1
|
Dias HM, de Toledo NA, Mural RV, Schnable JC, Van Sluys MA. THI1 Gene Evolutionary Trends: A Comprehensive Plant-Focused Assessment via Data Mining and Large-Scale Analysis. Genome Biol Evol 2024; 16:evae212. [PMID: 39400049 PMCID: PMC11521341 DOI: 10.1093/gbe/evae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 10/15/2024] Open
Abstract
Molecular evolution analysis typically involves identifying selection pressure and reconstructing evolutionary trends. This process usually requires access to specific data related to a target gene or gene family within a particular group of organisms. While recent advancements in high-throughput sequencing techniques have resulted in the rapid accumulation of extensive genomics and transcriptomics data and the creation of new databases in public repositories, extracting valuable insights from such vast data sets remains a significant challenge for researchers. Here, we elucidated the evolutionary history of THI1, a gene responsible for encoding thiamine thiazole synthase. The thiazole ring is a precursor for vitamin B1 and a crucial cofactor in primary metabolic pathways. A thorough search of complete genomes available within public repositories reveals 702 THI1 homologs of Archaea and Eukarya. Throughout its diversification, the plant lineage has preserved the THI1 gene by incorporating the N-terminus and targeting the chloroplasts. Likewise, evolutionary pressures and lifestyle appear to be associated with retention of TPP riboswitch sites and consequent dual posttranscriptional regulation of the de novo biosynthesis pathway in basal groups. Multicopy retention of THI1 is not a typical plant pattern, even after successive genome duplications. Examining cis-regulatory sites in plants uncovers two shared motifs across all plant lineages. A data mining of 484 transcriptome data sets supports the THI1 homolog expression under a light/dark cycle response and a tissue-specific pattern. Finally, the work presented brings a new look at public repositories as an opportunity to explore evolutionary trends to THI1.
Collapse
Affiliation(s)
- Henrique Moura Dias
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Naiara Almeida de Toledo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Ravi V Mural
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| |
Collapse
|
2
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
3
|
Faustino M, Lourenço T, Strobbe S, Cao D, Fonseca A, Rocha I, Van Der Straeten D, Oliveira MM. OsTH1 is a key player in thiamin biosynthesis in rice. Sci Rep 2024; 14:13591. [PMID: 38866808 PMCID: PMC11169455 DOI: 10.1038/s41598-024-62326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Thiamin is a vital nutrient that acts as a cofactor for several enzymes primarily localized in the mitochondria. These thiamin-dependent enzymes are involved in energy metabolism, nucleic acid biosynthesis, and antioxidant machinery. The enzyme HMP-P kinase/thiamin monophosphate synthase (TH1) holds a key position in thiamin biosynthesis, being responsible for the phosphorylation of HMP-P into HMP-PP and for the condensation of HMP-PP and HET-P to form TMP. Through mathematical kinetic model, we have identified TH1 as a critical player for thiamin biofortification in rice. We further focused on the functional characterization of OsTH1. Sequence and gene expression analysis, along with phylogenetic studies, provided insights into OsTH1 bifunctional features and evolution. The indispensable role of OsTH1 in thiamin biosynthesis was validated by heterologous expression of OsTH1 and successful complementation of yeast knock-out mutants impaired in thiamin production. We also proved that the sole OsTH1 overexpression in rice callus significantly improves B1 concentration, resulting in 50% increase in thiamin accumulation. Our study underscores the critical role of OsTH1 in thiamin biosynthesis, shedding light on its bifunctional nature and evolutionary significance. The significant enhancement of thiamin accumulation in rice callus upon OsTH1 overexpression constitutes evidence of its potential application in biofortification strategies.
Collapse
Affiliation(s)
- Maria Faustino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | - Tiago Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
- University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | - André Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium.
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
4
|
Li Y, Grotewold E, Dudareva N. Enough is enough: feedback control of specialized metabolism. TRENDS IN PLANT SCIENCE 2024; 29:514-523. [PMID: 37625949 DOI: 10.1016/j.tplants.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Recent advances in our understanding of plant metabolism have highlighted the significance of specialized metabolites in the regulation of gene expression associated with biosynthetic networks. This opinion article focuses on the molecular mechanisms of small-molecule-mediated feedback regulation at the transcriptional level and its potential modes of action, including metabolite signal perception, the nature of the sensor, and the signaling transduction mechanisms leading to transcriptional and post-transcriptional regulation, based on evidence available from plants and other kingdoms of life. We also discuss the challenges associated with identifying the occurrences, effects, and localization of small molecule-protein interactions. Further understanding of small-molecule-controlled metabolic fluxes will enable rational design of transcriptional regulation systems in metabolic engineering to produce high-value specialized metabolites.
Collapse
Affiliation(s)
- Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Johari NAF, Abidin AAZ, Ismail NFN, Yusof ZNB. Endophytic Bacteria Induce Thiamine (Vitamin B1) Production in Oil Palm ( Elaeis guineensis). Trop Life Sci Res 2024; 35:1-12. [PMID: 39262869 PMCID: PMC11383633 DOI: 10.21315/tlsr2024.35.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/25/2023] [Indexed: 09/13/2024] Open
Abstract
Thiamine or vitamin B1 is a micronutrient that has a crucial function in all living organisms and involved in several biochemical reactions. Concerning the capability of thiamine in inducing plant health, a study was carried out by applying bacterial endophytes (Pseudomonas aeruginosa and Burkholderia cepacia cultures) in four-month-old oil palm seedlings (Elaeis guineensis) via soil drenching technique to evaluate the effect towards thiamine. Spear leaves were sampled day 0 to 14 to analyse the expression of gene coding for the first two enzymes thiamine biosynthesis pathway, THI4 and THIC via qPCR analysis. The gene expression by qPCR showed a significant increase of up to 3-fold while high-performance liquid chromatography (HPLC) analysis for quantification of thiamine and its derivatives accumulated ~ 20-fold in total thiamine when compared to control seedlings. However, concentration of thiamine metabolites was negatively correlated with the expression of THIC and THI4 gene transcripts suggesting post-transcriptional regulation mediated by an RNA regulatory element, a thiamine pyrophosphate (TPP) riboswitch. Our findings demonstrated that the application of bacterial endophytes affected thiamine biosynthesis and enhanced overall thiamine content. This might increase the plant's resistance towards stress and would be useful in oil palm maintenance for maximum yield production.
Collapse
Affiliation(s)
- Nur Asna Faiqah Johari
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Farhah Nabihan Ismail
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Complex (BBRC), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Strobbe S, Verstraete J, Fitzpatrick TB, Stove C, Van Der Straeten D. A protocol for a turbidimetric assay using a Saccharomyces cerevisiae thiamin biosynthesis mutant to estimate total vitamin B 1 content in plant tissue samples. PLANT METHODS 2023; 19:144. [PMID: 38093342 PMCID: PMC10717716 DOI: 10.1186/s13007-023-01117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Understanding thiamin (thiamine; vitamin B1) metabolism in plants is crucial, as it impacts plant nutritional value as well as stress tolerance. Studies aimed at elucidating novel aspects of thiamin in plants rely on adequate assessment of thiamin content. Mass spectrometry-based methods provide reliable quantification of thiamin as well as closely related biomolecules. However, these techniques require expensive equipment and expertise. Microbiological turbidimetric assays can evaluate the presence of thiamin in a given sample, only requiring low-cost, standard lab equipment. Although these microbiological assays do not reach the accuracy provided by mass spectrometry-based methods, the ease with which they can be deployed in an inexpensive and high-throughput manner, makes them a favorable method in many circumstances. However, the thiamin research field could benefit from a detailed step-by-step protocol to perform such assays as well as a further assessment of its potential and limitations. RESULTS Here, we show that the Saccharomyces cerevisiae thiamin biosynthesis mutant thi6 is an ideal candidate to be implemented in a turbidimetric assay aimed at assessing the content of thiamin and its phosphorylated equivalents (total vitamer B1). An optimized protocol was generated, adapted from a previously established microbiological assay using the thi4 mutant. A step-by-step guidance for this protocol is presented. Furthermore, the applicability of the assay is illustrated by assessment of different samples, including plant as well as non-plant materials. In doing so, our work provides an extension of the applicability of the microbiological assay on top of providing important considerations upon implementing the protocol. CONCLUSIONS An inexpensive, user-friendly protocol, including step-by-step guidance, which allows adequate estimation of vitamer B1 content of samples, is provided. The method is well-suited to screen materials to identify altered vitamer B1 content, such as in metabolic engineering or screening of germplasm.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L, Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
Konecny T, Nikoghosyan M, Binder H. Machine learning extracts marks of thiamine's role in cold acclimation in the transcriptome of Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1303542. [PMID: 38126012 PMCID: PMC10731266 DOI: 10.3389/fpls.2023.1303542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Introduction The escalating challenge of climate change has underscored the critical need to understand cold defense mechanisms in cultivated grapevine Vitis vinifera. Temperature variations can affect the growth and overall health of vine. Methods We used Self Organizing Maps machine learning method to analyze gene expression data from leaves of five Vitis vinifera cultivars each treated by four different temperature conditions. The algorithm generated sample-specific "portraits" of the normalized gene expression data, revealing distinct patterns related to the temperature conditions applied. Results Our analysis unveiled a connection with vitamin B1 (thiamine) biosynthesis, suggesting a link between temperature regulation and thiamine metabolism, in agreement with thiamine related stress response established in Arabidopsis before. Furthermore, we found that epigenetic mechanisms play a crucial role in regulating the expression of stress-responsive genes at low temperatures in grapevines. Discussion Application of Self Organizing Maps portrayal to vine transcriptomics identified modules of coregulated genes triggered under cold stress. Our machine learning approach provides a promising option for transcriptomics studies in plants.
Collapse
Affiliation(s)
- Tomas Konecny
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Maria Nikoghosyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Bioinformatics Group, Institute of Molecular Biology Institute of National Academy of Sciences RA, Yerevan, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Husn M, Amin Z, Ali Y, Kanwal L, Sabir K, Shah SA, Shah SF. Neuroprotective effects of vitamin B1 on memory impairment and suppression of pro-inflammatory cytokines in traumatic brain injury. Metab Brain Dis 2023; 38:2175-2184. [PMID: 37314619 DOI: 10.1007/s11011-023-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Traumatic Brain Injury (TBI) remains one of the prevailing disorders that affect millions of people around the globe. There is a cascade of secondary attributes attached to TBI including excitotoxicity, axonal degeneration, neuroinflammation, oxidative stress, and apoptosis. Neuroinflammation is caused due to the activation of microglia along with pro-inflammatory cytokines. The activation of microglia triggers TNF-α which sequentially results in the triggering and upregulation of NF-kB. The aim of the current research was to investigate vitamin B1's potential as neuroprotective agent against TBI-induced neuroinflammation arbitrated memory impairment together with pre- and post-synaptic dysfunction in an adult albino male mice model. TBI was induced using the weight-drop method which caused the microglial activation resulting in neuroinflammation along with synaptic dysfunction leading to the memory impairment of the adult mice. Vitamin B1 was administered for seven days via the intraperitoneal pathway. To analyze the memory impairment and efficacy of vitamin B1, Morris water maze and Y-maze tests were performed. The escape latency time and short-term memories of the experimental mice treated with vitamin B1 were significantly different from the reference mice. The western blot results showed that vitamin B1 has reduced neuroinflammation by downregulating proinflammatory cytokines (NFκ-B, TNF- α). Vitamin B1 also proved its worthiness as a convincing neuroprotective agent by reducing memory dysfunction and recovering the activities of pre- and post-synapse via upregulation of synaptophysin and Postsynaptic density protein 95 (PSD-95).
Collapse
Affiliation(s)
- Mansoor Husn
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Zarnosh Amin
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Yousaf Ali
- Department of Chemistry, Federal Government College Batkhela, FGEIs (C/G), Khyber Pakhtunkhwa, Pakistan.
- Faculty of Allied Health Sciences, Iqra National University Swat Campus, Khyber Pakhtunkhwa, Pakistan.
| | - Lubna Kanwal
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, 0000-0003-2618-3004, Pakistan
| | - Kehkashan Sabir
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
- Department of Biology The University of Haripur, Haripur, Pakistan
| | - Syed Farhan Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| |
Collapse
|
9
|
Wang J, Yu Z, Peng Y, Xu B. Insights into prevention mechanisms of bioactive components from healthy diets against Alzheimer's disease. J Nutr Biochem 2023:109397. [PMID: 37301484 DOI: 10.1016/j.jnutbio.2023.109397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in which senile plaques, neurofibrillary tangles, insulin resistance, oxidative stress, chronic neuroinflammation, and abnormal neurotransmission are the potential mechanisms involved in its onset and development. Although it is still an intractable disorder, diet intervention has been developed as an innovative strategy for AD prevention. Some bioactive compounds and micronutrients from food, including soy isoflavones, rutin, vitamin B1, etc., have exhibited numerous neuronal health-promoting effects in both in vivo and in vitro studies. It is well known that their antiapoptotic, antioxidative, and anti-inflammatory properties prevent the neuronal or glial cells from injury or death, minimize oxidative damage, inhibit the production of proinflammatory cytokines by modulating typical signaling pathways of MAPK, NF-kβ, and TLR, and further reduce Aβ genesis and tau hyperphosphorylation. However, parts of the dietary components trigger AD-related proteins productions and inflammasome as well as inflammatory gene upregulation. This review summarized the neuroprotective or nerve damage-promoting role and underlying molecular mechanisms of flavonoids, vitamins, and fatty acids via the data from library databases, PubMed, and journal websites, which provides a comprehensive analysis of the prevention potential of these dietary components against AD.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
10
|
Moura Dias H, Vieira AP, de Jesus EM, de Setta N, Barros G, Van Sluys MA. Functional and comparative analysis of THI1 gene in grasses with a focus on sugarcane. PeerJ 2023; 11:e14973. [PMID: 37214086 PMCID: PMC10194071 DOI: 10.7717/peerj.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023] Open
Abstract
De novo synthesis of thiamine (vitamin B1) in plants depends on the action of thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae, where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1 is observed in Panicoideae that remains in many modern monocots, including sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we identified ScTHI1-2 alleles showing differences in their sequence, indicating divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor. The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start codon ATG and has cis-regulatory elements that putatively bind to transcription factors associated with development, growth, development and biological rhythms. An experiment set to compare gene expression levels in different tissues across the sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in meristem and culm, which varied with the plant age. Finally, yeast complementation studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken together, the present work supports the existence of multiple origins of THI1 harboring genomic regions in Poaceae with predicted functional redundancy. In addition, it questions the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.
Collapse
Affiliation(s)
| | | | | | - Nathalia de Setta
- Botanica/IB, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Universidade Federal do ABC, Sao Bernardo do Campo, Sao Paulo, Brazil
| | - Gesiele Barros
- Botanica/IB, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
11
|
Safiul Azam FM, Lian T, Liang Q, Wang W, Zhang C, Jiang L. Variation of vitamin B contents in maize inbred lines: Potential genetic resources for biofortification. Front Nutr 2022; 9:1029119. [PMID: 36337650 PMCID: PMC9634661 DOI: 10.3389/fnut.2022.1029119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin B and its derivatives possess diverse physiological functions and are essential micronutrients for humans. Their variation in crops is important for the identification of genetic resources used to develop new varieties with enhanced vitamin B. In this research, remarkable variations were observed in kernels of 156 maize inbred lines, ranging from 107.61 to 2654.54 μg per 100 g for vitamin B1, 1.19-37.37 μg per 100 g for B2, 19.60-213.75 μg per 100 g for B3, 43.47-590.86 μg per 100 g for B5, and 138.59-1065.11 μg per 100 g for B6. Growing inbreeds in Hainan and Hebei provinces of China revealed environmental and genotype interactions among these vitamins and the correlations between them in maize grain. Several inbred lines were identified as good sources of vitamin B and promising germplasms for maize breeding, namely By855 and Si273 are overall rich in all the studied vitamins, and GY386B and CML118 are specially enriched with derivatives of vitamin B6. The present study can assist maize breeders with germplasm resources of vitamin B for biofortification to offer people nutritious foods.
Collapse
Affiliation(s)
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Yin H, Wang Z, Li H, Zhang Y, Yang M, Cui G, Zhang P. MsTHI1 overexpression improves drought tolerance in transgenic alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:992024. [PMID: 36160983 PMCID: PMC9495609 DOI: 10.3389/fpls.2022.992024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
In recent years, drought stress caused by global warming has become a major constraint on agriculture. The thiamine thiazole synthase (THI1) is responsible for controlling thiamine production in plants displaying a response to various abiotic stresses. Nonetheless, most of the THI1 activities in plants remain largely unknown. In this study, we extracted MsTHI1 from alfalfa and demonstrated its beneficial impact on improving the resistance of plants to stress conditions. The highest levels of MsTHI1 expression were identified in alfalfa leaves, triggered by exposure to cold, drought, salt, or alkaline conditions. The upregulation of MsTHI1 in drought-stressed transgenic plants resulted in enhanced accumulation of vitamin B1 (VB1), chlorophyll a (Chl a), chlorophyll b (Chl b), soluble protein, higher soil and plant analyzer development (SPAD) value, and the activity of peroxidase (POD), maintained Fv/Fm, and decreased lipid peroxidation. Moreover, overexpression of MsTHI1 upregulated the transcription of THI4, TPK1, RbcX2, Cu/Zn-SOD, CPK13, and CPK32 and downregulated the transcription of TH1 and CPK17 in transgenic alfalfa under drought stress. These results suggested that MsTHI1 enhances drought tolerance by strengthening photosynthesis, regulating the antioxidant defense system, maintaining osmotic homeostasis, and mediating plant signal transduction.
Collapse
|
13
|
Liu Z, Farkas P, Wang K, Kohli M, Fitzpatrick TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:662-682. [PMID: 35673947 PMCID: PMC9544542 DOI: 10.1111/tpj.15859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
B vitamins are a group of water-soluble micronutrients that are required in all life forms. With the lack of biosynthetic pathways, humans depend on dietary uptake of these compounds, either directly or indirectly, from plant sources. B vitamins are frequently given little consideration beyond their role as enzyme accessory factors and are assumed not to limit metabolism. However, it should be recognized that each individual B vitamin is a family of compounds (vitamers), the regulation of which has dedicated pathways. Moreover, it is becoming increasingly evident that individual family members have physiological relevance and should not be sidelined. Here, we elaborate on the known forms of vitamins B1 , B6 and B9 , their distinct functions and importance to metabolism, in both human and plant health, and highlight the relevance of vitamer homeostasis. Research on B vitamin metabolism over the past several years indicates that not only the total level of vitamins but also the oft-neglected homeostasis of the various vitamers of each B vitamin is essential to human and plant health. We briefly discuss the potential of plant biology studies in supporting human health regarding these B vitamins as essential micronutrients. Based on the findings of the past few years we conclude that research should focus on the significance of vitamer homeostasis - at the organ, tissue and subcellular levels - which could improve the health of not only humans but also plants, benefiting from cross-disciplinary approaches and novel technologies.
Collapse
Affiliation(s)
- Zeguang Liu
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Peter Farkas
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Morgan‐Océane Kohli
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| |
Collapse
|
14
|
Li W, Mi X, Jin X, Zhang D, Zhu G, Shang X, Zhang D, Guo W. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:374-390. [PMID: 35506325 DOI: 10.1111/tpj.15793] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Global climate changes cause an increase of abiotic and biotic stresses that tremendously threaten the world's crop security. However, studies on broad-spectrum response pathways involved in biotic and abiotic stresses are relatively rare. Here, by comparing the time-dependent transcriptional changes and co-expression analysis of cotton (Gossypium hirsutum) root tissues under abiotic and biotic stress conditions, we discovered the common stress-responsive genes and stress metabolism pathways under different stresses, which included the circadian rhythm, thiamine and galactose metabolism, carotenoid, phenylpropanoid, flavonoid, and zeatin biosynthesis, and the mitogen-activated protein kinase signaling pathway. We found that thiamine metabolism was an important intersection between abiotic and biotic stresses; the key thiamine synthesis genes, GhTHIC and GhTHI1, were highly induced at the early stage of stresses. We confirmed that thiamine was crucial and necessary for cotton growth and development, and its deficiency could be recovered by exogenous thiamine supplement. Furthermore, we revealed that exogenous thiamine enhanced stress tolerance in cotton via increasing calcium signal transduction and activating downstream stress-responsive genes. Overall, our studies demonstrated that thiamine played a crucial role in the tradeoff between plant health and stress resistance. The thiamine deficiency caused by stresses could transiently induce upregulation of thiamine biosynthetic genes in vivo, while it could be totally salvaged by exogenous thiamine application, which could significantly improve cotton broad-spectrum stress tolerance and enhance plant growth and development.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Daiwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Mangel N, Fudge JB, Gruissem W, Fitzpatrick TB, Vanderschuren H. Natural Variation in Vitamin B 1 and Vitamin B 6 Contents in Rice Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:856880. [PMID: 35444674 PMCID: PMC9014206 DOI: 10.3389/fpls.2022.856880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 05/03/2023]
Abstract
Insufficient dietary intake of micronutrients contributes to the onset of deficiencies termed hidden hunger-a global health problem affecting approximately 2 billion people. Vitamin B1 (thiamine) and vitamin B6 (pyridoxine) are essential micronutrients because of their roles as enzymatic cofactors in all organisms. Metabolic engineering attempts to biofortify rice endosperm-a poor source of several micronutrients leading to deficiencies when consumed monotonously-have led to only minimal improvements in vitamin B1 and B6 contents. To determine if rice germplasm could be exploited for biofortification of rice endosperm, we screened 59 genetically diverse accessions under greenhouse conditions for variation in vitamin B1 and vitamin B6 contents across three tissue types (leaves, unpolished and polished grain). Accessions from low, intermediate and high vitamin categories that had similar vitamin levels in two greenhouse experiments were chosen for in-depth vitamer profiling and selected biosynthesis gene expression analyses. Vitamin B1 and B6 contents in polished seeds varied almost 4-fold. Genes encoding select vitamin B1 and B6 biosynthesis de novo enzymes (THIC for vitamin B1, PDX1.3a-c and PDX2 for vitamin B6) were differentially expressed in leaves across accessions contrasting in their respective vitamin contents. These expression levels did not correlate with leaf and unpolished seed vitamin contents, except for THIC expression in leaves that was positively correlated with total vitamin B1 contents in polished seeds. This study expands our knowledge of diversity in micronutrient traits in rice germplasm and provides insights into the expression of genes for vitamin B1 and B6 biosynthesis in rice.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jared B Fudge
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Teresa B Fitzpatrick
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Plant Genetics Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
16
|
Strobbe S, Verstraete J, Fitzpatrick TB, Faustino M, Lourenço TF, Oliveira MM, Stove C, Van Der Straeten D. A novel panel of yeast assays for the assessment of thiamin and its biosynthetic intermediates in plant tissues. THE NEW PHYTOLOGIST 2022; 234:748-763. [PMID: 35037254 PMCID: PMC9303440 DOI: 10.1111/nph.17974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Thiamin (or thiamine), known as vitamin B1, represents an indispensable component of human diets, being pivotal in energy metabolism. Thiamin research depends on adequate vitamin quantification in plant tissues. A recently developed quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is able to assess the level of thiamin, its phosphorylated entities and its biosynthetic intermediates in the model plant Arabidopsis thaliana, as well as in rice. However, their implementation requires expensive equipment and substantial technical expertise. Microbiological assays can be useful in deter-mining metabolite levels in plant material and provide an affordable alternative to MS-based analysis. Here, we evaluate, by comparison to the LC-MS/MS reference method, the potential of a carefully chosen panel of yeast assays to estimate levels of total vitamin B1, as well as its biosynthetic intermediates pyrimidine and thiazole in Arabidopsis samples. The examined panel of Saccharomyces cerevisiae mutants was, when implemented in microbiological assays, capable of correctly assigning a series of wild-type and thiamin biofortified Arabidopsis plant samples. The assays provide a readily applicable method allowing rapid screening of vitamin B1 (and its biosynthetic intermediates) content in plant material, which is particularly useful in metabolic engineering approaches and in germplasm screening across or within species.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| | - Jana Verstraete
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in PlantsDepartment of Botany and Plant BiologyUniversity of GenevaQuai E. Ansermet 301211GenevaSwitzerland
| | - Maria Faustino
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Tiago F. Lourenço
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Christophe Stove
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| |
Collapse
|
17
|
Xiao L, Cao S, Shang X, Xie X, Zeng W, Lu L, Kong Q, Yan H. Metabolomic and transcriptomic profiling reveals distinct nutritional properties of cassavas with different flesh colors. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 2:100016. [PMID: 35415637 PMCID: PMC8991741 DOI: 10.1016/j.fochms.2021.100016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 02/01/2023]
Abstract
A total of 508 metabolites were identified in three cassava cultivars. White-fleshed cassava had the highest contents of amino acids and organic acids. Yellow-fleshed cassava was enriched in metabolites related to specific pathways. Several pathways were found to be regulated at the transcriptional level.
Cassava is a significant food security crop in several developing countries. Metabolites in cassava roots provide numerous nutrients essential for human health. Exploiting the diversity of nutritional ingredients present in cassavas is vital for improving its nutritional value. To address this problem, root metabolomes of three cassava cultivars with white-flesh, light-yellow-flesh and yellow-flesh were comprehensively measured, respectively. A total of 508 metabolites were detected in cassava roots, including 300 primary metabolites and 185 secondary metabolites. There were 22.6% to 34.1% metabolites exhibiting significant variations among the three cassava cultivars. The light-yellow-flesh cassava contained higher contents of secondary metabolites, especially flavone, phenylpropanoids and alkaloids, and lower contents of primary metabolites except lipids, alcohols, vitamins and derivatives. Compared with light-yellow-flesh cassava, the yellow-flesh cassava contained higher contents of amino acid and derivatives, but lower contents of phenylpropanoids, nucleotide and derivates. White-flesh cassava contained higher contents of primary metabolites, especially amino acid and derivatives, but lower contents of secondary metabolites except flavonoid and indole derivatives. Transcriptome analyses were parallelly performed to decipher the potential mechanisms regulating the accumulations of related metabolites. Several pathways were both enriched by differentially expressed genes and differentially accumulated metabolites, supporting that metabolisms of these metabolites were regulated at transcriptional level. These results expand the knowledge on metabolite compositions in cassava roots and provide substantial information for genetic improvement of cassavas with high nutritional values.
Collapse
|
18
|
Tiozon RJN, Fernie AR, Sreenivasulu N. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
20
|
Fitzpatrick TB, Chapman LM. The importance of thiamine (vitamin B 1) in plant health: From crop yield to biofortification. J Biol Chem 2020; 295:12002-12013. [PMID: 32554808 PMCID: PMC7443482 DOI: 10.1074/jbc.rev120.010918] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Ensuring that people have access to sufficient and nutritious food is necessary for a healthy life and the core tenet of food security. With the global population set to reach 9.8 billion by 2050, and the compounding effects of climate change, the planet is facing challenges that necessitate significant and rapid changes in agricultural practices. In the effort to provide food in terms of calories, the essential contribution of micronutrients (vitamins and minerals) to nutrition is often overlooked. Here, we focus on the importance of thiamine (vitamin B1) in plant health and discuss its impact on human health. Vitamin B1 is an essential dietary component, and deficiencies in this micronutrient underlie several diseases, notably nervous system disorders. The predominant source of dietary vitamin B1 is plant-based foods. Moreover, vitamin B1 is also vital for plants themselves, and its benefits in plant health have received less attention than in the human health sphere. In general, vitamin B1 is well-characterized for its role as a coenzyme in metabolic pathways, particularly those involved in energy production and central metabolism, including carbon assimilation and respiration. Vitamin B1 is also emerging as an important component of plant stress responses, and several noncoenzyme roles of this vitamin are being characterized. We summarize the importance of vitamin B1 in plants from the perspective of food security, including its roles in plant disease resistance, stress tolerance, and crop yield, and review the potential benefits of biofortification of crops with increased vitamin B1 content to improve human health.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
| | - Lottie M Chapman
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Subki A, Ho CL, Ismail NFN, Zainal Abidin AA, Balia Yusof ZN. Identification and characterisation of thiamine pyrophosphate (TPP) riboswitch in Elaeis guineensis. PLoS One 2020; 15:e0235431. [PMID: 32726320 PMCID: PMC7390266 DOI: 10.1371/journal.pone.0235431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
The oil palm (Elaeis guineensis) is an important crop in Malaysia but its productivity is hampered by various biotic and abiotic stresses. Recent studies suggest the importance of signalling molecules in plants in coping against stresses, which includes thiamine (vitamin B1). Thiamine is an essential microelement that is synthesized de novo by plants and microorganisms. The active form of thiamine, thiamine pyrophosphate (TPP), plays a prominent role in metabolic activities particularly as an enzymatic cofactor. Recently, thiamine biosynthesis pathways in oil palm have been characterised but the search of novel regulatory element known as riboswitch is yet to be done. Previous studies showed that thiamine biosynthesis pathway is regulated by an RNA element known as riboswitch. Riboswitch binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. TPP binds specifically to TPP riboswitch to regulate thiamine biosynthesis through a variety of mechanisms found in archaea, bacteria and eukaryotes. This study was carried out to hunt for TPP riboswitch in oil palm thiamine biosynthesis gene. Riboswitch detection software like RiboSW, RibEx, Riboswitch Scanner and Denison Riboswitch Detector were utilised in order to locate putative TPP riboswitch in oil palm ThiC gene sequence that encodes for the first enzyme in the pyrimidine branch of the pathway. The analysis revealed a 192 bp putative TPP riboswitch located at the 3' untranslated region (UTR) of the mRNA. Further comparative gene analysis showed that the 92-nucleotide aptamer region, where the metabolite binds was conserved inter-species. The secondary structure analysis was also carried out using Mfold Web server and it showed a stem-loop structure manifested with stems (P1-P5) with minimum free energy of -12.26 kcal/mol. Besides that, the interaction of riboswitch and its ligand was determined using isothermal titration calorimetry (ITC) and it yielded an exothermic reaction with 1:1 stoichiometry interaction with binding affinities of 0.178 nM, at 30°C. To further evaluate the ability of riboswitch to control the pathway, exogenous thiamine was applied to four months old of oil palm seedlings and sampling of spear leaves tissue was carried out at days 0, 1, 2 and 3 post-treatment for expression analysis of ThiC gene fragment via quantitative polymerase chain reaction (qPCR). Results showed an approximately 5-fold decrease in ThiC gene expression upon application of exogenous thiamine. Quantification of thiamine and its derivatives was carried out via HPLC and the results showed that it was correlated to the down regulation of ThiC gene expression. The application of exogenous thiamine to oil palm affected ThiC gene expression, which supported the prediction of the presence of TPP riboswitch in the gene. Overall, this study provides the first evidence on the presence, binding and the functionality of TPP riboswitch in oil palm. This study is hoped to pave a way for better understanding on the regulation of thiamine biosynthesis pathway in oil palm, which can later be exploited for various purposes especially in manipulation of thiamine biosynthesis pathways in combating stresses in oil palm.
Collapse
Affiliation(s)
- Atiqah Subki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nur Farhah Nabihan Ismail
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
22
|
Titcomb TJ, Tanumihardjo SA. Global Concerns with B Vitamin Statuses: Biofortification, Fortification, Hidden Hunger, Interactions, and Toxicity. Compr Rev Food Sci Food Saf 2019; 18:1968-1984. [DOI: 10.1111/1541-4337.12491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Tyler J. Titcomb
- Dept. of Nutritional SciencesUniv. of Wisconsin‐Madison Madison WI 53706 U.S.A
| | | |
Collapse
|
23
|
Evren AE, Yurttaş L, Eksellı B, Akalın-Cıftcı G. Novel Tri-substituted Thiazoles Bearing Piperazine Ring: Synthesis and Evaluation of their Anticancer Activity. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180731122118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background:
Cancer cells are described as an unregulated growth and spread of abnormal
cells. Recently, cancer has become the most important major reason for deaths in the world.
Methods:
For anticancer activity, we have used the MTT method and determine the early/late apoptosis
by flow cytometry.
Results:
The title compounds were procured by reacting 2-chloro-N-[4-(pyridin-4-yl)thiazol-2-
yl]acetamide with some substituted piperazine derivatives. The in vitro anticancer activity of synthesized
compounds was tested against C6 rat glioma cells and A549 human lung carcinoma cells. As a
result, the compounds 3d, 3e, 3f and 3g have shown anticancer activity against both cell line.
Conclusion:
Specifically, compound 3f was determined as the most active compound against C6 rat
glioma cells. Also, as understood, the core structure which is substituted with piperazine bridge, the
heterocyclic aromatic derivatives are more active than phenyl or benzyl derivatives.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir-26470, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir-26470, Turkey
| | - Busra Eksellı
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir-26470, Turkey
| | - Gulsen Akalın-Cıftcı
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir-26470, Turkey
| |
Collapse
|
24
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|