1
|
Lyapina I, Ganaeva D, Rogozhin EA, Ryabukhina EV, Ryazantsev DY, Lazarev V, Alieva SE, Mamaeva A, Fesenko I. Comparative analysis of small secreted peptide signaling during defense response: insights from vascular and non-vascular plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70147. [PMID: 40079373 DOI: 10.1111/ppl.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
Small secreted peptides (SSPs) play an important role in modulating immune responses in all land plants. However, the evolution of stress peptide signaling in different plant phyla remains poorly understood. Here, we compared the expression of SSP genes in the pathogen-induced transcriptomes of vascular and non-vascular plants. We found 13, 19, 15, and 28 SSP families that were differentially expressed during infection in Physcomitrium patens, Zea mays, Brassica napus, and Solanum tuberosum, respectively. A comparative study of peptide motifs and predicted three-dimensional structures confirmed the similarity of SSPs across the examined plant species. In both vascular and non-vascular plants. However, only the RALF peptide family was differentially regulated under infection. We also found that EPFL peptides, which are involved in growth and development processes in angiosperms, were differentially regulated in P. patens in response to pathogen infection. The search for novel immune-specific peptides revealed a family of PSY-like peptides that are differentially regulated during infection in P. patens. The treatment with synthetic tyrosine-modified and non-modified PSY, and PSY-like peptides, as well as recombinant EPFL and MEG, validated their roles in the immune response and growth regulation. Thus, our study showed the complex nature of SSP signaling and shed light on the regulation of SSPs in different plant lineages during infection.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Daria Ganaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- All-Russian Institute for Plant Protection, Pushkin, Russia
| | | | | | - Vassili Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sabina E Alieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna Mamaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
2
|
Liu X, Yang W, Zhang L, Nie F, Gong L, Zhang H. Overexpression of StERECTA enhances drought tolerance in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154353. [PMID: 39332323 DOI: 10.1016/j.jplph.2024.154353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Drought is a major abiotic stresses that severely hinder plant growth and agricultural productivity. The receptor-like kinase gene, ERECTA, has been proved to play important role in promoting the response to abiotic stress in crops. However, the specific molecular mechanisms underlying the drought resistance mediated by ERECTA in potato (Solanum tuberosum L.) are not well understood. In this study, sequence analysis confirmed that the StERECTA gene contains eight leucine-rich repeat (LRR) domains and an S_TKc domain, and these domains were highly conserved in Solanaceae family. Under drought stress, Arabidopsis thaliana strains overexpressing StERECTA showed increased biomass, proline (PRO) content, and antioxidant enzyme activities compared to the wild-type strains while the mutant ERECTA strain (er105) exhibited opposite phenotype. Additionally, StERECTA overexpression upregulated the expression of drought response marker genes (LEA3, DREB2A and P5CS1), improved levels of ABA and auxin, reduced stomatal density and relative expression level of stomatal development related genes (SPCH, FAMA and MUTE). Furthermore, Co-immunoprecipitation (Co-IP) assays demonstrated that StERECTA physically interacted with the YODA protein. In conclusion, our study provides new insights into the role and regulatory mechanism of StERECTA in response to drought stress. These findings may serve as a basis for genetic improvement of potato to enhance their tolerance to abiotic stress.
Collapse
Affiliation(s)
- Xuan Liu
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China; Ningxia Key Laboratory of Agricultural Biotechnology, Yinchuan, China
| | - Wenjing Yang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China; Ningxia Key Laboratory of Agricultural Biotechnology, Yinchuan, China
| | - Li Zhang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China; Ningxia Key Laboratory of Agricultural Biotechnology, Yinchuan, China
| | - Fengjie Nie
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China; Ningxia Key Laboratory of Agricultural Biotechnology, Yinchuan, China
| | - Lei Gong
- Guyuan Branch, Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China.
| |
Collapse
|
3
|
Wybouw B, Zhang X, Mähönen AP. Vascular cambium stem cells: past, present and future. THE NEW PHYTOLOGIST 2024; 243:851-865. [PMID: 38890801 DOI: 10.1111/nph.19897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.
Collapse
Affiliation(s)
- Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Xixi Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
4
|
Liu R, Xu K, Li Y, Zhao W, Ji H, Lei X, Ma T, Ye J, Zhang J, Du H, Cao SK. Investigation on the Potential Functions of ZmEPF/EPFL Family Members in Response to Abiotic Stress in Maize. Int J Mol Sci 2024; 25:7196. [PMID: 39000300 PMCID: PMC11241529 DOI: 10.3390/ijms25137196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The EPF/EPFL gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants. In order to explore and utilize the EPF/EPFL family in maize, the family members were systematically identified, and their chromosomal localization, physicochemical properties, cis-acting element prediction in promoters, phylogenetic tree construction, and expression pattern analysis were carried out using bioinformatics techniques. A total of 18 ZmEPF/EPFL proteins were identified in maize, which are mostly alkaline and a small portion acidic. Subcellular localization results showed that ZmEPF6, ZmEPF12, and ZmEPFL2 are localized in the nucleus and cytoplasm. Analysis of cis-acting elements revealed that members of the ZmEPF/EPFL family contain regulatory elements such as light response, anoxic, low temperature, and hormone response regulatory elements. RT-qPCR results showed that these family members are indeed responding to cold stress and hormone treatments. These results of this study provide a theoretical basis for improving the abiotic stress resistance of maize in future research.
Collapse
Affiliation(s)
- Rui Liu
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
- Department of Biology, Hong Kong Baptist University, Hong Kong, China;
| | - Keli Xu
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Yu Li
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Wanqing Zhao
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Hongjing Ji
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Xiongbiao Lei
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Tian Ma
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Juan Ye
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China;
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewei Du
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Shi-Kai Cao
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
He Y, He X, Wang X, Hao M, Gao J, Wang Y, Yang ZN, Meng X. An EPFL peptide signaling pathway promotes stamen elongation via enhancing filament cell proliferation to ensure successful self-pollination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:1045-1058. [PMID: 36772858 DOI: 10.1111/nph.18806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Proper stamen filament elongation is essential for plant self-pollination and reproduction. Several phytohormones such as jasmonate and gibberellin play important roles in controlling filament elongation, but other endogenous signals involved in this developmental process remain unknown. We report here that three EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family peptides, EPFL4, EPFL5 and EPFL6, act redundantly to promote stamen filament elongation via enhancing filament cell proliferation in Arabidopsis thaliana. Knockout of EPFL4-6 genes led to shortened filaments due to defective filament cell proliferation, resulting in pollination failure and male sterility. Further genetic and biochemical analyses indicated that the ERECTA family and the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs form receptor complexes to perceive EPFL4-6 peptides and promote filament cell proliferation. Moreover, based on both loss- and gain-of-function genetic analyses, the mitogen-activated protein kinase cascade MKK4/MKK5-MPK6 was shown to function downstream of EPFL4-6 to positively regulate cell proliferation in stamen filaments. Together, this study reveals that an EPFL peptide signaling pathway composed of the EPFL4-6 peptide ligands, the ERECTA-SERK receptor complexes and the downstream MKK4/MKK5-MPK6 cascade promotes stamen filament elongation via enhancing filament cell proliferation to ensure successful self-pollination and normal fertility in Arabidopsis.
Collapse
Affiliation(s)
- Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaomeng He
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengyue Hao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiale Gao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yangxiayu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
6
|
Li M, Lv M, Wang X, Cai Z, Yao H, Zhang D, Li H, Zhu M, Du W, Wang R, Wang Z, Kui H, Hou S, Li J, Yi J, Gou X. The EPFL-ERf-SERK signaling controls integument development in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:186-201. [PMID: 36564978 DOI: 10.1111/nph.18701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
As the seed precursor, the ovule produces the female gametophyte (or embryo sac), and the subsequent double fertilization occurs in it. The integuments emerge sequentially from the integument primordia at the early stages of ovule development and finally enwrap the embryo sac gradually during gametogenesis, protecting and nursing the embryo sac. However, the mechanisms regulating integument development are still obscure. In this study, we show that SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES (SERKs) play essential roles during integument development in Arabidopsis thaliana. The serk1/2/3 triple mutant shows arrested integuments and abnormal embryo sacs, similar defects also found in the triple loss-of-function mutants of ERECTA family (ERf) genes. Ovules of serk1/2/3 er erl1/2 show defects similar to er erl1/2 and serk1/2/3. Results of yeast two-hybrid analyses, bimolecular fluorescence complementation (BiFC) analyses, and co-immunoprecipitation assays demonstrated that SERKs interact with ERf, which depends on EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family small peptides. The sextuple mutant epfl1/2/3/4/5/6 shows integument defects similar to both of er erl1/2 and serk1/2/3. Our results demonstrate that ERf-SERK-mediated EPFL signaling orchestrates the development of the female gametophyte and the surrounding sporophytic integuments.
Collapse
Affiliation(s)
- Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Xiaojuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zeping Cai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- College of Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Hongrui Yao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dongyang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenbin Du
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruoshi Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhe Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
7
|
Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, Guo SQ, Lei JJ, Liao B, Chai J, Lin HX. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs. Nat Commun 2023; 14:1640. [PMID: 36964129 PMCID: PMC10039049 DOI: 10.1038/s41467-023-37326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yehui Xiong
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Negoro S, Hirabayashi T, Iwasaki R, Torii KU, Uchida N. EPFL peptide signalling ensures robust self-pollination success under cool temperature stress by aligning the length of the stamen and pistil. PLANT, CELL & ENVIRONMENT 2023; 46:451-463. [PMID: 36419209 DOI: 10.1111/pce.14498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Successful sexual reproduction of plants requires temperature-sensitive processes, and temperature stress sometimes causes developmental asynchrony between male and female reproductive tissues. In Arabidopsis thaliana, self-pollination occurs when the stamen and pistil lengths are aligned in a single flower so that pollens at the stamen tip are delivered to the stigma at the pistil tip. Although intercellular signalling acts in several reproduction steps, how signalling molecules, including secreted peptides, contribute to the synchronous growth of reproductive tissues remains limited. Here, we show that the mutant of the secreted peptide EPIDERMAL PATTERNING FACTOR LIKE 6 (EPFL6), which shows no phenotypes at a moderate temperature, fails in fruit production at a cool temperature due to insufficient elongation of stamens. EPFL6 is expressed in stamen filaments and promotes filament elongation to achieve the alignment of stamen and pistil lengths at a cool temperature. We also found that, at a moderate temperature, all EPFL6-subfamily genes are required for stamen elongation. Furthermore, we showed that ERECTA (ER), known as a common receptor for EPFL-family peptides, mediates the stamen-pistil growth coordination. Lastly, we provided evidence that modulation of ER activity rescues the reproduction failure caused by insufficient stamen elongation by realigning the stamen and pistil lengths.
Collapse
Affiliation(s)
- Satomi Negoro
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tomo Hirabayashi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Department of Molecular Biosciences and Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Jiang H, Chen Y, Liu Y, Shang J, Sun X, Du J. Multifaceted roles of the ERECTA family in plant organ morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7208-7218. [PMID: 36056777 DOI: 10.1093/jxb/erac353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) can participate in multiple signalling pathways and are considered one of the most critical components of the early events of intercellular signalling. As an RLK, the ERECTA family (ERf), which comprises ERECTA (ER), ERECTA-Like1 (ERL1), and ERECTA-Like2 (ERL2) in Arabidopsis, regulates multiple signalling pathways in plant growth and development. Despite its indispensability, detailed information on ERf-manipulated signalling pathways remains elusive. In this review, we attempt to summarize the essential roles of the ERf in plant organ morphogenesis, including shoot apical meristem, stem, and reproductive organ development.
Collapse
Affiliation(s)
- Hengke Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhui Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid MQ, Lin Y, Qiao X, Xiao J, Gray JE, Jin J. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. PLANT PHYSIOLOGY 2022; 190:516-531. [PMID: 35689635 PMCID: PMC9434303 DOI: 10.1093/plphys/kiac278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 05/06/2023]
Abstract
The EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) family of small secreted peptides act to regulate many aspects of plant growth and development; however, their functions are not widely characterized in rice (Oryza sativa). Here, we used clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) technology to individually knockout each of 11 EPF/EPFL genes in the rice cultivar Kasalath. Loss of function of most OsEPF/EPFL genes generated no obvious phenotype alteration, while disruption of OsEPFL2 in Kasalath caused a short or no awn phenotype and reduced grain size. OsEPFL2 is strongly expressed in the young panicle, consistent with a role in regulating awn and grain development. Haplotype analysis indicated that OsEPFL2 can be classified into six major haplotypes. Nucleotide diversity and genetic differentiation analyses suggested that OsEPFL2 was positively selected during the domestication of rice. Our work to systematically investigate the function of EPF/EPFL peptides demonstrates that different members of the same gene family have been independently selected for their ability to regulate a similar biological function and provides perspective on rice domestication.
Collapse
Affiliation(s)
| | | | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Muhammad Qasim Shahid
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yanhui Lin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory of Crop Genetics and Breeding, Hainan Scientific Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Haikou 571100, China
| | - Xiaoyi Qiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Xiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
11
|
Wang N, Yin Z, Zhao Y, Li Z, Dou D, Wei L. Two divergent immune receptors of the allopolyploid Nicotiana benthamiana reinforce the recognition of a fungal microbe-associated molecular pattern VdEIX3. FRONTIERS IN PLANT SCIENCE 2022; 13:968562. [PMID: 36046591 PMCID: PMC9421165 DOI: 10.3389/fpls.2022.968562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The allotetraploid Solanaceae plant Nicotiana benthamiana contains two closely related receptor-like proteins (RLPs), NbEIX2 and NbRXEG1, which regulate the recognition of VdEIX3 and PsXEG1, respectively. VdEIX3, PsXEG1, and their homologs represent two types of microbe-associated molecular patterns (MAMPs) that are widespread in diverse pathogens. Here, we report that NbRXEG1 also participates in VdEIX3 recognition. Both eix2 and rxeg1 single mutants exhibited significantly impaired but not abolished ability to mediate VdEIX3-triggered immune responses, which are nearly abolished in eix2 rxeg1 double mutants. Moreover, a dominant negative mutant of eix2 that contains a 60 bp deletion failed to respond to VdEIX3 and could suppress VdEIX3-induced cell death in the wild-type N. benthamiana. Further phylogenetic analyses showed that NbEIX2 and NbRXEG1 are obtained from different diploid ancestors by hybridization. These results demonstrate that the allotetraploid N. benthamiana recognizes two types of MAMPs by two homologous but diverged RLPs, which provides a model in which an allopolyploid plant probably exhibits defense hybrid vigor by acquiring divergent immune receptors from different ancestors.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
12
|
Fujihara R, Uchida N, Tameshige T, Kawamoto N, Hotokezaka Y, Higaki T, Simon R, Torii KU, Tasaka M, Aida M. The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:317-322. [PMID: 34782818 PMCID: PMC8562585 DOI: 10.5511/plantbiotechnology.21.0508a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 06/01/2023]
Abstract
The shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental functions remain unknown. This study aimed to analyze the role of EPFL2 during embryogenesis. We found that cotyledon growth was reduced in its loss-of-function mutants, and this phenotype was associated with the reduction of auxin response peaks at the tips of the primordia. The reduced cotyledon size of the mutant embryo recovered in germinating seedlings, indicating the presence of a factor that acted redundantly with EPFL2 to promote cotyledon growth in late embryogenesis. Our analysis suggests that the boundary domain between the cotyledon primordia acts as a signaling center that organizes auxin response peaks and promotes cotyledon growth.
Collapse
Affiliation(s)
- Rina Fujihara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Nozomi Kawamoto
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany
| | - Yugo Hotokezaka
- Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
13
|
Yuan B, Wang H. Peptide Signaling Pathways Regulate Plant Vascular Development. FRONTIERS IN PLANT SCIENCE 2021; 12:719606. [PMID: 34539713 PMCID: PMC8446620 DOI: 10.3389/fpls.2021.719606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Plant small peptides, including CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) and Epidermal Patterning Factor-Like (EPFL) peptides, play pivotal roles in coordinating developmental processes through cell-cell communication. Recent studies have revealed that the phloem-derived CLE peptides, CLE41/44 and CLE42, promote (pro-)cambial cell proliferation and inhibit xylem cell differentiation. The endodermis-derived EPFL peptides, EPFL4 and EPFL6, modulate vascular development in the stem. Further, several other peptide ligands CLE9, CLE10, and CLE45 play crucial roles in regulating vascular development in the root. The peptide signaling pathways interact with each other and crosstalk with plant hormone signals. In this mini-review, we summtarize the recent advances on peptides function in vascular development and discuss future perspectives for the research of the CLE and EPFL peptides.
Collapse
Affiliation(s)
- Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
- Institute for System Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
14
|
Blümke P, Schlegel J, Gonzalez-Ferrer C, Becher S, Pinto KG, Monaghan J, Simon R. Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4853-4870. [PMID: 33909893 DOI: 10.1093/jxb/erab183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The receptor-like kinases (RLKs) CLAVATA1 (CLV1) and BARELY ANY MERISTEMs (BAM1-BAM3) form the CLV1 family (CLV1f), which perceives peptides of the CLV3/EMBRYO SURROUNDING REGION (ESR)-related (CLE) family within various signaling pathways of Arabidopsis thaliana. CLE peptide signaling, which is required for meristem size control, vascular development, and pathogen responses, involves the formation of receptor complexes at the plasma membrane. These complexes comprise RLKs and co-receptors in varying compositions depending on the signaling context, and regulate expression of target genes, such as WUSCHEL (WUS). How the CLE signal is transmitted intracellularly after perception at the plasma membrane is not known in detail. Here, we found that the membrane-associated receptor-like cytoplasmic kinase (RLCK) MAZZA (MAZ) and additional members of the Pti1-like protein family interact in vivo with CLV1f receptors. MAZ, which is widely expressed throughout the plant, localizes to the plasma membrane via post-translational palmitoylation, potentially enabling stimulus-triggered protein re-localization. We identified a role for a CLV1-MAZ signaling module during stomatal and root development, and redundancy could potentially mask other phenotypes of maz mutants. We propose that MAZ, and related RLCKs, mediate CLV1f signaling in a variety of developmental contexts, paving the way towards understanding the intracellular processes after CLE peptide perception.
Collapse
Affiliation(s)
- Patrick Blümke
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jenia Schlegel
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Carmen Gonzalez-Ferrer
- Department of Biology, Queen's University, 116 Barrie Street, Kingston ON K7L 3N6,Canada
| | - Sabine Becher
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Karine Gustavo Pinto
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jacqueline Monaghan
- Department of Biology, Queen's University, 116 Barrie Street, Kingston ON K7L 3N6,Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Sakai K, Citerne S, Antelme S, Le Bris P, Daniel S, Bouder A, D'Orlando A, Cartwright A, Tellier F, Pateyron S, Delannoy E, Laudencia-Chingcuanco D, Mouille G, Palauqui JC, Vogel J, Sibout R. BdERECTA controls vasculature patterning and phloem-xylem organization in Brachypodium distachyon. BMC PLANT BIOLOGY 2021; 21:196. [PMID: 33892630 PMCID: PMC8067424 DOI: 10.1186/s12870-021-02970-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The vascular system of plants consists of two main tissue types, xylem and phloem. These tissues are organized into vascular bundles that are arranged into a complex network running through the plant that is essential for the viability of land plants. Despite their obvious importance, the genes involved in the organization of vascular tissues remain poorly understood in grasses. RESULTS We studied in detail the vascular network in stems from the model grass Brachypodium distachyon (Brachypodium) and identified a large set of genes differentially expressed in vascular bundles versus parenchyma tissues. To decipher the underlying molecular mechanisms of vascularization in grasses, we conducted a forward genetic screen for abnormal vasculature. We identified a mutation that severely affected the organization of vascular tissues. This mutant displayed defects in anastomosis of the vascular network and uncommon amphivasal vascular bundles. The causal mutation is a premature stop codon in ERECTA, a LRR receptor-like serine/threonine-protein kinase. Mutations in this gene are pleiotropic indicating that it serves multiple roles during plant development. This mutant also displayed changes in cell wall composition, gene expression and hormone homeostasis. CONCLUSION In summary, ERECTA has a pleiotropic role in Brachypodium. We propose a major role of ERECTA in vasculature anastomosis and vascular tissue organization in Brachypodium.
Collapse
Affiliation(s)
- Kaori Sakai
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sébastien Antelme
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Philippe Le Bris
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | | | | | | | - Amy Cartwright
- United States Department of Energy Joint Genome Institute, Berkeley, California, 94598, USA
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | | - Gregory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jean Christophe Palauqui
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - John Vogel
- United States Department of Energy Joint Genome Institute, Berkeley, California, 94598, USA
- University of California, Berkeley, CA, USA
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
- INRAE, UR BIA, F-44316, Nantes, France.
| |
Collapse
|
16
|
Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. PLANT PHYSIOLOGY 2020; 182:1636-1644. [PMID: 31796560 PMCID: PMC7140915 DOI: 10.1104/pp.19.01259] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/17/2019] [Indexed: 05/18/2023]
Abstract
CLE peptide and related signaling pathways take up prominent roles in the development of both vascular tissues, xylem and phloem.
Collapse
Affiliation(s)
- Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Zhao H, Guo M, Yan M, Cheng H, Liu Y, She Z, Lai L, Shi C, Zhang M, Li Y, Lin D, Qin Y. Comparative Expression Profiling Reveals Genes Involved in Megasporogenesis. PLANT PHYSIOLOGY 2020; 182:2006-2024. [PMID: 32054780 PMCID: PMC7140934 DOI: 10.1104/pp.19.01254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Megasporogenesis is a key step during ovule development in angiosperms, but the small number and inaccessibility of these cells have hampered molecular and genome-wide studies. Thus, many questions remain regarding the molecular basis of cell specification, differentiation, and development in the female gametophyte. Here, taking advantage of the correlation between spikelet length and ovule development in rice (Oryza sativa), we studied the transcriptome dynamics of young ovules at three stages, the archesporial cell, the megaspore mother cell before meiosis, and the functional megaspore after meiosis, using expression profiling based on RNA sequencing. Our analysis showed that 5,274 genes were preferentially expressed in ovules during megasporogenesis as compared to ovules at the mature female gametophyte stage. Out of these, 958 (18.16%) genes were archesporial cell- and/or megaspore mother cell-preferential genes, and represent a significant enrichment of genes involved in hormone signal transduction and plant pathogen interaction pathways, as well as genes encoding transcription factors. The expression patterns of nine genes that were preferentially expressed in ovules of different developmental stages, including the OsERECTA2 (OsER2) receptor-like kinase gene, were confirmed by in situ hybridization. We further characterized the OsER2 loss-of-function mutant, which had an excessive number of female germline cells and an abnormal female gametophyte, suggesting that OsER2 regulates germline cell specification during megasporogenesis in rice. These results expand our understanding of the molecular control of megasporogenesis in rice and contribute to the functional studies of genes involved in megasporogenesis.
Collapse
Affiliation(s)
- Heming Zhao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingliang Guo
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maokai Yan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Han Cheng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Linyi Lai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Shi
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minqian Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deshu Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
18
|
Conklin PA, Strable J, Li S, Scanlon MJ. On the mechanisms of development in monocot and eudicot leaves. THE NEW PHYTOLOGIST 2019; 221:706-724. [PMID: 30106472 DOI: 10.1111/nph.15371] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 706 I. Introduction 707 II. Leaf zones in monocot and eudicot leaves 707 III. Monocot and eudicot leaf initiation: differences in degree and timing, but not kind 710 IV. Reticulate and parallel venation: extending the model? 711 V. Flat laminar growth: patterning and coordination of adaxial-abaxial and mediolateral axes 713 VI. Stipules and ligules: ontogeny of primordial elaborations 715 VII. Leaf architecture 716 VIII. Stomatal development: shared and diverged mechanisms for making epidermal pores 717 IX. Conclusion 719 Acknowledgements 720 References 720 SUMMARY: Comparisons of concepts in monocot and eudicot leaf development are presented, with attention to the morphologies and mechanisms separating these angiosperm lineages. Monocot and eudicot leaves are distinguished by the differential elaborations of upper and lower leaf zones, the formation of sheathing/nonsheathing leaf bases and vasculature patterning. We propose that monocot and eudicot leaves undergo expansion of mediolateral domains at different times in ontogeny, directly impacting features such as venation and leaf bases. Furthermore, lineage-specific mechanisms in compound leaf development are discussed. Although models for the homologies of enigmatic tissues, such as ligules and stipules, are proposed, tests of these hypotheses are rare. Likewise, comparisons of stomatal development are limited to Arabidopsis and a few grasses. Future studies may investigate correlations in the ontogenies of parallel venation and linear stomatal files in monocots, and the reticulate patterning of veins and dispersed stoma in eudicots. Although many fundamental mechanisms of leaf development are shared in eudicots and monocots, variations in the timing, degree and duration of these ontogenetic events may contribute to key differences in morphology. We anticipate that the incorporation of an ever-expanding number of sequenced genomes will enrich our understanding of the developmental mechanisms generating eudicot and monocot leaves.
Collapse
Affiliation(s)
- Phillip A Conklin
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Shujie Li
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Serrano-Mislata A, Sablowski R. The pillars of land plants: new insights into stem development. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:11-17. [PMID: 29763857 PMCID: PMC6250904 DOI: 10.1016/j.pbi.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
In spite of its central importance in evolution, plant architecture and crop improvement, stem development remains poorly understood relative to other plant organs. Here, we summarise current knowledge of stem ontogenesis and its regulation, including insights from new image analysis and biophysical approaches. The stem initiates in the rib zone (RZ) of the shoot apical meristem, under transcriptional control by DELLA and BLH proteins. Links have emerged between these regulators and cell proliferation, patterning and oriented growth in the RZ. During subsequent internode elongation, cell wall properties and mechanics have been analysed in detail, revealing pectin modification as a prominent control point. Recent work has also highlighted signalling to coordinate growth of stem tissues with different mechanical properties.
Collapse
Affiliation(s)
| | - Robert Sablowski
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
20
|
Abstract
Shoot architecture is determined by the organization and activities of apical, axillary, intercalary, secondary, and inflorescence meristems and by the subsequent development of stems, leaves, shoot branches, and inflorescences. In this review, we discuss the unifying principles of hormonal and genetic control of shoot architecture including advances in our understanding of lateral branch outgrowth; control of stem elongation, thickness, and angle; and regulation of inflorescence development. We focus on recent progress made mainly in Arabidopsis thaliana, rice, pea, maize, and tomato, including the identification of new genes and mechanisms controlling shoot architecture. Key advances include elucidation of mechanisms by which strigolactones, auxins, and genes such as IDEAL PLANT ARCHITECTURE1 and TEOSINTE BRANCHED1 control shoot architecture. Knowledge now available provides a foundation for rational approaches to crop breeding and the generation of ideotypes with defined architectural features to improve performance and productivity.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Steven M Smith
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- School of Natural Sciences, University of Tasmania, Hobart 7001, Australia;
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Zhang Y, Li S, Xue S, Yang S, Huang J, Wang L. Phylogenetic and CRISPR/Cas9 Studies in Deciphering the Evolutionary Trajectory and Phenotypic Impacts of Rice ERECTA Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:473. [PMID: 29692796 PMCID: PMC5902711 DOI: 10.3389/fpls.2018.00473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
The ERECTA family genes (ERfs) have been found to play diverse functions in Arabidopsis, including controlling cell proliferation and cell growth, regulating stomata patterning, and responding to various stresses. This wide range of functions has rendered them as a potential candidate for crop improvement. However, information on their functional roles, particularly their morphological impact, in crop genomes, such as rice, is limited. Here, through evolutionary prediction, we first depict the evolutionary trajectory of the ER family, and show that the ER family is actually highly conserved across different species, suggesting that most of their functions may also be observed in other plant species. We then take advantage of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease 9) system to assess their morphological impact on one of the most important crops, rice. Loss-of-function mutants of OsER1 and OsER2 display shortened plant stature and reduced panicle size, suggesting they possibly also functioned in regulating cell proliferation and cell growth in rice. In addition to functions similar to that in Arabidopsis, we also find clues that rice ERfs may play unique functional roles. The OsER2 displayed more severe phenotypic changes than OsER1, indicating putative differentiation in their functions. The OsERL might be of essential in its function, and the proper function of all three rice ER genes might be dependent of their genetic background. Future investigations relating to these functions are key to exploiting ERfs in crop development.
Collapse
Affiliation(s)
| | | | | | | | - Ju Huang
- *Correspondence: Ju Huang, Long Wang,
| | - Long Wang
- *Correspondence: Ju Huang, Long Wang,
| |
Collapse
|
22
|
Etchells JP, Turner SR. Realizing pipe dreams - a detailed picture of vascular development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1-4. [PMID: 28013229 PMCID: PMC5183087 DOI: 10.1093/jxb/erw482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK,
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
23
|
Abstract
Vascular tissue, comprising xylem and phloem, is responsible for the transport of water and nutrients throughout the plant body. Such tissue is continually produced from stable populations of stem cells, specifically the procambium during primary growth and the cambium during secondary growth. As the majority of plant biomass is produced by the cambium, there is an obvious demand for an understanding of the genetic mechanisms that control the rate of vascular cell division. Moreover, wood is an industrially important product of the cambium, and research is beginning to uncover similar mechanisms in trees such as poplar. This review focuses upon recent work that has identified the major molecular pathways that regulate procambial and cambial activity.
Collapse
Affiliation(s)
- Liam Campbell
- University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Turner
- University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|