1
|
Liang L, Liu X, Guo L, Wang L, Zhao Y, Wu Y, Chen Y, Liu W, Gao G. Beyond salt tolerance: SOS1-13's pivotal role in regulating the immune response to Fusarium oxysporum in Solanum phureja. FRONTIERS IN PLANT SCIENCE 2025; 16:1553348. [PMID: 40115954 PMCID: PMC11922900 DOI: 10.3389/fpls.2025.1553348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025]
Abstract
Introduction Fusarium oxysporum (FOX) causes severe Fusarium wilt in the potato (Solanum tuberosum group Phureja) annually around the world. As an Na+/H+ antiporter, SOS1, a member of the salt oversensitive (SOS) signaling pathway plays important role in salt tolerance, but its function in plant disease resistance has been less studied. Methods The function of the potato SOS1 gene (StSOS1-13) responding to the FOX infection was researched by gain- and loss-of-function assays. Results StSOS1-13-overexpressed Arabidopsis differed from WT plants in multiple aspects post-FOX infection. It exhibited less ROS accumulation and cell necrosis in leaves, higher SOD and CAT activities accompanied by reduced MDA content, enhanced root development, increased tolerance to FOX infection, and an accelerated leaf stomatal closure rate along with a reduced stomatal aperture area. Additionally, the ectopic overexpression of StSOS1-13 in Arabidopsis induced down-regulation of AtPR12. Conversely, silencing the ortholog gene NbSOS1-13 in Nicotiana benthamiana showed more accumulation of ROS, serious cell necrosis, reduced activities of SOD and CAT, significantly increased MDA level, obvious leaf wilting, decreased tolerance to infection, and reduced leaf stomatal closure rate and accelerated stomatal area. Furthermore, the expression of SA and JA response-related genes (NbPR5 and NbPR12) was up-regulated in NbSOS1-13-silenced plants. Discussion These findings suggest that StSOS1-13 may serve as a key hub in the immune response to FOX infection by enhancing the antioxidant defense system, promoting root development to improve water uptake, facilitating leaf stomatal closure to minimize water loss through evaporation, and associating with the SA and JA signaling pathways.
Collapse
Affiliation(s)
- Liqin Liang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Xiaona Liu
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Liuyan Guo
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Liyan Wang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yuehua Zhao
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yue Wu
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yiqian Chen
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Weizhong Liu
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Gang Gao
- College of Life Science, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
2
|
The Na+/H+ Exchanger NHX1 Controls H+ Accumulation in the Vacuole to Influence Sepal Color in Hydrangea macrophylla. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Hydrangea macrophylla is popular for its unique physiological characteristics and changeable colors. Previous studies have shown that the pH of the vacuoles of the sepal cells of hydrangea affects the color of the sepals. Located on the vacuolar membrane, NHX1 is an important H+ proton pump that drives the exchange of metal ions. This proton pump affects the physiological environment by controlling the accumulation of H+ in the vacuole. In hydrangea, the HmNHX1 gene has an open reading frame of 1626 bp and encodes a total of 541 amino acids. Bioinformatic analysis showed that HmNHX1, which encodes a Na+/H+ exchanger, is located on the vacuolar membrane. Tissue-specific expression analysis showed that the expression of this gene in the treatment group was higher than that in the control group. The ion flux in the vacuoles of colored hydrangea in the treatment group and the control group were measured, and the results showed that HmNHX1 was indeed a Na+/H+ exchanger. When the results of the HmNHX1 expression analysis and ion flux measurements are combined, it can be seen that HmNHX1 regulates the accumulation of H+ in the vacuole, ultimately affecting the color of the plant.
Collapse
|
3
|
Sun H, Sun X, Wang H, Ma X. Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas 2020; 157:5. [PMID: 32093781 PMCID: PMC7041081 DOI: 10.1186/s41065-020-00118-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/18/2020] [Indexed: 02/01/2023] Open
Abstract
Tobacco, an economic crop and important model plant, has received more progress in salt tolerance with the aid of transgenic technique. Salt stress has become a key research field in abiotic stress. The study of tobacco promotes the understanding about the important adjustment for survival in high salinity environments, including cellular ion transport, osmotic regulation, antioxidation, signal transduction and expression regulation, and protection of cells from stress damage. Genes, which response to salt, have been studied using targeted transgenic technologies in tobacco plants to investigate the molecular mechanisms. The transgenic tobacco plants exhibited higher seed germination and survival rates, better root and shoot growth under salt stress treatments. Transgenic approach could be the promising option for enhancing tobacco production under saline condition. This review highlighted the salt tolerance molecular mechanisms of tobacco.
Collapse
Affiliation(s)
- Haiji Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaowen Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Hui Wang
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaoli Ma
- Central laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 China
| |
Collapse
|
4
|
Sun TJ, Fan L, Yang J, Cao RZ, Yang CY, Zhang J, Wang DM. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na + efflux rate and K +/Na + ratio in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:469. [PMID: 31690290 PMCID: PMC6833268 DOI: 10.1186/s12870-019-2084-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/17/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Soybean (Glycine max (L.)) is one the most important oil-yielding cash crops. However, the soybean production has been seriously restricted by salinization. It is therefore crucial to identify salt tolerance-related genes and reveal molecular mechanisms underlying salt tolerance in soybean crops. A better understanding of how plants resist salt stress provides insights in improving existing soybean varieties as well as cultivating novel salt tolerant varieties. In this study, the biological function of GmNHX1, a NHX-like gene, and the molecular basis underlying GmNHX1-mediated salt stress resistance have been revealed. RESULTS We found that the transcription level of GmNHX1 was up-regulated under salt stress condition in soybean, reaching its peak at 24 h after salt treatment. By employing the virus-induced gene silencing technique (VIGS), we also found that soybean plants became more susceptible to salt stress after silencing GmNHX1 than wild-type and more silenced plants wilted than wild-type under salt treatment. Furthermore, Arabidopsis thaliana expressing GmNHX1 grew taller and generated more rosette leaves under salt stress condition compared to wild-type. Exogenous expression of GmNHX1 resulted in an increase of Na+ transportation to leaves along with a reduction of Na+ absorption in roots, and the consequent maintenance of a high K+/Na+ ratio under salt stress condition. GmNHX1-GFP-transformed onion bulb endothelium cells showed fluorescent pattern in which GFP fluorescence signals enriched in vacuolar membranes. Using the non-invasive micro-test technique (NMT), we found that the Na+ efflux rate of both wild-type and transformed plants after salt treatment were significantly higher than that of before salt treatment. Additionally, the Na+ efflux rate of transformed plants after salt treatment were significantly higher than that of wild-type. Meanwhile, the transcription levels of three osmotic stress-related genes, SKOR, SOS1 and AKT1 were all up-regulated in GmNHX1-expressing plants under salt stress condition. CONCLUSION Vacuolar membrane-localized GmNHX1 enhances plant salt tolerance through maintaining a high K+/Na+ ratio along with inducing the expression of SKOR, SOS1 and AKT1. Our findings provide molecular insights on the roles of GmNHX1 and similar sodium/hydrogen exchangers in regulating salt tolerance.
Collapse
Affiliation(s)
- Tian-Jie Sun
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Long Fan
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Jun Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Ren-Zhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447 USA
| | - Chun-Yan Yang
- Hebei Food and Oil Crops Institute, Shijiazhuang, 050031 Hebei China
| | - Jie Zhang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Dong-Mei Wang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000 Hebei China
| |
Collapse
|
5
|
Yang L, Wei Y, Li N, Zeng J, Han Y, Zuo Z, Wang S, Zhu Y, Zhang Y, Sun J, Wang Y. Declined cadmium accumulation in Na +/H + antiporter (NHX1) transgenic duckweed under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109397. [PMID: 31299476 DOI: 10.1016/j.ecoenv.2019.109397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/16/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a serious threat to plants health. Though some genes have been reported to get involved in the regulation of tolerance to Cd, the mechanisms underlying this process are not fully understood. Na+/H+ antiporter (NHX1) plays an important role in Na+/H+ trafficking. The salt and cadmium stress tolerance were found to be enhanced by NHX1 in duckweed according to our previous study, however, its function in Cd2+ flux under Cd stress has not been studied. Here we explored the Cd2+ flux in wild type (WT) and NHX1 transgenic duckweed (NHX1) under Cd stress. We found that the Cd2+ influx in NHX1 duckweed was significantly declined, followed by an increased Cd2+ efflux after 20 min treatment of Cd, which resulted a less accumulation of Cd in NHX1. Reversely, inhibition of NHX1 by amiloride treatment, enhanced Cd2+ influx in NHX1 duckweed, subsequently delayed Cd2+ efflux in both genotypes of duckweed under Cd2+ shock. H+ efflux in NHX1 duckweed was lower compare with that in WT with 20 min Cd2+ shock. NHX1 also increased the pH value with Cd2+ stress in the transgenic rhizoid. These finding suggested a new function of NHX1 in regulation of Cd2+ and H+ flow during short-term Cd2+ shock.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ying Wei
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jianyao Zeng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yujie Han
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Sutong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yerong Zhu
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China
| | - Ying Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| | - Yong Wang
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
6
|
Ben Saad R, Harbaoui M, Ben Romdhane W, Zouari N, Giang KN, Ben Hsouna A, Brini F. Overexpression of Triticum durum TdAnn12 gene confers stress tolerance through scavenging reactive oxygen species in transgenic tobacco. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:885-895. [PMID: 31196377 DOI: 10.1071/fp18316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Plant annexins are proteins with multiple functions and roles in plant development and responses to abiotic stresses. We report here the functional analysis of the TdAnn12 annexin protein isolated from Triticum durum Desf. We have previously shown that TdAnn12 expression is highly induced by different abiotic stresses. In the present study, to investigate the physiological and biochemical stress-induced responses, we overexpressed TdAnn12 in tobacco. We demonstrate that transgenic tobacco plants expressing TdAnn12 exhibited enhanced tolerance to salt, osmotic stress and H2O2 at the seedling stage. Under greenhouse conditions, these plants showed tolerance to drought and salt stresses. Moreover, scavenging reactive oxygen species (ROS), higher chlorophyll content, lower lipid peroxidation levels and increased antioxidant activities (peroxidase, catalase and superoxide dismutase) were observed. Finally, accumulation of TdAnn12 in tobacco positively affects the regulation of some stress-related genes (MnSOD, APX1, CAT1, P5CS, NHX1, SOS1 and DREB1A). TdAnn12 interacts directly or indirectly with stress-related genes that could stimulate an adaptive potential to gain tolerance which is not present in non-transgenic (NT) plants. Our results clearly show that overexpression of TdAnn12 in transgenic tobacco improves stress tolerance through the removal of ROS.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia; and Corresponding author.
| | - Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia; and Plant Production Department, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, 11451 Riyadh, Saudi Arabia
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia
| | - Khong N Giang
- International Joint Laboratory (LMI-RICE2), National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Vietnam Academy of Agriculture Sciences (VAAS), Km2 Pham Van Dong Road, Co Nhue, Tu Liem District, Hanoi 10000, Vietnam
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia; and Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug 2112, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia
| |
Collapse
|
7
|
Ben-Romdhane W, Ben-Saad R, Meynard D, Zouari N, Mahjoub A, Fki L, Guiderdoni E, Al-Doss A, Hassairi A. Overexpression of AlTMP2 gene from the halophyte grass Aeluropus littoralis in transgenic tobacco enhances tolerance to different abiotic stresses by improving membrane stability and deregulating some stress-related genes. PROTOPLASMA 2018; 255:1161-1177. [PMID: 29450758 DOI: 10.1007/s00709-018-1223-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Herein, we report isolation of the AlTMP2 gene from the halophytic C4 grass Aeluropus littoralis. The subcellular localization suggested that AlTMP2 is a plasma membrane protein. In A. littoralis exposed to salt and osmotic stresses, the AlTMP2 gene was induced early and at a high rate, but was upregulated relatively later in response to abscisic acid and cold treatments. Expression of AlTMP2 in tobacco conferred improved tolerance against salinity, osmotic, H2O2, heat, and freezing stresses at the germination and seedling stages. Under control conditions, no growth or yield penalty were mentioned in transgenic plants due to the constitutive expression of AlTMP2. Interestingly, under greenhouse conditions, the seed yield of transgenic plants was significantly higher than that of non-transgenic (NT) plants grown under salt or drought stress. Furthermore, AlTMP2 plants had less electrolyte leakage, higher membrane stability, and lower Na+ and higher K+ accumulation than NT plants. Finally, six stress-related genes were shown to be deregulated in AlTMP2 plants relative to NT plants under both control and stress conditions. Collectively, these results indicate that AlTMP2 confers abiotic stress tolerance by improving ion homeostasis and membrane integrity, and by deregulating certain stress-related genes.
Collapse
Affiliation(s)
- Walid Ben-Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Rania Ben-Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Donaldo Meynard
- CIRAD-UMR AGAP (Centre de coopération Internationale en Recherche Agronomique pour le Développement), Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Ali Mahjoub
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Lotfi Fki
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, B.P 802, 3038, Sfax, Tunisia
| | - Emmanuel Guiderdoni
- CIRAD-UMR AGAP (Centre de coopération Internationale en Recherche Agronomique pour le Développement), Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
8
|
Huang Y, Cui X, Cen H, Wang K, Zhang Y. Transcriptomic analysis reveals vacuolar Na + (K +)/H + antiporter gene contributing to growth, development, and defense in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2018; 18:57. [PMID: 29631566 PMCID: PMC5892015 DOI: 10.1186/s12870-018-1278-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Intracellular Na+ (K+)/H+ antiporters (NHXs) have pivotal functions in regulating plant growth, development, and resistance to a range of stresses. To gain insight into the molecular events underlying their actions in switchgrass (Panicum virgatum L.), we analyzed transcriptomic changes between PvNHX1-overexpression transgenic lines and wild-type (WT) plants using RNA sequencing (RNA-seq) technology. RESULTS The comparison of transcriptomic data from the WT and transgenic plants revealed a large number of differentially expressed genes (DEGs) in the latter. Gene ontology (GO) and KEGG pathway analyses showed that these DEGs were associated with a wide range of functions, and participated in many biological processes. For example, we found that PvNHX1 had an important role in plant growth through its regulation of photosynthetic activity and cell expansion. In addition, PvNHX1 regulated K+ homeostasis, cell expansion and pollen development, indicating that it has unique and specific roles in flower development. We also found that transgenic switchgrass exhibited a higher level of transcription of defense-related genes, especially those involved in disease resistance. CONCLUSION We showed that PvNHX1 had an important role in plant growth and development through its regulation of photosynthetic activity, cell expansion, K+ homeostasis, and pollen development. Additionally, PvNHX1 overexpression activated a complex signal transduction network in response to various biotic and abiotic stresses. In relation to plant growth, development, and defense responses, PvNHX1 also had a vital regulatory role in the formation of a series of plant hormones and transcription factors (TFs). The reliability of the RNA-seq data was confirmed by quantitative real-time PCR. Our data provide a valuable foundation for further research into the molecular mechanisms and physiological roles of NHXs in plants.
Collapse
Affiliation(s)
- Yanhua Huang
- College of Agriculture, China Agricultural University, Beijing, People’s Republic of China
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Huifang Cen
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Kehua Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Yunwei Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
- National Energy R&D Center for Biomass (NECB), Beijing Sure Academy of Biosciences, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Bai Y, Kissoudis C, Yan Z, Visser RGF, van der Linden G. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:781-793. [PMID: 29237240 DOI: 10.1111/tpj.13800] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Crop plants are subjected to a variety of stresses during their lifecycle, including abiotic stress factors such as salinity and biotic stress factors such as pathogens. Plants have developed a multitude of defense and adaptation responses to these stress factors. In the field, different stress factors mostly occur concurrently resulting in a new state of stress, the combined stress. There is evidence that plant resistance to pathogens can be attenuated or enhanced by abiotic stress factors. With stress tolerance research being mostly focused on plant responses to individual stresses, the understanding of a plant's ability to adapt to combined stresses is limited. In the last few years, we studied powdery mildew resistance under salt stress conditions in the model crop plant tomato with the aim to understand the requirements to achieve plant resilience to a wider array of combined abiotic and biotic stress combinations. We uncovered specific responses of tomato plants to combined salinity-pathogen stress, which varied with salinity intensity and plant resistance genes. Moreover, hormones, with their complex regulation and cross-talk, were shown to play a key role in the adaptation of tomato plants to the combined stress. In this review, we attempt to understand the complexity of plant responses to abiotic and biotic stress combinations, with a focus on tomato responses (genetic control and cross-talk of signaling pathways) to combined salinity and pathogen stresses. Further, we provide recommendations on how to design novel strategies for breeding crops with a sustained performance under diverse environmental conditions.
Collapse
Affiliation(s)
- Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Christos Kissoudis
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Gerard van der Linden
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| |
Collapse
|
10
|
Lv S, Jiang P, Tai F, Wang D, Feng J, Fan P, Bao H, Li Y. The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na + compartmentalization in Salicornia europaea. PLANTA 2017; 246:1177-1187. [PMID: 28825133 DOI: 10.1007/s00425-017-2762-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 05/25/2023]
Abstract
The V-ATPase subunit A participates in vacuolar Na + compartmentalization in Salicornia europaea regulating V-ATPase and V-PPase activities. Na+ sequestration into the vacuole is an efficient strategy in response to salinity in many halophytes. However, it is not yet fully understood how this process is achieved. Particularly, the role of vacuolar H+-ATPase (V-ATPase) in this process is controversial. Our previous proteomic investigation in the euhalophyte Salicornia europaea L. found a significant increase of the abundance of V-ATPase subunit A under salinity. Here, the gene encoding this subunit named SeVHA-A was characterized, and its role in salt tolerance was demonstrated by RNAi directed downregulation in suspension-cultured cells of S. europaea. The transcripts of genes encoding vacuolar H+-PPase (V-PPase) and vacuolar Na+/H+ antiporter (SeNHX1) also decreased significantly in the RNAi cells. Knockdown of SeVHA-A resulted in a reduction in both V-ATPase and vacuolar H+-PPase (V-PPase) activities. Accordingly, the SeVHA-A-RNAi cells showed increased vacuolar pH and decreased cell viability under different NaCl concentrations. Further Na+ staining showed the reduced vacuolar Na+ sequestration in RNAi cells. Taken together, our results evidenced that SeVHA-A participates in vacuolar Na+ sequestration regulating V-ATPase and V-PPase activities and thereby vacuolar pH in S. europaea. The possible mechanisms underlying the reduction of vacuolar V-PPase activity in SeVHA-A-RNAi cells were also discussed.
Collapse
Affiliation(s)
- Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengxiang Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
11
|
Tai F, Lv S, Jiang P, Wang J, Feng J, Li Y. Establishment of a gene function analysis system for the euhalophyte Salicornia europaea L. PLANT CELL REPORTS 2017; 36:1251-1261. [PMID: 28466186 DOI: 10.1007/s00299-017-2150-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
A Salicornia europaea L. in vitro cell transformation system was developed and further applied to SeNHX1 function investigation. The exploration of salt-tolerant genes from halophyte has seriously been limited by the lack of self-dependent transformation system. Here, an Agrobacterium tumefaciens-mediated in vitro cell transformation system of euhalophyte Salicornia europaea L. was developed. Calli derived from hypocotyl of S. europaea were co-cultured for 3 days with Agrobacterium at OD600 ranging from 1.0 to 1.5 and then selected with 25 mg/L hygromycin (Hyg). The transformed cells were identified from Hyg positive calli by GUS assay and qRT-PCR, and the transformation efficiency was up to 74.4%. The practicality of this system was further tested via genetic manipulation of S. europaea Na+/H+ antiporter 1 (SeNHX1) gene by creating the overexpressing, silencing, and empty vector cells. Survival ratio and Na+ distribution under salt treatment showed obvious differences in SeNHX1-overexpressing, -silencing, and empty vector cells, indicating the feasibility of this system to analyze gene function. This investigation is enlightening for studies in other non-model plants lacking of self-dependent transformation system.
Collapse
Affiliation(s)
- Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
12
|
Ben Romdhane W, Ben-Saad R, Meynard D, Verdeil JL, Azaza J, Zouari N, Fki L, Guiderdoni E, Al-Doss A, Hassairi A. Ectopic Expression of Aeluropus littoralis Plasma Membrane Protein Gene AlTMP1 Confers Abiotic Stress Tolerance in Transgenic Tobacco by Improving Water Status and Cation Homeostasis. Int J Mol Sci 2017; 18:E692. [PMID: 28338609 PMCID: PMC5412278 DOI: 10.3390/ijms18040692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023] Open
Abstract
We report here the isolation and functional analysis of AlTMP1 gene encoding a member of the PMP3 protein family. In Aeluropus littoralis, AlTMP1 is highly induced by abscisic acid (ABA), cold, salt, and osmotic stresses. Transgenic tobacco expressing AlTMP1 exhibited enhanced tolerance to salt, osmotic, H₂O₂, heat and freezing stresses at the seedling stage. Under greenhouse conditions, the transgenic plants showed a higher level of tolerance to drought than to salinity. Noteworthy, AlTMP1 plants yielded two- and five-fold more seeds than non-transgenic plants (NT) under salt and drought stresses, respectively. The leaves of AlTMP1 plants accumulated lower Na⁺ but higher K⁺ and Ca2+ than those of NT plants. Tolerance to osmotic and salt stresses was associated with higher membrane stability, low electrolyte leakage, and improved water status. Finally, accumulation of AlTMP1 in tobacco altered the regulation of some stress-related genes in either a positive (NHX1, CAT1, APX1, and DREB1A) or negative (HKT1 and KT1) manner that could be related to the observed tolerance. These results suggest that AlTMP1 confers stress tolerance in tobacco through maintenance of ion homeostasis, increased membrane integrity, and water status. The observed tolerance may be due to a direct or indirect effect of AlTMP1 on the expression of stress-related genes which could stimulate an adaptive potential not present in NT plants.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
- Current Address: Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia..
| | - Rania Ben-Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Donaldo Meynard
- CIRAD-UMR AGAP (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Jean-Luc Verdeil
- CIRAD-UMR AGAP (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Jalel Azaza
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Lotfi Fki
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, B.P 802, 3038 Sfax, Tunisia.
| | - Emmanuel Guiderdoni
- CIRAD-UMR AGAP (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
- Current Address: Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia..
| |
Collapse
|
13
|
Chen X, Bao H, Guo J, Jia W, Li Y. Overexpression of SeNHX1 improves both salt tolerance and disease resistance in tobacco. PLANT SIGNALING & BEHAVIOR 2015; 10:e993240. [PMID: 25875967 PMCID: PMC4622461 DOI: 10.4161/15592324.2014.993240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/15/2014] [Indexed: 05/04/2023]
Abstract
Recently, we found NHX1, the gene encoding a Na(+)/H(+) exchanger, participated in plant disease defense. Although NHX1 has been confirmed to be involved in plant salt tolerance, whether the NHX1 transgenic plants exhibit both salt tolerance and disease resistance has not been investigated. The T1 progenies of Nicotiana tabacum L. lines expressing SeNHX1 (from Salicornia europaea) were generated for the present study. Compared with PBI-type control plants, SeNHX1 transgenic tobaccos exhibited more biomass, longer root length, and higher K(+)/Na(+) ratio at post germination or seedling stage under NaCl treatment, indicating enhanced salt tolerance. The vacuolar H(+) efflux in SeNHX1 transgenic tobacco was increased after treatment of NaCl with different concentration. Meanwhile, the SeNHX1 transgenic tobaccos showed smaller wilted spot area, less H2O2 accumulation in leaves after infection of Phytophthora parasitica var. nicotianae. Further investigation demonstrated a larger NAD(P)(H) pool in SeNHX1 transgenic tobacco. These evidences revealed that overexpression of SeNHX1 intensified the compartmentation of Na(+) into vacuole under salt stress and improved the ability of eliminating ROS after pathogen attack, which then enhanced salt tolerance and disease resistance simultaneously in tobacco. Our findings indicate NHX1 has potential value in creating crops with both improved salt tolerance and disease resistance.
Collapse
Affiliation(s)
- Xianyang Chen
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| | - Jie Guo
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| | - Weitao Jia
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| |
Collapse
|