pi deficiency, and the other one is to repress AtSPX3 expression in shoots under both Pi deficiency and sufficiency. Moreover, we confirmed that AtPHR1, a key transcription factor in Pi homeostasis of plants, was required for the negative regulation function of the AtMyb4 element in shoots. Additionally, we also found that the AtSPX3 promoter had a length limitation for activating gene expression. Generally, our findings in this work are useful for understanding the molecular regulation mechanism of genes involved in Pi uptake and homeostasis.
Collapse
Affiliation(s)
- Ye Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huajie Fan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Zhao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
14
|
Zhang H, Huang L, Hong Y, Song F. BOTRYTIS-INDUCED KINASE1, a plasma membrane-localized receptor-like protein kinase, is a negative regulator of phosphate homeostasis in Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:152. [PMID: 27389008 PMCID: PMC4936243 DOI: 10.1186/s12870-016-0841-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/28/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plants have evolved complex coordinated regulatory networks to cope with deficiency of phosphate (Pi) in their growth environment; however, the detailed molecular mechanisms that regulate Pi sensing and signaling pathways are not fully understood yet. We report here that the involvement of Arabidopsis BIK1, a plasma membrane-localized receptor-like protein kinase that plays critical role in immunity, in Pi starvation response. RESULTS qRT-PCR analysis revealed that expression of BIK1 was induced by Pi starvation and GUS staining indicated that the BIK1 promoter activity was detected in root, stem and leaf tissues of plants grown in Pi starvation condition, demonstrating that BIK1 is responsive to Pi starvation stress. The bik1 plants accumulated higher Pi content in root and leaf tissues and exhibited altered root architecture such as shorter primary roots, longer and more root hairs and lateral roots, as compared with those in the wild type plants, when grown under Pi sufficient and deficient conditions. Increased anthocyanin content and acid phosphatase activity, reduced accumulation of reactive oxygen species and downregulated expression of Pi starvation-induced genes including PHR1, WRKY75, AT4, PHT1;2 and PHT1;4 were observed in bik1 plants grown under Pi deficient condition. Furthermore, the expression of PHO2 was downregulated while the expression of miRNA399a and miRNA399d, which target to PHO2, was upregulated in bik1 plants, compared to the wild type plants, when grown under Pi deficient condition. CONCLUSION Our results demonstrate that BIK1 is a Pi starvation-responsive gene that functions as a negative regulator of Pi homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Huijuan Zhang
- />College of Life Science, Taizhou University, Taizhou, Zhejiang 318001 People’s Republic of China
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Lei Huang
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Yongbo Hong
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Fengming Song
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
15
|
Mahoney AK, Anderson EM, Bakker RA, Williams AF, Flood JJ, Sullivan KC, Pillitteri LJ. Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression. PLANTA 2016; 243:987-98. [PMID: 26748914 PMCID: PMC4819751 DOI: 10.1007/s00425-015-2445-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/11/2015] [Indexed: 05/26/2023]
Abstract
The MUTE promoter contains a 175-bp region rich in Dof regulatory elements (AAAG) that is necessary and sufficient for initiation of transcription in meristemoids and the stomatal lineage. The molecular mechanism underlying the decision to divide or differentiate is a central question in developmental biology. During stomatal development, expression of the master regulator MUTE triggers the differentiation of meristemoids into stomata. In this study, we carried out MUTE promoter deletion analysis to define a regulatory region that promotes the initiation of expression in meristemoids. Expression constructs with truncated promoter fragments fused to β-glucuronidase (GUS) were developed. The full-length promoter and promoter truncations of at least 500 bp from the translational start site exhibited normal spatiotemporal expression patterns. Further truncation revealed a 175-bp promoter fragment that was necessary and sufficient for stomatal-lineage expression. Known cis-elements were identified and tested for functional relevance. Comparison of orthologous MUTE promoters suggested DNA binding with one finger (Dof) regulatory elements and novel motifs may be important for regulation. Our data highlight the complexity and combinatorial control of gene regulation and provides tools to further investigate the genetic control of stomatal development.
Collapse
Affiliation(s)
- Aaron K Mahoney
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Elizabeth M Anderson
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Rachael A Bakker
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Anthony F Williams
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Jake J Flood
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Katrina C Sullivan
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Lynn J Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA.
| |
Collapse
|
16
|
Sun L, Song L, Zhang Y, Zheng Z, Liu D. Arabidopsis PHL2 and PHR1 Act Redundantly as the Key Components of the Central Regulatory System Controlling Transcriptional Responses to Phosphate Starvation. PLANT PHYSIOLOGY 2016; 170:499-514. [PMID: 26586833 PMCID: PMC4704584 DOI: 10.1104/pp.15.01336] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 05/22/2023]
Abstract
When confronted with inorganic phosphate (Pi) starvation, plants activate an array of adaptive responses to sustain their growth. These responses, in a large extent, are controlled at the transcriptional level. Arabidopsis (Arabidopsis thaliana) PHOSPHATE RESPONSE1 (PHR1) and its close homolog PHR1-like 1 (PHL1) belong to a 15-member family of MYB-CC transcription factors and are regarded as the key components of the central regulatory system controlling plant transcriptional responses to Pi starvation. The knockout of PHR1 and PHL1, however, causes only a partial loss of the transcription of Pi starvation-induced genes, suggesting the existence of other key components in this regulatory system. In this work, we used the transcription of a Pi starvation-induced acid phosphatase, AtPAP10, to study the molecular mechanism underlying plant transcriptional responses to Pi starvation. We first identified a DNA sequence on the AtPAP10 promoter that is critical for the transcription of AtPAP10. We then demonstrated that PHL2 and PHL3, two other members of the MYB-CC family, specifically bind to this DNA sequence and activate the transcription of AtPAP10. Unlike PHR1 and PHL1, the transcription and protein accumulation of PHL2 and PHL3 are upregulated by Pi starvation. RNA-sequencing analyses indicated that the transcription of most Pi starvation-induced genes is impaired in the phl2 mutant, indicating that PHL2 is also a key component of the central regulatory system. Finally, we showed that PHL2, and perhaps also PHL3, acts redundantly with PHR1 to regulate plant transcriptional response to Pi starvation.
Collapse
Affiliation(s)
- Lichao Sun
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Song
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zai Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Abstract
Lipids are important signaling compounds in plants. They can range from small lipophilic molecules like the dicarboxylic acid Azelaic acid to complex phosphoglycerolipids and regulate plant development as well as the response to biotic and abiotic stress. While their intracellular function is well described, several lipophilic signals are known to be found in the plant phloem and can, thus, also play a role in long-distance signaling. Mostly, they play a role in the pathogen response and systemic acquired resistance. This is particularly true for oxylipins, dehydroabietinal, and azelaic acid. However, several phospholipids have now been described in phloem exudates. Their intracellular function as well as implications and a model for long-distance signaling are discussed in this chapter.
Collapse
|
18
|
Nakamura Y. Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 2015; 60:17-29. [DOI: 10.1016/j.plipres.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
|
19
|
López-Arredondo D, González-Morales SI, Bello-Bello E, Alejo-Jacuinde G, Herrera L. Engineering food crops to grow in harsh environments. F1000Res 2015; 4:651. [PMID: 26380074 PMCID: PMC4560252 DOI: 10.12688/f1000research.6538.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 12/18/2022] Open
Abstract
Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.
Collapse
Affiliation(s)
| | - Sandra Isabel González-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Elohim Bello-Bello
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Gerardo Alejo-Jacuinde
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Luis Herrera
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| |
Collapse
|
20
|
Ruan W, Guo M, Cai L, Hu H, Li C, Liu Y, Wu Z, Mao C, Yi K, Wu P, Mo X. Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L. PLANT MOLECULAR BIOLOGY 2015; 87:429-40. [PMID: 25657119 DOI: 10.1007/s11103-015-0289-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/23/2015] [Indexed: 05/08/2023]
Abstract
Phosphorus (P) is an essential macronutrient for crop development and production. Phosphate starvation response 1 (PHR1) acts as the central regulator for Pi-signaling and Pi-homeostasis in plants by binding to the cis-element PHR1 binding sequence (P1BS; GNATATNC). However, how phosphate starvation-induced gene expression is regulated remains obscure. In this work, we investigated the DNA binding affinity of the PHR1 ortholog OsPHR2 to its downstream target genes in Oryza sativa (rice). We confirmed that a combination of P1BS and P1BS-like motifs are essential for stable binding by OsPHR2. Furthermore, we report that variations in P1BS motif bases affected the binding affinity of OsPHR2 and that the highest affinity motif was GaATATtC (designated the A-T-type P1BS). We also found that a combination of two A-T-type P1BS elements in tandem, namely HA-P1BS, was very efficient for binding of OsPHR2. Using the cis-regulator HA-P1BS, we modified the promoters of Transporter Traffic Facilitator 1 (PHF1), a key factor controlling endoplasmic reticulum-exit of phosphate transporters to the plasma membrane, for efficient uptake of phosphorous in an energetically neutral way. Transgenic plants with the modified promoters showed significantly enhanced tolerance to low phosphate stress in both solution and soil conditions, which provides a new strategy for crop improvement to enhance tolerance of nutrient deficiency.
Collapse
Affiliation(s)
- Wenyuan Ruan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maréchal E, Bastien O. Modeling of regulatory loops controlling galactolipid biosynthesis in the inner envelope membrane of chloroplasts. J Theor Biol 2014; 361:1-13. [DOI: 10.1016/j.jtbi.2014.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
|
22
|
Li X, Guo C, Gu J, Duan W, Zhao M, Ma C, Du X, Lu W, Xiao K. Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:683-96. [PMID: 24474810 PMCID: PMC3904725 DOI: 10.1093/jxb/ert442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Establishing crop cultivars with strong tolerance to P and N deprivation, high salinity, and drought is an effective way to improve crop yield and promote sustainable agriculture worldwide. A vacuolar H+-pyrophosphatase (V-H+-PPase) gene in wheat (TaVP) was functionally characterized in this study. TaVP cDNA is 2586-bp long and encodes a 775-amino-acid polypeptide that contains 10 conserved membrane-spanning domains. Transcription of TaVP was upregulated by inorganic phosphate (Pi) and N deprivation, high salinity, and drought. Transgene analysis revealed that TaVP overexpression improved plant growth under normal conditions and specifically under Pi and N deprivation stresses, high salinity, and drought. The improvement of growth of the transgenic plants was found to be closely related to elevated V-H+-PPase activities in their tonoplasts and enlarged root systems, which possibly resulted from elevated expression of auxin transport-associated genes. TaVP-overexpressing plants showed high dry mass, photosynthetic efficiencies, antioxidant enzyme activities, and P, N, and soluble carbohydrate concentrations under various growth conditions, particularly under the stress conditions. The transcription of phosphate and nitrate transporter genes was not altered in TaVP-overexpressing plants compared with the wild type, suggesting that high P and N concentrations regulated by TaVP were caused by increased root absorption area instead of alteration of Pi and NO3- acquisition kinetics. TaVP is important in the tolerance of multiple stresses and can serve as a useful genetic resource to improve plant P- and N-use efficiencies and to increase tolerance to high salinity and drought.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Chengjin Guo
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Juntao Gu
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Weiwei Duan
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Miao Zhao
- Science and Technology College, North China Electric Power University, Baoding 071051, China
| | - Chunying Ma
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Xiaoming Du
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Wenjing Lu
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Kai Xiao
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| |
Collapse
|
23
|
McLoughlin F, Testerink C. Phosphatidic acid, a versatile water-stress signal in roots. FRONTIERS IN PLANT SCIENCE 2013; 4:525. [PMID: 24391659 PMCID: PMC3870300 DOI: 10.3389/fpls.2013.00525] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones, protein kinases, and phosphatases, Ca(2) (+), reactive oxygen species, and low abundant phospholipids that together form complex signaling cascades. Phosphatidic acid (PA) is a signaling lipid that rapidly accumulates in response to a wide array of abiotic stress stimuli. PA formation provides the cell with spatial and transient information about the external environment by acting as a protein-docking site in cellular membranes. PA reportedly binds to a number of proteins that play a role during water limiting conditions, such as drought and salinity and has been shown to play an important role in maintaining root system architecture. Members of two osmotic stress-activated protein kinase families, sucrose non-fermenting 1-related protein kinase 2 and mitogen activated protein kinases were recently shown bind PA and are also involved in the maintenance of root system architecture and salinity stress tolerance. In addition, PA regulates several proteins involved in abscisic acid-signaling. PA-dependent recruitment of glyceraldehyde-3-phosphate dehydrogenase under water limiting conditions indicates a role in regulating metabolic processes. Finally, a recent study also shows the PA recruits the clathrin heavy chain and a potassium channel subunit, hinting toward additional roles in cellular trafficking and potassium homeostasis. Taken together, the rapidly increasing number of proteins reported to interact with PA implies a broad role for this versatile signaling phospholipid in mediating salt and water stress responses.
Collapse
Affiliation(s)
| | - Christa Testerink
- *Correspondence: Christa Testerink, Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090GE Amsterdam, Netherlands e-mail:
| |
Collapse
|
24
|
Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat JF, Gaymard F. Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J Biol Chem 2013; 288:22670-80. [PMID: 23788639 DOI: 10.1074/jbc.m113.482281] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A yeast one-hybrid screening allowed the selection of PHR1 as a factor that interacted with the AtFer1 ferritin gene promoter. In mobility shift assays, PHR1 and its close homologue PHL1 (PHR1-like 1) interact with Element 2 of the AtFer1 promoter, containing a P1BS (PHR1 binding site). In a loss of function mutant for genes encoding PHR1 and PHL1 (phr1 phl1 mutant), the response of AtFer1 to phosphate starvation was completely lost, showing that the two transcription factors regulate AtFer1 expression upon phosphate starvation. This regulation does not involve the IDRS (iron-dependent regulatory sequence) present in the AtFer1 promoter and involved in the iron-dependent regulation. The phosphate starvation response of AtFer1 is not linked to the iron status of plants and is specifically initiated by phosphate deficiency. Histochemical localization of iron, visualized by Perls DAB staining, was strongly altered in a phr1 phl1 mutant, revealing that both PHR1 and PHL1 are major factors involved in the regulation of iron homeostasis.
Collapse
Affiliation(s)
- Marc Bournier
- Laboratoire de Biochimie et Physiologie Moleculaire des Plantes, UMR 5004, Agro-M/CNRS/Institut National de la Recherche Agronomique/Universite Montpelier II, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Wu P, Shou H, Xu G, Lian X. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:205-12. [PMID: 23566853 DOI: 10.1016/j.pbi.2013.03.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 05/18/2023]
Abstract
Rice is one of the most important cereal crops feeding a large segment of the world's population. Inefficient utilization of phosphate (Pi) fertilizer by the plant in rice production increases cost and pollution. Developing cultivars with improved Pi use efficiency is essential for the sustainability of agriculture. Pi uptake, translocation and remobilization are regulated by complex molecular mechanisms through the functions of Pi transporters (PTs) and other downstream Pi Starvation Induced (PSI) genes. Expressions of these PSI genes are regulated by the Pi Starvation Response Regulator (OsPHR2)-mediated transcriptional control and/or PHO2-mediated ubiquitination. SPX-domain containing proteins and the type I H(+)-PPase AVP1 involved in the maintenance and utilization of the internal phosphate. The potential application of posttranscriptional regulation of PT1 through OsPHF1 for Pi efficiency is proposed.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
26
|
Ha S, Tran LS. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol 2013; 34:16-30. [PMID: 23586682 DOI: 10.3109/07388551.2013.783549] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications.
Collapse
Affiliation(s)
- Sukbong Ha
- Department of Plant Biotechnology, Chonnam National University , Buk-Gu, Gwangju , Korea and
| | | |
Collapse
|
27
|
Nakamura Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 2012; 52:43-50. [PMID: 22954597 DOI: 10.1016/j.plipres.2012.07.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
Phosphate is an essential, yet scarce, nutrient that seed plants need to maintain viability. Phosphate-starved plants utilize their membrane phospholipids as a major source for internal phosphate supply by replacing phospholipids in their membranes with the non-phosphorus galactolipid, digalactosyldiacylglycerol. This membrane lipid remodeling has drawn much attention as a model of metabolic switching from phospholipids to the galactolipid. In the past decade, a considerable effort has been devoted to unraveling the molecular biology of this phenomenon. This review thus aims to summarize recent achievements with a focus on metabolic pathways during lipid remodeling.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
28
|
Acevedo-Hernández G, Oropeza-Aburto A, Herrera-Estrella L. A specific variant of the PHR1 binding site is highly enriched in the Arabidopsis phosphate-responsive phospholipase DZ2 coexpression network. PLANT SIGNALING & BEHAVIOR 2012; 7:914-7. [PMID: 22836502 PMCID: PMC3474684 DOI: 10.4161/psb.20749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
PLDZ2 is a member of the Arabidopsis phospholipase D gene family that is induced in both shoot and root in response to phosphate (Pi) starvation. Recently, through deletion and gain-of-function analyses of the PLDZ2 promoter, we identified a 65 bp region (denominated enhancer EZ2) capable of conferring tissue-specific and low-Pi responses to a minimal inactive promoter. The EZ2 element contains two P1BS motifs, each of which is the binding site for PHR1 and related transcription factors. This structural organization is evolutionarily conserved in orthologous promoters within the rosid clade. To determine whether EZ2 is significantly over-represented in Arabidopsis genes coexpressed with PLDZ2, we constructed a PLDZ2 coexpression network containing 26 genes, almost half of them encoding enzymes or regulatory proteins involved in Pi recycling. A variant of the P1BS motif was found to be highly enriched in the promoter regions of these coexpressed genes, showing an EZ2-like arrangement in seven of them. No other motifs were significantly enriched. The over-representation of the EZ2 arrangement of P1BS motifs in the promoters of genes coexpressed with PLDZ2, suggests this unit has a particularly important role as a regulatory element in a coexpression network involved in the release of Pi from phospholipids and other molecules under Pi-limiting conditions.
Collapse
Affiliation(s)
- Gustavo Acevedo-Hernández
- Centro Universitario de la Ciénega; Universidad de Guadalajara (CUCI-UdeG); Ocotlan, Jalisco, Mexico
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad del Centro de Investigación y de Estudios Avanzados del IPN; Irapuato, Guanajuato, Mexico
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad del Centro de Investigación y de Estudios Avanzados del IPN; Irapuato, Guanajuato, Mexico
- Correspondence to: Luis Herrera-Estrella,
| |
Collapse
|
29
|
Sobkowiak L, Bielewicz D, Malecka EM, Jakobsen I, Albrechtsen M, Szweykowska-Kulinska Z, Pacak A. The Role of the P1BS Element Containing Promoter-Driven Genes in Pi Transport and Homeostasis in Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:58. [PMID: 22639653 PMCID: PMC3355690 DOI: 10.3389/fpls.2012.00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/07/2012] [Indexed: 05/07/2023]
Abstract
Inorganic phosphate (Pi) is an easily accessible form of phosphorus for plants. Plant Pi uptake is usually limited however by slow Pi diffusion through the soil which strongly adsorps phosphate species. Plants have developed mechanisms to increase Pi availability. There are also abiotic (phosphate level) and biotic (e.g., mycorrhizal) factors regulating the expression of Pi-responsive genes. Transcription factors binding to the promoters of Pi-responsive genes activate different pathways of Pi transport, distribution, and homeostasis maintenance. Pi metabolism involves not only functional proteins but also microRNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Lukasz Sobkowiak
- Department of Gene Expression, Adam Mickiewicz UniversityPoznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Adam Mickiewicz UniversityPoznan, Poland
| | | | - Iver Jakobsen
- Department of Chemical and Biochemical Engineering, Technical University of DenmarkLyngby, Denmark
| | - Merete Albrechtsen
- Department of Plant Biology and Biotechnology, University of CopenhagenFrederiksberg C, Denmark
| | | | - Andrzej Pacak
- Department of Gene Expression, Adam Mickiewicz UniversityPoznan, Poland
- *Correspondence: Andrzej Pacak, Department of Gene Expression, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland. e-mail:
| |
Collapse
|