1
|
Wang L, Zhang Z, Han P, Liang Y, Zhang H, Fu Z, Zhao S, E Y, Zhang H, Wu X, Zhang B, Chang Y, Tang K, Zheng W, Chen L, Wang R, Gao W, Hasi A, Li X, Bai C. Association analysis of agronomic traits and construction of genetic networks by resequencing of 306 sugar beet (Beta vulgaris L.) lines. Sci Rep 2023; 13:15422. [PMID: 37723186 PMCID: PMC10507079 DOI: 10.1038/s41598-023-42182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
Due to the relatively brief domestication history of sugar beet (Beta vulgaris ssp. vulgaris), our understanding of the genomic diversity and functional genes in its cultivars is limited, resulting in slow breeding progress. To address this issue, a total of 306 germplasm materials of major cultivars and breeding lines from China, the USA, and Europe were selected for genome resequencing. We investigated population structure and genetic diversity and performed selective scanning of genomic regions, identifying six novel genes associated with important agronomic traits: the candidate genes DFAX2 and P5CS for skin roughness; the candidate genes FRO5, GL24, and PPR91 for root yield and sugar yield, and the pleiotropic candidate gene POLX for flourishing growth vigour, plant height, crown size, flesh coarseness, and sugar yield. In addition, we constructed a protein-protein interaction network map and a phenotype-gene network map, which provide valuable information for identifying and characterizing functional genes affecting agronomic traits in sugar beet. Overall, our study sheds light on the future improvement of sugar beet agronomic traits at the molecular level.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ziqiang Zhang
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Pingan Han
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yahui Liang
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Huizhong Zhang
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Zengjuan Fu
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shangmin Zhao
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yuanyuan E
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hui Zhang
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Xinrong Wu
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bizhou Zhang
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yue Chang
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Kuangang Tang
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenzhe Zheng
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Li Chen
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Heilongjiang, China
| | - Ronghua Wang
- Beet Breeding and Seed Processing Laboratory, Institute for Sugar Beet Research, Shihezi Academy of Agricultural Sciences, Shihezi, China
| | - Weishi Gao
- Research Industrial of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumuqi, China
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Xiaodong Li
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.
| | - Chen Bai
- Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.
| |
Collapse
|
2
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Li X, He W, Fang J, Liang Y, Zhang H, Chen D, Wu X, Zhang Z, Wang L, Han P, Zhang B, Xue T, Zheng W, He J, Bai C. Genomic and transcriptomic-based analysis of agronomic traits in sugar beet ( Beta vulgaris L.) pure line IMA1. FRONTIERS IN PLANT SCIENCE 2022; 13:1028885. [PMID: 36311117 PMCID: PMC9608375 DOI: 10.3389/fpls.2022.1028885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Sugar beet (Beta vulgaris L.) is an important sugar-producing and energy crop worldwide. The sugar beet pure line IMA1 independently bred by Chinese scientists is a standard diploid parent material that is widely used in hybrid-breeding programs. In this study, a high-quality, chromosome-level genome assembly for IMA1was conducted, and 99.1% of genome sequences were assigned to nine chromosomes. A total of 35,003 protein-coding genes were annotated, with 91.56% functionally annotated by public databases. Compared with previously released sugar beet assemblies, the new genome was larger with at least 1.6 times larger N50 size, thereby substantially improving the completeness and continuity of the sugar beet genome. A Genome-Wide Association Studies analysis identified 10 disease-resistance genes associated with three important beet diseases and five genes associated with sugar yield per hectare, which could be key targets to improve sugar productivity. Nine highly expressed genes associated with pollen fertility of sugar beet were also identified. The results of this study provide valuable information to identify and dissect functional genes affecting sugar beet agronomic traits, which can increase sugar beet production and help screen for excellent sugar beet breeding materials. In addition, information is provided that can precisely incorporate biotechnology tools into breeding efforts.
Collapse
Affiliation(s)
- Xiaodong Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenjin He
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Jingping Fang
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Yahui Liang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Huizhong Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Duo Chen
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Xingrong Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ziqiang Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Liang Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bizhou Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ting Xue
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Wenzhe Zheng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jiangfeng He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chen Bai
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
4
|
Multi-omics data integration reveals link between epigenetic modifications and gene expression in sugar beet (Beta vulgaris subsp. vulgaris) in response to cold. BMC Genomics 2022; 23:144. [PMID: 35176993 PMCID: PMC8855596 DOI: 10.1186/s12864-022-08312-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background DNA methylation is thought to influence the expression of genes, especially in response to changing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering essential developmental processes. Different crop species may show opposing reactions towards the same abiotic stress, or, vice versa, identical species may respond differently depending on the specific kind of stress. Results In this study, we investigated common effects of cold treatment on genome-wide DNA methylation and gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong upregulation of several genes mediating active DNA demethylation. Conclusion Integration of methylomic and transcriptomic data revealed that, rather than methylation having directly influenced expression, epigenetic modifications correlated with changes in expression of known players involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations necessary for adapting to upcoming environmental changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08312-2.
Collapse
|
5
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
6
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
7
|
Ravi S, Campagna G, Della Lucia MC, Broccanello C, Bertoldo G, Chiodi C, Maretto L, Moro M, Eslami AS, Srinivasan S, Squartini A, Concheri G, Stevanato P. SNP Alleles Associated With Low Bolting Tendency in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2021; 12:693285. [PMID: 34322145 PMCID: PMC8311237 DOI: 10.3389/fpls.2021.693285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The identification of efficient molecular markers related to low bolting tendency is a priority in sugar beet (Beta vulgaris L.) breeding. This study aimed to identify SNP markers associated with low bolting tendency by establishing a genome-wide association study. An elaborate 3-year field trial comprising 13 sugar beet lines identified L14 as the one exhibiting the lowest bolting tendency along with an increased survival rate after autumnal sowing. For SNP discovery following phenotyping, contrasting phenotypes of 24 non-bolting and 15 bolting plants of the L14 line were sequenced by restriction site-associated DNA sequencing (RAD-seq). An association model was established with a set of 10,924 RAD-based single nucleotide polymorphism (SNP) markers. The allelic status of the most significantly associated SNPs ranked based on their differential allelic status between contrasting phenotypes (p < 0.01) was confirmed on three different validation datasets comprising diverse sugar beet lines and varieties adopting a range of SNP detection technologies. This study has led to the identification of SNP_36780842 and SNP_48607347 linked to low bolting tendency and can be used for marker-assisted breeding and selection in sugar beet.
Collapse
Affiliation(s)
- Samathmika Ravi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giovanni Campagna
- Cooperativa Produttori Agricoli Società Cooperativa Agricola (COPROB), Minerbio, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Claudia Chiodi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Matteo Moro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Azam Sadat Eslami
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | | | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| |
Collapse
|
8
|
Mladenov V, Fotopoulos V, Kaiserli E, Karalija E, Maury S, Baranek M, Segal N, Testillano PS, Vassileva V, Pinto G, Nagel M, Hoenicka H, Miladinović D, Gallusci P, Vergata C, Kapazoglou A, Abraham E, Tani E, Gerakari M, Sarri E, Avramidou E, Gašparović M, Martinelli F. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops. Int J Mol Sci 2021; 22:7118. [PMID: 34281171 PMCID: PMC8268041 DOI: 10.3390/ijms22137118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.
Collapse
Affiliation(s)
- Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos 3036, Cyprus;
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Stephane Maury
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France;
| | - Miroslav Baranek
- Mendeleum—Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Naama Segal
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, Eilat 88112, Israel;
| | - Pilar S. Testillano
- Center of Biological Research Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Biology Department, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany;
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany;
| | - Dragana Miladinović
- Laboratory for Biotechnology, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—CS5000833882 Villenave d’Ornon, 33076 Bordeaux, France;
| | - Chiara Vergata
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (HAO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Evaggelia Avramidou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
9
|
Finger FL, Eide JD, Lafta AM, Khan MFR, Dogramaci M, Fugate KK. Methyl jasmonate effects on sugarbeet root responses to postharvest dehydration. PeerJ 2021; 9:e11623. [PMID: 34178476 PMCID: PMC8214845 DOI: 10.7717/peerj.11623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Sugarbeet (Beta vulgaris L.) roots are stored under conditions that cause roots to dehydrate, which increases postharvest losses. Although exogenous jasmonate applications can reduce drought stress in intact plants, their ability to alleviate the effects of dehydration in postharvest sugarbeet roots or other stored plant products is unknown. Research was conducted to determine whether jasmonate treatment could mitigate physiological responses to dehydration in postharvest sugarbeet roots. Methods Freshly harvested sugarbeet roots were treated with 10 µM methyl jasmonate (MeJA) or water and stored under dehydrating and non-dehydrating storage conditions. Changes in fresh weight, respiration rate, wound healing, leaf regrowth, and proline metabolism of treated roots were investigated throughout eight weeks in storage. Results Dehydrating storage conditions increased root weight loss, respiration rate, and proline accumulation and prevented leaf regrowth from the root crown. Under dehydrating conditions, MeJA treatment reduced root respiration rate, but only in severely dehydrated roots. MeJA treatment also hastened wound-healing, but only in the late stages of barrier formation. MeJA treatment did not impact root weight loss or proline accumulation under dehydrating conditions or leaf regrowth under non-dehydrating conditions. Both dehydration and MeJA treatment affected expression of genes involved in proline metabolism. In dehydrated roots, proline dehydrogenase expression declined 340-fold, suggesting that dehydration-induced proline accumulation was governed by reducing proline degradation. MeJA treatment altered proline biosynthetic and catabolic gene expression, with greatest effect in non-dehydrated roots. Overall, MeJA treatment alleviated physiological manifestations of dehydration stress in stored roots, although the beneficial effects were small. Postharvest jasmonate applications, therefore, are unlikely to significantly reduce dehydration-related storage losses in sugarbeet roots.
Collapse
Affiliation(s)
- Fernando L Finger
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - John D Eide
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, United States of America
| | - Abbas M Lafta
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States of America
| | - Mohamed F R Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States of America.,Extension Service, University of Minnesota, St. Paul, MN, United States of America
| | - Munevver Dogramaci
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, United States of America
| | - Karen K Fugate
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, United States of America
| |
Collapse
|
10
|
Skorupa M, Szczepanek J, Mazur J, Domagalski K, Tretyn A, Tyburski J. Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLoS One 2021; 16:e0251675. [PMID: 34043649 PMCID: PMC8158878 DOI: 10.1371/journal.pone.0251675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
Here we determined the impact of salt shock and salt stress on the level of DNA methylation in selected CpG islands localized in promoters or first exons of sixteen salt-responsive genes in beets. Two subspecies differing in salt tolerance were subjected for analysis, a moderately salt-tolerant sugar beet Beta vulgaris ssp. vulgaris cv. Huzar and a halophytic beet, Beta vulgaris ssp. maritima. The CpG island methylation status was determined. All target sequences were hyper- or hypomethylated under salt shock and/or salt stress in one or both beet subspecies. It was revealed that the genomic regions analyzed were highly methylated in both, the salt treated plants and untreated controls. Methylation of the target sequences changed in a salt-dependent manner, being affected by either one or both treatments. Under both shock and stress, the hypomethylation was a predominant response in sugar beet. In Beta vulgaris ssp. maritima, the hypermethylation occurred with higher frequency than hypomethylation, especially under salt stress and in the promoter-located CpG sites. Conversely, the hypomethylation of the promoter-located CpG sites predominated in sugar beet plants subjected to salt stress. This findings suggest that DNA methylation may be involved in salt-tolerance and transcriptomic response to salinity in beets.
Collapse
Affiliation(s)
- Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Mazur
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Domagalski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Tyburski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
11
|
Fourounjian P, Slovin J, Messing J. Flowering and Seed Production across the Lemnaceae. Int J Mol Sci 2021; 22:2733. [PMID: 33800476 PMCID: PMC7962950 DOI: 10.3390/ijms22052733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Plants in the family Lemnaceae are aquatic monocots and the smallest, simplest, and fastest growing angiosperms. Their small size, the smallest family member is 0.5 mm and the largest is 2.0 cm, as well as their diverse morphologies make these plants ideal for laboratory studies. Their rapid growth rate is partially due to the family's neotenous lifestyle, where instead of maturing and producing flowers, the plants remain in a juvenile state and continuously bud asexually. Maturation and flowering in the wild are rare in most family members. To promote further research on these unique plants, we have optimized laboratory flowering protocols for 3 of the 5 genera: Spirodela; Lemna; and Wolffia in the Lemnaceae. Duckweeds were widely used in the past for research on flowering, hormone and amino acid biosynthesis, the photosynthetic apparatus, and phytoremediation due to their aqueous lifestyle and ease of aseptic culture. There is a recent renaissance in interest in growing these plants as non-lignified biomass sources for fuel production, and as a resource-efficient complete protein source. The genome sequences of several Lemnaceae family members have become available, providing a foundation for genetic improvement of these plants as crops. The protocols for maximizing flowering described herein are based on screens testing daylength, a variety of media, supplementation with salicylic acid or ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA), as well as various culture vessels for effects on flowering of verified Lemnaceae strains available from the Rutgers Duckweed Stock Cooperative.
Collapse
Affiliation(s)
- Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Janet Slovin
- Genetic Improvement of Fruits & Vegetables Laboratory, USDA, Beltsville, MD 20705, USA;
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Vigneaud J, Maury S. [Developmental plasticity in plants: an interaction between hormones and epigenetics at the meristem level]. Biol Aujourdhui 2020; 214:125-135. [PMID: 33357371 DOI: 10.1051/jbio/2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Plants are fixed organisms with continuous development throughout their life and great sensitivity to environmental variations. They react in this way by exhibiting large developmental phenotypic plasticity. This plasticity is partly controlled by (phyto)hormones, but recent studies also suggest the involvement of epigenetic mechanisms. It seems that these two factors may interact in a complex way and especially in the stem cells grouped together in meristems. The objective of this review is to present the current arguments about this interaction which would promote developmental plasticity. Three major points are thus addressed to justify this interaction between hormonal control and epigenetics (control at the chromatin level) for the developmental plasticity of plants: the arguments in favor of an effect of hormones on chromatin and vice versa, the arguments in favor of their roles on developmental plasticity and finally the arguments in favor of the central place of these interactions, the meristems. Various perspectives and applications are discussed.
Collapse
Affiliation(s)
- Julien Vigneaud
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe, Université d'Orléans, EA1207 USC1328, 45067 Orléans, France
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe, Université d'Orléans, EA1207 USC1328, 45067 Orléans, France
| |
Collapse
|
13
|
Abstract
The importance of tree genetic variability in the ability of forests to respond and adapt to environmental changes is crucial in forest management and conservation. Along with genetics, recent advances have highlighted “epigenetics” as an emerging and promising field of research for the understanding of tree phenotypic plasticity and adaptive responses. In this paper, we review recent advances in this emerging field and their potential applications for tree researchers and breeders, as well as for forest managers. First, we present the basics of epigenetics in plants before discussing its potential for trees. We then propose a bibliometric and overview of the literature on epigenetics in trees, including recent advances on tree priming. Lastly, we outline the promises of epigenetics for forest research and management, along with current gaps and future challenges. Research in epigenetics could use highly diverse paths to help forests adapt to global change by eliciting different innovative silvicultural approaches for natural- and artificial-based forest management.
Collapse
|
14
|
Perrone A, Martinelli F. Plant stress biology in epigenomic era. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110376. [PMID: 32234231 DOI: 10.1016/j.plantsci.2019.110376] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 05/24/2023]
Abstract
Recent progress in "omics" methodologies allow us to gain insight into the complex molecular regulatory networks underlying plant responses to environmental stresses. Among the different genome-wide analysis, epigenomics is the most under-investigated "omic" approach requiring more critical and speculative discussion about approaches, methods and experimental designs. Epigenomics allows us to gain insight into the molecular adaptation of plants in response to environmental stresses. The identification of epigenetic marks transmitted during filial generations enables new theories to be developed on the evolution of living organisms in relation to environmental changes. The molecular mechanisms driving the capacity of plants to memorize a stress and to generate stress-resistant progenies are still unclear and scarcely investigated. The elucidation of these cryptic molecular switches will assist breeders in designing crops characterized by minimally compromised productivity in relation to stresses caused by climate change. The aim of this review is to briefly describe the most uptodate epigenomic approaches, update recent progresses in crop epigenomics in plant stress biology, and to stimulate the discussion of new epigenomic methods and approaches in the new era of "omic" sciences.
Collapse
Affiliation(s)
- Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, 90128, Italy.
| | - Federico Martinelli
- Department of Biology, University of Firenze, Sesto Fiorentino, Florence, 50019, Italy.
| |
Collapse
|
15
|
Maury S, Sow MD, Le Gac AL, Genitoni J, Lafon-Placette C, Mozgova I. Phytohormone and Chromatin Crosstalk: The Missing Link For Developmental Plasticity? FRONTIERS IN PLANT SCIENCE 2019; 10:395. [PMID: 31024580 PMCID: PMC6459951 DOI: 10.3389/fpls.2019.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 05/29/2023]
Affiliation(s)
- Stéphane Maury
- LBLGC, INRA, Université d'Orléans, EA1207 USC 1328, Orléans, France
| | - Mamadou Dia Sow
- LBLGC, INRA, Université d'Orléans, EA1207 USC 1328, Orléans, France
| | - Anne-Laure Le Gac
- BIOSS Centre for Biological Signaling Studies, Institute for Biology III, University of Freiburg, Freiburg, Germany
| | - Julien Genitoni
- LBLGC, INRA, Université d'Orléans, EA1207 USC 1328, Orléans, France
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, Rennes, France
| | | | - Iva Mozgova
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Trebon, Czechia
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| |
Collapse
|
16
|
Dally N, Eckel M, Batschauer A, Höft N, Jung C. Two CONSTANS-LIKE genes jointly control flowering time in beet. Sci Rep 2018; 8:16120. [PMID: 30382124 PMCID: PMC6208394 DOI: 10.1038/s41598-018-34328-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/21/2018] [Indexed: 11/19/2022] Open
Abstract
Breeding vegetative crops (e.g. beets, cabbage, forage grasses) is challenged by two conflicting aims. For field production, flowering must be avoided while flowering and seed set is necessary for breeding and seed production. The biennial species sugar beet makes shoot elongation (‘bolting’) followed by flowering after a long period of cold temperatures. Field production in northern geographical regions starts in spring. A thickened storage root is formed only during vegetative growth. It is expected that winter beets, which are sown before winter would have a much higher yield potential. However, field production was not possible so far due to bolting after winter. We propose a strategy to breed winter beets exploiting haplotype variation at two major bolting time loci, B and B2. Both genes encode transcription factors controlling the expression of two orthologs of the Arabidopsis gene FLOWERING LOCUS T (FT). We detected an epistatic interaction between both genes because F2 plants homozygous for two B/B2 mutant alleles did not bolt even after vernalization. Fluorescence complementation studies revealed that both proteins form a heterodimer in vivo. In non-bolting plants, the bolting activator BvFT2 was completely downregulated whereas the repressor BvFT1 was upregulated which suggests that both genes acquire a CONSTANS (CO) like function in beet. Like CO, B and B2 proteins house CCT and BBX domains which, in contrast to CO are split between the two beet genes. We propose an alternative regulation of FT orthologs in beet that can be exploited to breed winter beets.
Collapse
Affiliation(s)
- Nadine Dally
- UKSH Campus Kiel, Hematology Laboratory Kiel, Langer Segen 8-10, D-24105, Kiel, Germany
| | - Maike Eckel
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University of Marburg, Karl-von-Frisch-Str. 8, D-35032, Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University of Marburg, Karl-von-Frisch-Str. 8, D-35032, Marburg, Germany
| | - Nadine Höft
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany.
| |
Collapse
|
17
|
Le Gac AL, Lafon-Placette C, Chauveau D, Segura V, Delaunay A, Fichot R, Marron N, Le Jan I, Berthelot A, Bodineau G, Bastien JC, Brignolas F, Maury S. Winter-dormant shoot apical meristem in poplar trees shows environmental epigenetic memory. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4821-4837. [PMID: 30107545 PMCID: PMC6137975 DOI: 10.1093/jxb/ery271] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/02/2018] [Indexed: 05/04/2023]
Abstract
Trees have a long lifespan and must continually adapt to environmental pressures, notably in the context of climate change. Epigenetic mechanisms are doubtless involved in phenotypic plasticity and in stress memory; however, little evidence of the role of epigenetic processes is available for trees growing in fields. Here, we analyzed the possible involvement of epigenetic mechanisms in the winter-dormant shoot apical meristem of Populus × euramericana clones in memory of the growing conditions faced during the vegetative period. We aimed to estimate the range of genetic and environmentally induced variations in global DNA methylation and to evaluate their correlation with changes in biomass production, identify differentially methylated regions (DMRs), and characterize common DMRs between experiments. We showed that the variations in global DNA methylation between conditions were genotype dependent and correlated with biomass production capacity. Microarray chip analysis allowed detection of DMRs 6 months after the stressful summer period. The 161 DMRs identified as common to three independent experiments most notably targeted abiotic stress and developmental response genes. Results are consistent with a winter-dormant shoot apical meristem epigenetic memory of stressful environmental conditions that occurred during the preceding summer period. This memory may facilitate tree acclimation.
Collapse
Affiliation(s)
| | | | | | | | | | - Régis Fichot
- LBLGC, INRA, Université d’Orléans, Orléans, France
| | - Nicolas Marron
- Silva, INRA Grand Est, Nancy, AgroParisTech, Université de Lorraine, UMR, Nancy, France
| | | | - Alain Berthelot
- FCBA Délégation Territoriale Nord-Est, Charrey-Sur-Saône, France
| | | | | | | | - Stéphane Maury
- LBLGC, INRA, Université d’Orléans, Orléans, France
- Correspondence:
| |
Collapse
|
18
|
Lafon-Placette C, Le Gac AL, Chauveau D, Segura V, Delaunay A, Lesage-Descauses MC, Hummel I, Cohen D, Jesson B, Le Thiec D, Bogeat-Triboulot MB, Brignolas F, Maury S. Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:537-551. [PMID: 29211860 DOI: 10.1093/jxb/erx409] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
The adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem. Using microarray chips, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were identified for each water regime. The rewatering condition was associated with the highest variations of both gene expression and DNA methylation. Changes in methylation were observed particularly in the body of expressed genes and to a lesser extent in transposable elements. Together, DEGs and DMRs were significantly enriched in genes related to phytohormone metabolism or signaling pathways. Altogether, shoot apical meristem responses to changes in water availability involved coordinated variations in DNA methylation, as well as in gene expression, with a specific targeting of genes involved in hormone pathways, a factor that may enable phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Alain Delaunay
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| | | | - Irène Hummel
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | - David Cohen
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | - Didier Le Thiec
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | | | - Stéphane Maury
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| |
Collapse
|
19
|
Conde D, Le Gac AL, Perales M, Dervinis C, Kirst M, Maury S, González-Melendi P, Allona I. Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break. PLANT, CELL & ENVIRONMENT 2017; 40:2236-2249. [PMID: 28707409 DOI: 10.1111/pce.13019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 05/21/2023]
Abstract
Annual dormancy-growth cycle is a developmental and physiological process essential for the survival of deciduous trees in temperate and boreal forests. Seasonal control of shoot growth in woody perennials requires specific genetic programmes responding to environmental signals. The environmental-controlled mechanisms that regulate the shift between winter dormancy and the growth-promoting genetic programmes are still unknown. Here, we show that dynamics in genomic DNA methylation levels are involved in the regulation of dormancy-growth cycle in poplar. The reactivation of growth in the apical shoot during bud break process in spring is preceded by a progressive reduction of genomic DNA methylation in apex tissue. The induction in apex tissue of a chilling-dependent poplar DEMETER-LIKE 10 (PtaDML10) DNA demethylase precedes shoot growth reactivation. Transgenic poplars showing downregulation of PtaDML8/10 caused delayed bud break. Genome-wide transcriptome and methylome analysis and data mining revealed that the gene targets of DEMETER-LIKE-dependent DNA demethylation are genetically associated with bud break. These data point to a chilling-dependent DEMETER-like DNA demethylase mechanisms being involved in the shift from winter dormancy to a condition that precedes shoot apical vegetative growth in poplar.
Collapse
Affiliation(s)
- Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Anne-Laure Le Gac
- LBLGC EA1207, USC 1328 INRA, University Orléans, 45067, Orléans, France
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Stéphane Maury
- LBLGC EA1207, USC 1328 INRA, University Orléans, 45067, Orléans, France
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| |
Collapse
|
20
|
Tränkner C, Pfeiffer N, Kirchhoff M, Kopisch-Obuch FJ, van Dijk H, Schilhabel M, Hasler M, Emrani N. Deciphering the complex nature of bolting time regulation in Beta vulgaris. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1649-1667. [PMID: 28478574 DOI: 10.1007/s00122-017-2916-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Only few genetic loci are sufficient to increase the variation of bolting time in Beta vulgaris dramatically, regarding vernalization requirement, seasonal bolting time and reproduction type. Beta species show a wide variation of bolting time regarding the year of first reproduction, seasonal bolting time and the number of reproduction cycles. To elucidate the genetics of bolting time control, we used three F3 mapping populations that were produced by crossing a semelparous, annual sugar beet with iteroparous, vernalization-requiring wild beet genotypes. The semelparous plants died after reproduction, whereas iteroparous plants reproduced at least twice. All populations segregated for vernalization requirement, seasonal bolting time and the number of reproduction cycles. We found that vernalization requirement co-segregated with the bolting locus B on chromosome 2 and was inherited independently from semel- or iteroparous reproduction. Furthermore, we found that seasonal bolting time is a highly heritable trait (h 2 > 0.84), which is primarily controlled by two major QTL located on chromosome 4 and 9. Late bolting alleles of both loci act in a partially recessive manner and were identified in both iteroparous pollinators. We observed an additive interaction of both loci for bolting delay. The QTL region on chromosome 4 encompasses the floral promoter gene BvFT2, whereas the QTL on chromosome 9 co-localizes with the BR 1 locus, which controls post-winter bolting resistance. Our findings are applicable for marker-assisted sugar beet breeding regarding early bolting to accelerate generation cycles and late bolting to develop bolting-resistant spring and winter beets. Unexpectedly, one population segregated also for dwarf growth that was found to be controlled by a single locus on chromosome 9.
Collapse
Affiliation(s)
- Conny Tränkner
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
- Leibniz Institute of Vegetable and Ornamental Crops, Kühnhäuser Straße 101, 99090, Erfurt, Germany.
| | - Nina Pfeiffer
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- KWS LOCHOW GMBH, Zuchtstation Wetze, 37154, Northeim, Germany
| | - Martin Kirchhoff
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Nordsaat Saatzucht GmbH, Böhnshauser Straße 1, 38895, Langenstein, Germany
| | - Friedrich J Kopisch-Obuch
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- KWS SAAT SE, Grimsehlstraße 31, 37555, Einbeck, Germany
| | - Henk van Dijk
- Universite Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, University of Kiel, Hermann-Rodewald-Straße 9, 24098, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
21
|
Tränkner C, Lemnian IM, Emrani N, Pfeiffer N, Tiwari SP, Kopisch-Obuch FJ, Vogt SH, Müller AE, Schilhabel M, Jung C, Grosse I. A Detailed Analysis of the BR1 Locus Suggests a New Mechanism for Bolting after Winter in Sugar Beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1662. [PMID: 27895650 PMCID: PMC5107561 DOI: 10.3389/fpls.2016.01662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/21/2016] [Indexed: 05/29/2023]
Abstract
Sugar beet (Beta vulgaris ssp. vulgaris) is a biennial, sucrose-storing plant, which is mainly cultivated as a spring crop and harvested in the vegetative stage before winter. For increasing beet yield, over-winter cultivation would be advantageous. However, bolting is induced after winter and drastically reduces yield. Thus, post-winter bolting control is essential for winter beet cultivation. To identify genetic factors controlling bolting after winter, a F2 population was previously developed by crossing the sugar beet accessions BETA 1773 with reduced bolting tendency and 93161P with complete bolting after winter. For a mapping-by-sequencing analysis, pools of 26 bolting-resistant and 297 bolting F2 plants were used. Thereby, a single continuous homozygous region of 103 kb was co-localized to the previously published BR1 QTL for post-winter bolting resistance (Pfeiffer et al., 2014). The BR1 locus was narrowed down to 11 candidate genes from which a homolog of the Arabidopsis CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 73-I (CPSF73-I) was identified as the most promising candidate. A 2 bp deletion within the BETA 1773 allele of BvCPSF73-Ia results in a truncated protein. However, the null allele of BvCPSF73-Ia might partially be compensated by a second BvCPSF73-Ib gene. This gene is located 954 bp upstream of BvCPSF73-Ia and could be responsible for the incomplete penetrance of the post-winter bolting resistance allele of BETA 1773. This result is an important milestone for breeding winter beets with complete bolting resistance after winter.
Collapse
Affiliation(s)
- Conny Tränkner
- Plant Breeding Institute, University of KielKiel, Germany
| | - Ioana M. Lemnian
- Institute of Computer Science, Martin Luther University Halle-WittenbergHalle, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, University of KielKiel, Germany
| | - Nina Pfeiffer
- Plant Breeding Institute, University of KielKiel, Germany
| | | | | | | | | | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University of KielKiel, Germany
| | - Christian Jung
- Plant Breeding Institute, University of KielKiel, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-WittenbergHalle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-JenaLeipzig, Germany
| |
Collapse
|