1
|
Perochon A, Doohan FM. Trichothecenes and Fumonisins: Key Players in Fusarium-Cereal Ecosystem Interactions. Toxins (Basel) 2024; 16:90. [PMID: 38393168 PMCID: PMC10893083 DOI: 10.3390/toxins16020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.
Collapse
Affiliation(s)
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Zhang M, Zhang J, Liang Y, Tian S, Xie S, Zhou T, Wang Q. The regulation of RGLG2-VWA by Ca 2+ ions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140966. [PMID: 37734561 DOI: 10.1016/j.bbapap.2023.140966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
RGLG2, an E3 ubiquitin ligase in Arabidopsis thaliana, affects hormone signaling and participates in drought regulation. Here, we determined two crystal structures of RGLG2 VWA domain, representing two conformations, open and closed, respectively. The two structures reveal that Ca2+ ions are allosteric regulators of RGLG2-VWA, which adopts open state when NCBS1(Novel Calcium ions Binding Site 1) binds Ca2+ ions and switches to closed state after Ca2+ ions are removed. This mechanism of allosteric regulation is identical to RGLG1-VWA, but distinct from integrin α and β VWA domains. Therefore, our data provide a backdrop for understanding the role of the Ca2+ ions in conformational change of VWA domain. In addition, we found that RGLG2closed, corresponding to low affinity, can bind pseudo-ligand, which has never been observed in other VWA domains.
Collapse
Affiliation(s)
- MeiLing Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - JiaXiang Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - ShiCheng Tian
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - ShuYang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Tong Zhou
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
3
|
Liu Z, Qiu J, Shen Z, Wang C, Jiang N, Shi H, Kou Y. The E3 ubiquitin ligase OsRGLG5 targeted by the Magnaporthe oryzae effector AvrPi9 confers basal resistance against rice blast. PLANT COMMUNICATIONS 2023; 4:100626. [PMID: 37177781 PMCID: PMC10504590 DOI: 10.1016/j.xplc.2023.100626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice. During infection, M. oryzae secretes effectors to facilitate blast development. Among these effectors, the avirulence factor AvrPi9 is recognized by Pi9, a broad-spectrum blast resistance protein that triggers Pi9-mediated resistance in rice. However, little is known about the interaction between AvrPi9 and Pi9 and how AvrPi9 exerts virulence to promote infection. In this study, we found that ectopic expression of AvrPi9 in the Pi9-lacking cultivar TP309 suppressed basal resistance against M. oryzae. Furthermore, we identified an AvrPi9-interacting protein in rice, which we named OsRGLG5, encoding a functional RING-type E3 ubiquitin ligase. During infection, AvrPi9 was ubiquitinated and degraded by OsRGLG5. Meanwhile, AvrPi9 affected the stability of OsRGLG5. Infection assays revealed that OsRGLG5 is a positive regulator of basal resistance against M. oryzae, but it is not essential for Pi9-mediated blast resistance in rice. In conclusion, our results revealed that OsRGLG5 is targeted by the M. oryzae effector AvrPi9 and positively regulates basal resistance against rice blast.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhenan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Congcong Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Nan Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
4
|
Lanubile A, De Michele R, Loi M, Fakhari S, Marocco A, Paciolla C. Cell death induced by mycotoxin fumonisin B 1 is accompanied by oxidative stress and transcriptional modulation in Arabidopsis cell culture. PLANT CELL REPORTS 2022; 41:1733-1750. [PMID: 35751667 PMCID: PMC9304057 DOI: 10.1007/s00299-022-02888-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Fumonisin B1 induces rapid programmed cell death in Arabidopsis cells, oxidative and nitrosative bursts, and differentially modulates cell death responsive genes. Glutathione is the main antioxidant involved in the stress response. Fumonisin B1 (FB1) is a fungal toxin produced by Fusarium spp. able to exert pleiotropic toxicity in plants. FB1 is known to be a strong inducer of the programmed cell death (PCD); however, the exact mechanism underling the plant-toxin interactions and the molecular events that lead to PCD are still unclear. Therefore, in this work, we provided a comprehensive investigation of the response of the model organism Arabidopsis thaliana at the nuclear, transcriptional, and biochemical level after the treatment with FB1 at two different concentrations, namely 1 and 5 µM during a time-course of 96 h. FB1 induced oxidative and nitrosative bursts and a rapid cell death in Arabidopsis cell cultures, which resembled a HR-like PCD event. Different genes involved in the regulation of PCD, antioxidant metabolism, photosynthesis, pathogenesis, and sugar transport were upregulated, especially during the late treatment time and with higher FB1 concentration. Among the antioxidant enzymes and compounds studied, only glutathione appeared to be highly induced in both treatments, suggesting that it might be an important stress molecule induced during FB1 exposure. Collectively, these findings highlight the complexity of the signaling network of A. thaliana and provide information for the understanding of the physiological, molecular, and biochemical responses to counteract FB1-induced toxicity.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy, corso Calatafimi 414, 90129, Palermo, Italy.
| | - Martina Loi
- Institute of Sciences of Food Production, National Research Council of Italy, via Amendola 122/0, 70126, Bari, Italy
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources, National Research Council of Italy, corso Calatafimi 414, 90129, Palermo, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Costantino Paciolla
- Department of Biology, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
5
|
Retzer K, Moulinier-Anzola J, Lugsteiner R, Konstantinova N, Schwihla M, Korbei B, Luschnig C. Endosomally Localized RGLG-Type E3 RING-Finger Ligases Modulate Sorting of Ubiquitylation-Mimic PIN2. Int J Mol Sci 2022; 23:6767. [PMID: 35743207 PMCID: PMC9224344 DOI: 10.3390/ijms23126767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular sorting and the abundance of sessile plant plasma membrane proteins are imperative for sensing and responding to environmental inputs. A key determinant for inducing adjustments in protein localization and hence functionality is their reversible covalent modification by the small protein modifier ubiquitin, which is for example responsible for guiding proteins from the plasma membrane to endosomal compartments. This mode of membrane protein sorting control requires the catalytic activity of E3 ubiquitin ligases, amongst which members of the RING DOMAIN LIGASE (RGLG) family have been implicated in the formation of lysine 63-linked polyubiquitin chains, serving as a prime signal for endocytic vacuolar cargo sorting. Nevertheless, except from some indirect implications for such RGLG activity, no further evidence for their role in plasma membrane protein sorting has been provided so far. Here, by employing RGLG1 reporter proteins combined with assessment of plasma membrane protein localization in a rglg1 rglg2 loss-of-function mutant, we demonstrate a role for RGLGs in cargo trafficking between plasma membrane and endosomal compartments. Specifically, our findings unveil a requirement for RGLG1 association with endosomal sorting compartments for fundamental aspects of plant morphogenesis, underlining a vital importance for ubiquitylation-controlled intracellular sorting processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| |
Collapse
|
6
|
Zeng HY, Bao HN, Chen YL, Chen DK, Zhang K, Liu SK, Yang L, Li YK, Yao N. The Two Classes of Ceramide Synthases Play Different Roles in Plant Immunity and Cell Death. FRONTIERS IN PLANT SCIENCE 2022; 13:824585. [PMID: 35463421 PMCID: PMC9021646 DOI: 10.3389/fpls.2022.824585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 05/12/2023]
Abstract
Ceramide synthases (CSs) produce ceramides from long-chain bases (LCBs). However, how CSs regulate immunity and cell death in Arabidopsis thaliana remains unclear. Here, we decipher the roles of two classes of CS, CSI (LAG1 HOMOLOG 2, LOH2) and CSII (LOH1/3), in these processes. The loh1-2 and loh1-1 loh3-1 mutants were resistant to the bacterial pathogen Pseudomonas syringae pv maculicola (Psm) DG3 and exhibited programmed cell death (PCD), along with increased LCBs and ceramides, at later stages. In loh1-2, the Psm resistance, PCD, and sphingolipid accumulation were mostly suppressed by inactivation of the lipase-like proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4), and partly suppressed by loss of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2). The LOH1 inhibitor fumonisin B1 (FB1) triggered EDS1/PAD4-independent LCB accumulation, and EDS1/PAD4-dependent cell death, resistance to Psm, and C16 Cer accumulation. Loss of LOH2 enhances FB1-, and sphinganine-induced PCD, indicating that CSI negatively regulates the signaling triggered by CSII inhibition. Like Cer, LCBs mediate cell death and immunity signaling, partly through the EDS1/PAD4 pathway. Our results show that the two classes of ceramide synthases differentially regulate EDS1/PAD4-dependent PCD and immunity via subtle control of LCBs and Cers in Arabidopsis.
Collapse
|
7
|
Huang LQ, Chen DK, Li PP, Bao HN, Liu HZ, Yin J, Zeng HY, Yang YB, Li YK, Xiao S, Yao N. Jasmonates modulate sphingolipid metabolism and accelerate cell death in the ceramide kinase mutant acd5. PLANT PHYSIOLOGY 2021; 187:1713-1727. [PMID: 34618068 PMCID: PMC8566286 DOI: 10.1093/plphys/kiab362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Sphingolipids are structural components of the lipid bilayer that acts as signaling molecules in many cellular processes, including cell death. Ceramides, key intermediates in sphingolipid metabolism, are phosphorylated by the ceramide kinase ACCELERATED CELL DEATH5 (ACD5). The loss of ACD5 function leads to ceramide accumulation and spontaneous cell death. Here, we report that the jasmonate (JA) pathway is activated in the Arabidopsis (Arabidopsis thaliana) acd5 mutant and that methyl JA treatment accelerates ceramide accumulation and cell death in acd5. Moreover, the double mutants of acd5 with jasmonate resistant1-1 and coronatine insensitive1-2 exhibited delayed cell death, suggesting that the JA pathway is involved in acd5-mediated cell death. Quantitative sphingolipid profiling of plants treated with methyl JA indicated that JAs influence sphingolipid metabolism by increasing the levels of ceramides and hydroxyceramides, but this pathway is dramatically attenuated by mutations affecting JA pathway proteins. Furthermore, we showed that JAs regulate the expression of genes encoding enzymes in ceramide metabolism. Together, our findings show that JAs accelerate cell death in acd5 mutants, possibly by modulating sphingolipid metabolism and increasing ceramide levels.
Collapse
Affiliation(s)
- Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ping-Ping Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yu-Bing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
8
|
Xie L, Wu Y, Wang Y, Jiang Y, Yang B, Duan X, Li T. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117793. [PMID: 34274647 DOI: 10.1016/j.envpol.2021.117793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins are increasingly considered as micropollutants in the environment. Fumonisins, as one of the most important mycotoxins, cause potential health threats to humans and animals due to their ubiquitous contamination on cereals, fruit, vegetables and other environmental samples around the world. However, the contribution of fumonisins to the interaction of fungi with plant hosts is not still fully understood. Here, we investigated the effect of fumonisin B1 (FB1) on the infection of Fusarium proliferatum on banana fruit and the underlying mechanisms from the host perspective. Our results found that FB1 treatment increased the aggressiveness of F. proliferatum on banana fruit and inhibited the defense ability of banana fruit via decreasing phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI) activities. Meanwhile, FB1 accelerated cell death, indicated by higher relative conductivity, MDA content and higher transcripts of cell death-related genes. FB1 treatment resulted in higher hydrogen peroxide (H2O2) content possibly due to MaRBOHs induction. These consequences accelerated the ROS-dependent cell death, which subsequently result in reduction of disease resistance of banana fruit. Additionally, energy metabolism and MaDORN1s-mediated eATP signaling might involve in FB1-meidiated suppression of banana defense responses. Collectively, results of the current study indicated that FB1 contamination triggered the cell death of banana peel, subsequently instigating the invasion and growth of F. proliferatum on banana fruit. In summary, for the first time, we demonstrated a previously unidentified role of fumonisins as a potential virulence factor of F. proliferatum in modulating fruit defense response, which provides new insight on the biological roles of fumonisins.
Collapse
Affiliation(s)
- Lihong Xie
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanfei Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Wang
- Zhongshan Customs Technical Center, Zhongshan, 442000, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Li T, Su X, Qu H, Duan X, Jiang Y. Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 2021; 48:450-462. [PMID: 34550845 DOI: 10.1080/1040841x.2021.1979465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fumonisins are one of the most important mycotoxin classes due to their widespread occurrence and potential health threat to humans and animals. Currently, most of the research focuses on the control of fumonisin contamination in the food supply chain. In recent years, significant progress in biochemistry, enzymology, and genetic regulation of fumonisin biosynthesis has been achieved using molecular technology. Furthermore, new insights into the roles of fumonisins in the interaction between fungi and plant hosts have been reported. This review provides an overview of the current understanding of the biosynthesis and regulation of fumonisins. The ecological significance of fumonisins to Fusarium species that produce the toxins is discussed, and the complex regulatory networks of fumonisin synthesis is proposed.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinguo Su
- Tropical Agriculture and Forestry Department, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
10
|
Iqbal N, Czékus Z, Poór P, Ördög A. Plant defence mechanisms against mycotoxin Fumonisin B1. Chem Biol Interact 2021; 343:109494. [PMID: 33915161 DOI: 10.1016/j.cbi.2021.109494] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Fumonisin B1 (FB1) is the most harmful mycotoxin which prevails in several crops and affects the growth and yield as well. Hence, keeping the alarming consequences of FB1 under consideration, there is still a need to seek other more reliable approaches and scientific knowledge for FB1-induced cell death and a comprehensive understanding of the mechanisms of plant defence strategies. FB1-induced disturbance in sphingolipid metabolism initiates programmed cell death (PCD) through various modes such as the elevated generation of reactive oxygen species, lipid peroxidation, cytochrome c release from the mitochondria, and activation of specific proteases and nucleases causing DNA fragmentation. There is a close interaction between sphingolipids and defence phytohormones in response to FB1 exposure regulating PCD and defence. In this review, the model plant Arabidopsis and various crops have been presented with different levels of susceptibility and resistivity exposed to various concentration of FB1. In addition to this, regulation of PCD and defence mechanisms have been also demonstrated at the physiological, biochemical and molecular levels to help the understanding of the role and function of FB1-inducible molecules and genes and their expressions in plants against pathogen attacks which could provide molecular and biochemical markers for the detection of toxin exposure.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| |
Collapse
|
11
|
Ingole KD, Dahale SK, Bhattacharjee S. Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis. J Proteomics 2020; 232:104054. [PMID: 33238213 DOI: 10.1016/j.jprot.2020.104054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Rapid adaptation of plants to developmental or physiological cues is facilitated by specific receptors that transduce the signals mostly via post-translational modification (PTM) cascades of downstream partners. Reversible covalent attachment of SMALL UBIQUITIN-LIKE MODIFIER (SUMO), a process termed as SUMOylation, influence growth, development and adaptation of plants to various stresses. Strong regulatory mechanisms maintain the steady-state SUMOylome and mutants with SUMOylation disturbances display mis-primed immunity often with growth consequences. Identity of the SUMO-substrates undergoing SUMOylation changes during defenses however remain largely unknown. Here we exploit either the auto-immune property of an Arabidopsis mutant or defense responses induced in wild-type plants against Pseudomonas syringae pv tomato (PstDC3000) to enrich and identify SUMO1-substrates. Our results demonstrate massive enhancement of SUMO1-conjugates due to increased SUMOylation efficiencies during defense responses. Of the 261 proteins we identify, 29 have been previously implicated in immune-associated processes. Role of others expand to diverse cellular roles indicating massive readjustments the SUMOylome alterations may cause during induction of immunity. Overall, our study highlights the complexities of a plant immune network and identifies multiple SUMO-substrates that may orchestrate the signaling. SIGNIFICANCE: In all eukaryotes, covalent linkage of the SMALL UBIQUITIN-LIKE MODIFIER (SUMOs), a process termed as SUMOylation, on target proteins affect their fate and function. Plants display reversible readjustments in the pool of SUMOylated proteins during biotic and abiotic stress responses. Here, we demonstrate net increase in global SUMO1/2-SUMOylome of Arabidopsis thaliana at induction of immunity. We enrich and identify 261 SUMO1-substrates enhanced in defenses that categorize to diverse cellular processes and include novel candidates with uncharacterized immune-associated roles. Overall, our results highlight intricacies of SUMO1-orchestration in defense signaling networks.
Collapse
Affiliation(s)
- Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India; Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar 751 024, Odisha, India
| | - Shraddha K Dahale
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India.
| |
Collapse
|
12
|
Zeng HY, Li CY, Yao N. Fumonisin B1: A Tool for Exploring the Multiple Functions of Sphingolipids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:600458. [PMID: 33193556 PMCID: PMC7652989 DOI: 10.3389/fpls.2020.600458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 05/25/2023]
Abstract
Fumonisin toxins are produced by Fusarium fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals. Although the physiological effects of FB1 in plants have yet to be investigated in detail, forward and reverse genetic approaches have revealed many genes involved in these processes. In this review, we discuss the intricate network of signaling pathways affected by FB1, including changes in sphingolipid metabolism and the effects of these changes, with a focus on our current understanding of the multiple effects of FB1 on plant cell death and plant growth. We analyze the major findings that highlight the connections between sphingolipid metabolism and FB1-induced signaling, and we point out where additional research is needed to fill the gaps in our understanding of FB1-induced signaling pathways in plants.
Collapse
Affiliation(s)
- Hong-Yun Zeng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Yu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Sari E, Cabral AL, Polley B, Tan Y, Hsueh E, Konkin DJ, Knox RE, Ruan Y, Fobert PR. Weighted gene co-expression network analysis unveils gene networks associated with the Fusarium head blight resistance in tetraploid wheat. BMC Genomics 2019; 20:925. [PMID: 31795948 PMCID: PMC6891979 DOI: 10.1186/s12864-019-6161-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB) resistance in the durum wheat breeding gene pool is rarely reported. Triticum turgidum ssp. carthlicum line Blackbird is a tetraploid relative of durum wheat that offers partial FHB resistance. Resistance QTL were identified for the durum wheat cv. Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B in a previous study. The objective of this study was to identify the defense mechanisms underlying the resistance of Blackbird and report candidate regulator defense genes and single nucleotide polymorphism (SNP) markers within these genes for high-resolution mapping of resistance QTL reported for the durum wheat cv. Strongfield/Blackbird population. RESULTS Gene network analysis identified five networks significantly (P < 0.05) associated with the resistance to FHB spread (Type II FHB resistance) one of which showed significant correlation with both plant height and relative maturity traits. Two gene networks showed subtle differences between Fusarium graminearum-inoculated and mock-inoculated plants, supporting their involvement in constitutive defense. The candidate regulator genes have been implicated in various layers of plant defense including pathogen recognition (mainly Nucleotide-binding Leucine-rich Repeat proteins), signaling pathways including the abscisic acid and mitogen activated protein (MAP) kinase, and downstream defense genes activation including transcription factors (mostly with dual roles in defense and development), and cell death regulator and cell wall reinforcement genes. The expression of five candidate genes measured by quantitative real-time PCR was correlated with that of RNA-seq, corroborating the technical and analytical accuracy of RNA-sequencing. CONCLUSIONS Gene network analysis allowed identification of candidate regulator genes and genes associated with constitutive resistance, those that will not be detected using traditional differential expression analysis. This study also shed light on the association of developmental traits with FHB resistance and partially explained the co-localization of FHB resistance with plant height and maturity QTL reported in several previous studies. It also allowed the identification of candidate hub genes within the interval of three previously reported FHB resistance QTL for the Strongfield/Blackbird population and associated SNPs for future high resolution mapping studies.
Collapse
Affiliation(s)
- Ehsan Sari
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada.
| | - Adrian L Cabral
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Brittany Polley
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Yifang Tan
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Emma Hsueh
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - David J Konkin
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Ron E Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Pierre R Fobert
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
15
|
Gong P, Riemann M, Dong D, Stoeffler N, Gross B, Markel A, Nick P. Two grapevine metacaspase genes mediate ETI-like cell death in grapevine defence against infection of Plasmopara viticola. PROTOPLASMA 2019; 256:951-969. [PMID: 30793222 DOI: 10.1007/s00709-019-01353-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/01/2019] [Indexed: 05/09/2023]
Abstract
Metacaspase, as hypersensitive response (HR) executors, has been identified in many plant species. Previously, the entire gene family of metacaspase has been uncovered, but there are still questions that remain unclear regarding HR-regulating gene members. In this study, based on metacaspase expression during different grapevine genotypes interacting with Plasmopara viticola, we identified MC2 and MC5 as candidates involved in HR. We overexpressed both metacaspases as GFP fusions in tobacco BY-2 cells to address subcellular localization and cellular functions. We found MC2 located at the ER, while MC5 was nucleocytoplasmic. In these overexpressor lines, cell death elicited by the bacterial protein harpin, is significantly enhanced, indicating MC2 and MC5 mediated defence-related programmed cell death (PCD). This effect was mitigated, when the membrane-located NADPH oxidase was inhibited by the specific inhibitor diphenylene iodonium, or when cells were complemented with methyl jasmonate, a crucial signal of basal immunity. Both findings are consistent with a role of MC2 and MC5 in cell death-related immunity. Using a dual-luciferase reporter system in grapevine cells we demonstrated both MC2 and MC5 promoter alleles from V. rupestris were more responsive to harpin than those from V. vinifera cv 'Müller-Thurgau', while they were not induced by MeJA as signal linked with basal immunity. These findings support a model, where MC2 and MC5 act specifically as executors of the HR.
Collapse
Affiliation(s)
- Peijie Gong
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Duan Dong
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Nadja Stoeffler
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Bernadette Gross
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Armin Markel
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
16
|
Wang YG, Fu FL, Yu HQ, Hu T, Zhang YY, Tao Y, Zhu JK, Zhao Y, Li WC. Interaction network of core ABA signaling components in maize. PLANT MOLECULAR BIOLOGY 2018; 96:245-263. [PMID: 29344831 DOI: 10.1007/s11103-017-0692-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/06/2017] [Indexed: 05/08/2023]
Abstract
We defined a comprehensive core ABA signaling network in monocot maize, including the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, ZmSnRK2s and the putative substrates. The phytohormone abscisic acid (ABA) plays an important role in plant developmental processes and abiotic stress responses. In Arabidopsis, ABA is sensed by the PYL ABA receptors, which leads to binding of the PP2C protein phosphatase and activation of the SnRK2 protein kinases. These components functioning diversely and redundantly in ABA signaling are little known in maize. Using Arabidopsis pyl112458 and snrk2.2/3/6 mutants, we identified several ABA-responsive ZmPYLs and ZmSnRK2s, and also ZmPP2Cs. We showed the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, and ZmSnRK2s, and the isolation of putative ZmSnRK2 substrates by mass spectrometry in monocot maize. We found that the ABA dependency of PYL-PP2C interactions is contingent on the identity of the PP2Cs. Among 238 candidate substrates for ABA-activated protein kinases, 69 are putative ZmSnRK2 substrates. Besides homologs of previously reported putative AtSnRK2 substrates, 23 phosphoproteins have not been discovered in the dicot Arabidopsis. Thus, we have defined a comprehensive core ABA signaling network in monocot maize and shed new light on ABA signaling.
Collapse
Affiliation(s)
- Ying-Ge Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feng-Ling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao-Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Hu
- Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuan-Yuan Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Tao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Wan-Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
17
|
Qin X, Zhang RX, Ge S, Zhou T, Liang YK. Sphingosine kinase AtSPHK1 functions in fumonisin B1-triggered cell death in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:70-80. [PMID: 28846870 DOI: 10.1016/j.plaphy.2017.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 05/12/2023]
Abstract
The fungal toxin Fumonisin B1 (FB1) is a strong inducer to trigger plant hypersensitive responses (HR) along with increased long chain bases (LCB) and long chain base phosphates (LCBP) contents, though the regulatory mechanism of FB1 action and how the LCB/LCBP signalling cassette functions during the process is still not fully understood. Here, we report sphingosine kinase 1 (SPHK1) as a key factor in FB1-induced HR by modulating the salicylic acid (SA) pathway and reactive oxygen species (ROS) accumulation in Arabidopsis thaliana. Overexpression of SPHK1 increases the FB1-induced accumulations of ROS and SA. The double mutant that simultaneously overexpresses SPHK1 and suppresses the SPPASE or DPL1, two enzymes are mainly responsible for Phyto-sphingosine-1-phosphate (Phyto-S1P) removal, showed enhanced susceptibility to FB1 killing and FB1-induced SA activation than the plants overexpress SPHK1 alone. Exogenous sphingosine-1-phosphate (S1P) can modulate the transcription of the SA-responsive marker gene PR1 in a concentration-dependent biphasic manner. Suppression of SPHK1 decreases SA production whereas promotes jasmonic acid (JA) biosynthesis in response to FB1 applications. Our findings indicate a role of SPHK1 in modulating FB1-triggered cell death via SA and JA pathway interactions.
Collapse
Affiliation(s)
- Xiaoya Qin
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Zhou
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
Repka V, Fiala R, Pavlovkin J. Role of ethylene and phospholipid-mediated signalling in mycotoxin-induced programmed cell death in the apical part of maize roots. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Nagels Durand A, Iñigo S, Ritter A, Iniesto E, De Clercq R, Staes A, Van Leene J, Rubio V, Gevaert K, De Jaeger G, Pauwels L, Goossens A. The Arabidopsis Iron-Sulfur Protein GRXS17 is a Target of the Ubiquitin E3 Ligases RGLG3 and RGLG4. PLANT & CELL PHYSIOLOGY 2016; 57:1801-1813. [PMID: 27497447 DOI: 10.1093/pcp/pcw122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The stability of signaling proteins in eukaryotes is often controlled by post-translational modifiers. For polyubiquitination, specificity is assured by E3 ubiquitin ligases. Although plant genomes encode hundreds of E3 ligases, only few targets are known, even in the model Arabidopsis thaliana. Here, we identified the monothiol glutaredoxin GRXS17 as a substrate of the Arabidopsis E3 ubiquitin ligases RING DOMAIN LIGASE 3 (RGLG3) and RGLG4 using a substrate trapping approach involving tandem affinity purification of RING-dead versions. Simultaneously, we used a ubiquitin-conjugating enzym (UBC) panel screen to pinpoint UBC30 as a cognate E2 UBC capable of interacting with RGLG3 and RGLG4 and mediating auto-ubiquitination of RGLG3 and ubiquitination of GRXS17 in vitro. Accordingly, GRXS17 is ubiquitinated and degraded in an RGLG3- and RGLG4-dependent manner in planta. The truncated hemoglobin GLB3 also interacted with RGLG3 and RGLG4 but appeared to obstruct RGLG3 ubiquitination activity rather than being its substrate. Our results suggest that the RGLG family is intimately linked to the essential element iron.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work
| | - Sabrina Iñigo
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work
| | - Andrés Ritter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Elisa Iniesto
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, Madrid, Spain
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - An Staes
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Vicente Rubio
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, Madrid, Spain
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work.
| |
Collapse
|
20
|
Wu Q, Zhang X, Peirats-Llobet M, Belda-Palazon B, Wang X, Cui S, Yu X, Rodriguez PL, An C. Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. THE PLANT CELL 2016; 28:2178-2196. [PMID: 27577789 PMCID: PMC5059804 DOI: 10.1105/tpc.16.00364] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is an essential hormone for plant development and stress responses. ABA signaling is suppressed by clade A PP2C phosphatases, which function as key repressors of this pathway through inhibiting ABA-activated SnRK2s (SNF1-related protein kinases). Upon ABA perception, the PYR/PYL/RCAR ABA receptors bind to PP2Cs with high affinity and biochemically inhibit their activity. While this mechanism has been extensively studied, how PP2Cs are regulated at the protein level is only starting to be explored. Arabidopsis thaliana RING DOMAIN LIGASE5 (RGLG5) belongs to a five-member E3 ubiquitin ligase family whose target proteins remain unknown. We report that RGLG5, together with RGLG1, releases the PP2C blockade of ABA signaling by mediating PP2CA protein degradation. ABA promotes the interaction of PP2CA with both E3 ligases, which mediate ubiquitination of PP2CA and are required for ABA-dependent PP2CA turnover. Downregulation of RGLG1 and RGLG5 stabilizes endogenous PP2CA and diminishes ABA-mediated responses. Moreover, the reduced response to ABA in germination assays is suppressed in the rglg1 amiR (artificial microRNA)-rglg5 pp2ca-1 triple mutant, supporting a functional link among these loci. Overall, our data indicate that RGLG1 and RGLG5 are important modulators of ABA signaling, and they unveil a mechanism for activation of the ABA pathway by controlling PP2C half-life.
Collapse
Affiliation(s)
- Qian Wu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing 100871, P.R. China
| | - Xu Zhang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing 100871, P.R. China
| | - Marta Peirats-Llobet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Xiaofeng Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing 100871, P.R. China
| | - Shao Cui
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing 100871, P.R. China
| | - Xiangchun Yu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing 100871, P.R. China
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Chengcai An
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
21
|
Nagels Durand A, Pauwels L, Goossens A. The Ubiquitin System and Jasmonate Signaling. PLANTS 2016; 5:plants5010006. [PMID: 27135226 PMCID: PMC4844421 DOI: 10.3390/plants5010006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin (Ub) system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA) and its derivatives, known as jasmonates (JAs), act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|