1
|
Zhao X, Wei M, Tang Q, Tang L, Fu J, Wang K, Zhou Y, Yang Y. Receptor-like Kinase GOM1 Regulates Glume-Opening in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 14:5. [PMID: 39795264 PMCID: PMC11722787 DOI: 10.3390/plants14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
Glume-opening of thermosensitive genic male sterile (TGMS) rice (Oryza sativa L.) lines after anthesis is a serious problem that significantly reduces the yield and quality of hybrid seeds. However, the molecular mechanisms regulating the opening and closing of rice glumes remain largely unclear. In this study, we report the isolation and functional characterization of a glum-opening mutant after anthesis, named gom1. gom1 exhibits dysfunctional lodicules that lead to open glumes following anthesis. Map-based cloning and subsequent complementation tests confirmed that GOM1 encodes a receptor-like kinase (RLK). GOM1 was expressed in nearly all floral tissues, with the highest expression in the lodicule. Loss-of-function of GOM1 resulted in a decrease in the expression of genes related to JA biosynthesis, JA signaling, and sugar transport. Compared with LK638S, the JA content in the gom1 mutant was significantly reduced, while the soluble sugar, sucrose, glucose, and fructose contents were significantly increased in lodicules after anthesis. Together, we speculated that GOM1 regulates carbohydrate transport in lodicules during anthesis through JA and JA signaling, maintaining a higher osmolality in lodicules after anthesis, which leads to glum-opening.
Collapse
Affiliation(s)
- Xinhui Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
| | - Mengyi Wei
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qianying Tang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Tang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
| | - Yanbiao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yuanzhu Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Deng R, Yan Z, Tang H, Zhu S. Revealing Physiological Basis for Floret Opening Difference Between Indica and Japonica Rice: Based on Floral Structure, Transcriptome, and Endogenous Floret Opening Regulator. Genes (Basel) 2024; 15:1396. [PMID: 39596596 PMCID: PMC11593404 DOI: 10.3390/genes15111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The differing floret opening times between subsp. indica and subsp. japonica in rice limit the potential for increased hybrid seed production. OBJECTIVES To elucidate the physiological basis underlying the differences in floret opening time between indica and japonica rice. MATERIALS A comparative analysis involved nine indica and ten japonica rice varieties. METHODS Using paraffin sectioning, transcriptome sequencing, RT-PCR, and endogenous substance quantification, we investigated the structural variations in floral organs, the differences in the initiation timing of floret opening regulatory pathways, and endogenous regulators. RESULTS The results indicated insignificant differences in lemma thickness, lodicule thickness, lodicule area, and the coupling-lodicule length between indica and japonica rice. However, japonica rice exhibited larger lodicule-lemma gaps and more vascular bundles compared to indica rice. Within the 9:00 a.m. to 10:00 a.m. interval, the expression of OsAOS1 in α-linolenic acid metabolism and OsISA3 in starch and sucrose metabolism notably increased in indica rice, with no significant change in japonica rice. Additionally, the endogenous JA and α-amylase surged more significantly in indica rice than in japonica rice. The increase in soluble carbohydrate in indica rice is greater than in japonica rice, but the difference is not significant. CONCLUSIONS These findings suggest that in the process of the floret opening, the α-linolenic acid metabolism and starch and sucrose metabolism are initiated earlier in indica rice, accompanied by a more pronounced elevation in endogenous JA and α-amylase. Furthermore, the smaller lodicule-lemma gap in indica rice contributes to earlier floret opening compared to japonica rice.
Collapse
|
3
|
Yao Q, Li P, Wang X, Liao S, Wang P, Huang S. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. PLANT COMMUNICATIONS 2024; 5:101009. [PMID: 38915200 DOI: 10.1016/j.xplc.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Transient heatwaves occurring more frequently as the climate warms, yet their impacts on crop yield are severely underestimated and even overlooked. Heatwaves lasting only a few days or even hours during sensitive stages, such as microgametogenesis and flowering, can significantly reduce crop yield by disrupting plant reproduction. Recent advances in multi-omics and GWAS analysis have shed light on the specific organs (e.g., pollen, lodicule, style), key metabolic pathways (sugar and reactive oxygen species metabolism, Ca2+ homeostasis), and essential genes that are involved in crop responses to transient heatwaves during sensitive stages. This review therefore places particular emphasis on heat-sensitive stages, with pollen development, floret opening, pollination, and fertilization as the central narrative thread. The multifaceted effects of transient heatwaves and their molecular basis are systematically reviewed, with a focus on key structures such as the lodicule and tapetum. A number of heat-tolerance genes associated with these processes have been identified in major crops like maize and rice. The mechanisms and key heat-tolerance genes shared among different stages may facilitate the more precise improvement of heat-tolerant crops.
Collapse
Affiliation(s)
- Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Gautam K, Segura M, Alonso S, Pasadas R, García-Mina JM, Zamarreño AM, Martínez C, Jamilena M. Jasmonate-insensitive mutant jar1b prevents petal elongation and flower opening coupling with parthenocarpic fruit development in Cucurbita pepo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108923. [PMID: 39002308 DOI: 10.1016/j.plaphy.2024.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Jasmonates are growth regulators that play a key role in flower development, fruit ripening, root growth, and plant defence. The study explores the coordination of floral organ maturation to ensure proper flower opening for pollination and fertilization. A new mutant (jar1b) was discovered, lacking petal elongation and flower opening but showing normal pistil and stamen development, leading to parthenocarpic fruit development. The mutation also enhanced the elongation of roots while reducing the formation of root hairs. BSA sequencing showed that jar1b is a missense mutation in the gene CpJAR1B, which encodes the enzyme that catalyzes the conjugation between JA and the amino acid isoleucine. The loss of function mutation in CpJAR1B produced a deficiency in biologically active (+) -7-iso-jasmonoyl-L-isoleucine (JA-Ile), which was not complemented by the paralogous gene CpJAR1A or any other redundant gene. Exogenous application of methyl jasmonate (MeJA) demonstrated that jar1b is partially insensitive to JA in both flowers and roots. Further experimentation involving the combination of JA-Ile deficient and ethylene-deficient, and ET insensitive mutations in double mutants revealed that CpJAR1B mediated ET action in female petal maturation and flower opening, but JA and ET have independent additive effects as negative regulators of the set and development of squash fruits. CpJAR1B also regulated the aperture of male flowers in an ethylene-independent manner. The root phenotype of jar1b and effects of external MeJA treatments indicated that CpJAR1B has a dual role in root development, inhibiting the elongation of primary and secondary roots, but promoting the formation of root hairs.
Collapse
Affiliation(s)
- Keshav Gautam
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Sonsoles Alonso
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Raúl Pasadas
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - José M García-Mina
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain
| | - Angel M Zamarreño
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
5
|
Zhu X, Wang M, Huang Z, Chen M, Xu P, Liao S, Gao Y, Zhao Y, Chen H, He J, Luo Y, Wei X, Zhu L, Liu C, Huang J, Zhao X, Zhao J, Zhang Z, Zhuang C, Liu Z, Zhou H. The OsMYC2-JA feedback loop regulates diurnal flower-opening time via cell wall loosening in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2585-2598. [PMID: 38972041 DOI: 10.1111/tpj.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.
Collapse
Affiliation(s)
- Xiaopei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shitang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yannan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huixuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahui He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yutong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoying Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liya Zhu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Xinhui Zhao
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Wang M, Zhu X, Huang Z, Chen M, Xu P, Liao S, Zhao Y, Gao Y, He J, Luo Y, Chen H, Wei X, Nie S, Dong J, Zhu L, Zhuang C, Zhao J, Liu Z, Zhou H. Controlling diurnal flower-opening time by manipulating the jasmonate pathway accelerates development of indica-japonica hybrid rice breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2267-2281. [PMID: 38526838 PMCID: PMC11258973 DOI: 10.1111/pbi.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Inter-subspecific indica-japonica hybrid rice (Oryza sativa) has the potential for increased yields over traditional indica intra-subspecies hybrid rice, but limited yield of F1 hybrid seed production (FHSP) hinders the development of indica-japonica hybrid rice breeding. Diurnal flower-opening time (DFOT) divergence between indica and japonica rice has been a major contributing factor to this issue, but few DFOT genes have been cloned. Here, we found that manipulating the expression of jasmonate (JA) pathway genes can effectively modulate DFOT to improve the yield of FHSP in rice. Treating japonica cultivar Zhonghua 11 (ZH11) with methyl jasmonate (MeJA) substantially advanced DFOT. Furthermore, overexpressing the JA biosynthesis gene OPDA REDUCTASE 7 (OsOPR7) and knocking out the JA inactivation gene CHILLING TOLERANCE 1 (OsHAN1) in ZH11 advanced DFOT by 1- and 2-h respectively; and knockout of the JA signal suppressor genes JASMONATE ZIM-DOMAIN PROTEIN 7 (OsJAZ7) and OsJAZ9 resulted in 50-min and 1.5-h earlier DFOT respectively. The yields of FHSP using japonica male-sterile lines GAZS with manipulated JA pathway genes were significantly higher than that of GAZS wildtype. Transcriptome analysis, cytological observations, measurements of elastic modulus and determination of cell wall components indicated that the JA pathway could affect the loosening of the lodicule cell walls by regulating their composition through controlling sugar metabolism, which in turn influences DFOT. This research has vital implications for breeding japonica rice cultivars with early DFOT to facilitate indica-japonica hybrid rice breeding.
Collapse
Affiliation(s)
- Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguanChina
| | - Xiaopei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Peng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shitang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yongzhen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yannan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yutong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Huixuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoying Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Nie
- Rice Research InstituteGuangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Jingfang Dong
- Rice Research InstituteGuangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Junliang Zhao
- Rice Research InstituteGuangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
7
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Wang J, Ying S, Long W, Luo L, Qian M, Chen W, Luo L, Xu W, Li Y, Cai Y, Peng X, Xie H. Integrated transcriptomic and metabolomic analysis provides insight into the pollen development of CMS-D1 rice. BMC PLANT BIOLOGY 2024; 24:535. [PMID: 38862889 PMCID: PMC11167768 DOI: 10.1186/s12870-024-05259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding. RESULTS In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage. CONCLUSIONS These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.
Collapse
Affiliation(s)
- Jie Wang
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Suping Ying
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Weixiong Long
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Lihua Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Mingjuan Qian
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Laiyang Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Weibiao Xu
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Yonghui Li
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Hongwei Xie
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, 330200, China.
| |
Collapse
|
9
|
Fang Y, Guo D, Wang Y, Wang N, Fang X, Zhang Y, Li X, Chen L, Yu D, Zhang B, Qin G. Rice transcriptional repressor OsTIE1 controls anther dehiscence and male sterility by regulating JA biosynthesis. THE PLANT CELL 2024; 36:1697-1717. [PMID: 38299434 PMCID: PMC11062430 DOI: 10.1093/plcell/koae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.
Collapse
Affiliation(s)
- Yuxing Fang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Yi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Li
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
10
|
Gou Y, Heng Y, Ding W, Xu C, Tan Q, Li Y, Fang Y, Li X, Zhou D, Zhu X, Zhang M, Ye R, Wang H, Shen R. Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies. Nat Commun 2024; 15:2262. [PMID: 38480732 PMCID: PMC10937712 DOI: 10.1038/s41467-024-46579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
The inter-subspecific indica-japonica hybrid rice confer potential higher yield than the widely used indica-indica intra-subspecific hybrid rice. Nevertheless, the utilization of this strong heterosis is currently hindered by asynchronous diurnal floret opening time (DFOT) of indica and japonica parental lines. Here, we identify OsMYB8 as a key regulator of rice DFOT. OsMYB8 induces the transcription of JA-Ile synthetase OsJAR1, thereby regulating the expression of genes related to cell osmolality and cell wall remodeling in lodicules to promote floret opening. Natural variations of OsMYB8 promoter contribute to its differential expression, thus differential transcription of OsJAR1 and accumulation of JA-Ile in lodicules of indica and japonica subspecies. Furthermore, introgression of the indica haplotype of OsMYB8 into japonica effectively promotes DFOT in japonica. Our findings reveal an OsMYB8-OsJAR1 module that regulates differential DFOT in indica and japonica, and provide a strategy for breeding early DFOT japonica to facilitate breeding of indica-japonica hybrids.
Collapse
Affiliation(s)
- Yajun Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yueqin Heng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyan Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Canhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiushuang Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yajing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yudong Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Degui Zhou
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xinyu Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Rongjian Ye
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430073, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, Wang Y, Gao Y, Dong X, Liao S, Wang P, Huang S. From the floret to the canopy: High temperature tolerance during flowering. PLANT COMMUNICATIONS 2023; 4:100629. [PMID: 37226443 PMCID: PMC10721465 DOI: 10.1016/j.xplc.2023.100629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.
Collapse
Affiliation(s)
- Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baole Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Dong
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Wang M, Chen M, Huang Z, Zhou H, Liu Z. Advances on the Study of Diurnal Flower-Opening Times of Rice. Int J Mol Sci 2023; 24:10654. [PMID: 37445832 DOI: 10.3390/ijms241310654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The principal goal of rice (Oryza sativa L.) breeding is to increase the yield. In the past, hybrid rice was mainly indica intra-subspecies hybrids, but its yield has been difficult to improve. The hybridization between the indica and japonica subspecies has stronger heterosis; the utilization of inter-subspecies heterosis is important for long-term improvement of rice yields. However, the different diurnal flower-opening times (DFOTs) between the indica and japonica subspecies seriously reduce the efficiency of cross-pollination and yield and increase the cost of indica-japonica hybrid rice seeds, which has become one of the main constraints for the development of indica-japonica hybrid rice breeding. The DFOT of plants is adapted to their growing environment and is also closely related to species stability and evolution. Herein, we review the structure and physiological basis of rice flower opening, the factors that affect DFOT, and the progress of cloning and characterization of DFOT genes in rice. We also analyze the problems in the study of DFOT and provide corresponding suggestions.
Collapse
Affiliation(s)
- Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
13
|
Zhang G, Hu Y, Pan X, Cao R, Hu Q, Fu R, Risalat H, Shang B. Effects of increased ozone on rice panicle morphology. iScience 2023; 26:106471. [PMID: 37096034 PMCID: PMC10122049 DOI: 10.1016/j.isci.2023.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Ground-level ozone threatens rice production, which provides staple food for more than half of the world's population. Improving the adaptability of rice crops to ozone pollution is essential to ending global hunger. Rice panicles not only affect grain yield and grain quality but also the adaptability of plants to environmental changes, but the effects of ozone on rice panicles are not well understood. Through an open top chamber experiment, we investigated the effects of long-term and short-term ozone on the traits of rice panicles, finding that both long-term and short-term ozone significantly reduced the number of panicle branches and spikelets in rice, and especially the fertility of spikelets in hybrid cultivar. The reduction in spikelet quantity and fertility because of ozone exposure is caused by changes in secondary branches and attached spikelet. These results suggest the potential for effective adaptation to ozone by altering breeding targets and developing growth stage-specific agricultural techniques.
Collapse
Affiliation(s)
- Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yaxin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoya Pan
- College of Environmental Science and Engineering, Donghua University, ShangHai 201620, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rong Cao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinan Hu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rao Fu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hamdulla Risalat
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
14
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
15
|
Liu X, Gu M, Lv X, Sheng D, Wang X, Wang P, Huang S. High temperature defense-related pathways, mediating lodicule expansion and spikelet opening in maize tassel. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad115. [PMID: 36967717 DOI: 10.1093/jxb/erad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 06/18/2023]
Abstract
High temperature (HT) at flowering hinders pollen shedding, whereas mechanisms underlying stress-induced spikelet closure are poorly known in maize. Yield components, spikelet opening, and lodicule morphology/protein profiling upon HT stress during flowering were explored in maize inbred lines Chang 7-2 and Qi 319. HT induced spikelet closure and reduced pollen shed weight (PSW) and seed set. Qi 319 that had a 7-fold lower PSW than Chang 7-2 was more susceptible to HT. A small lodicule size reduced spikelet opening rate and angle, and more vascular bundles hastened lodicule shrinking in Qi 319. Lodicules were collected for proteomics. In HT-stressed lodicules, proteins involved in stress signal, cell wall, cell constructure, carbohydrate metabolism, and phytohormone signaling were associated with stress tolerance. Among these proteins, HT downregulated expression of ADP-ribosylation factor GTPase-activating protein domain2, SNAP receptor complex member11, and sterol methyltransferase2 in Qi 319 but not in Chang 7-2, agreeing well with protein abundance changes. Exogenous epibrassinolide enlarged spikelet opening angle and extended spikelet opening duration. These results suggest that dysfunction of actin cytoskeleton and membrane remodeling induced by HT likely limits lodicule expansion. Additionally, reduced vascular bundles in lodicule and application of epibrassinolide might confer spikelet tolerance to HT stress.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingqi Gu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Dechang Sheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Tran AD, Cho K, Han O. Rice peroxygenase catalyzes lipoxygenase-dependent regiospecific epoxidation of lipid peroxides in the response to abiotic stressors. Bioorg Chem 2023; 131:106285. [PMID: 36450198 DOI: 10.1016/j.bioorg.2022.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.
Collapse
Affiliation(s)
- Anh Duc Tran
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwon Cho
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
17
|
Gautam RK, Singh PK, Venkatesan K, Rakesh B, Sakthivel K, Swain S, Srikumar M, Zamir Ahmed SK, Devakumar K, Rao SS, Vijayan J, Ali S, Langyan S. Harnessing intra-varietal variation for agro-morphological and nutritional traits in a popular rice landrace for sustainable food security in tropical islands. Front Nutr 2023; 10:1088208. [PMID: 36908925 PMCID: PMC9995847 DOI: 10.3389/fnut.2023.1088208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Rice crop meets the calorie and nutritional requirements of a larger segment of the global population. Here, we report the occurrence of intra-varietal variation in a popular rice landrace C14-8 traditionally grown under the geographical isolation of the Andaman Islands. Methods Based on grain husk color, four groups were formed, wherein the extent of intra-varietal variation was studied by employing 22 agro-morphological and biochemical traits. Results Among the traits studied, flavonoid and anthocyanin contents and grain yield exhibited a wider spectrum of variability due to more coefficients of variation (>25%). The first five principal components (PCs) of principal components analysis explained a significant proportion of the variation (91%) and the first two PCs explained 63.3% of the total variation, with PC1 and PC2 explaining 35.44 and 27.91%, respectively. A total of 50 highly variable SSR (HvSSR) markers spanning over 12 chromosomes produced 314 alleles, which ranged from 1 to 15 alleles per marker, with an average of 6.28. Of the 314 alleles, 64 alleles were found to be rare among the C14-8 selections. While 62% of HvSSR markers exhibited polymorphism among the C14-8 population, chromosomes 2, 7, 9, and 11 harbored the most polymorphic loci. The group clustering of the selections through HvSSR markers conformed to the grouping based on grain husk coloration. Discussion Our studies on the existence and pertinence of intra-varietal variations are expected to be of significance in the realms of evolutionary biology and sustainable food and nutritional security under the changing climate.
Collapse
Affiliation(s)
- Raj Kumar Gautam
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India.,ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, India
| | - Pankaj Kumar Singh
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Kannan Venkatesan
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Bandol Rakesh
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Krishnan Sakthivel
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India.,ICAR-Indian Institute of Oilseed Research, Hyderabad, Telangana, India
| | - Sachidananda Swain
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Muthulingam Srikumar
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - S K Zamir Ahmed
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Kishnamoorthy Devakumar
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India.,ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India
| | - Shyam Sunder Rao
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Joshitha Vijayan
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India.,ICAR-National Institute of Plant Biotechnology, Pusa, New Delhi, India
| | - Sharik Ali
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, India
| | - Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, India
| |
Collapse
|
18
|
Li X, Ouyang Y. Better time of flower opening, a good time to improve the efficiency of hybrid seed production. MOLECULAR PLANT 2022; 15:940-942. [PMID: 35643863 DOI: 10.1016/j.molp.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Wang M, Zhu X, Peng G, Liu M, Zhang S, Chen M, Liao S, Wei X, Xu P, Tan X, Li F, Li Z, Deng L, Luo Z, Zhu L, Zhao S, Jiang D, Li J, Liu Z, Xie X, Wang S, Wu A, Zhuang C, Zhou H. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice. MOLECULAR PLANT 2022; 15:956-972. [PMID: 35418344 DOI: 10.1016/j.molp.2022.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Flowers are the core reproductive organ of plants, and flowering is essential for cross-pollination. Diurnal flower-opening time is thus a key trait influencing reproductive isolation, hybrid breeding, and thermostability in plants. However, the molecular mechanisms controlling this trait remain unknown. Here, we report that rice Diurnal Flower Opening Time 1 (DFOT1) modulates pectin methylesterase (PME) activity to regulate pectin methylesterification levels of the lodicule cell walls, which affect lodicule swelling to control diurnal flower-opening time. DFOT1 is specifically expressed in the lodicules, and its expression gradually increases with the approach to flowering but decreases with flowering. Importantly, a knockout of DFOT1 showed earlier diurnal flower opening. We demonstrate that DFOT1 interacts directly with multiple PMEs to promote their activity. Knockout of PME40 also resulted in early diurnal flower opening, whereas overexpression of PME42 delayed diurnal flower opening. Lower PME activity was observed to be associated with higher levels of pectin methylesterification and the softening of cell walls in lodicules, which contribute to the absorption of water by lodicules and cause them to swell, thus promoting early diurnal flower opening. Higher PME activity had the opposite effect. Collectively, our work uncovers a molecular mechanism underlying the regulation of diurnal flower-opening time in rice, which would help reduce the costs of hybrid breeding and improve the heat tolerance of flowering plants by avoiding higher temperatures at anthesis.
Collapse
Affiliation(s)
- Mumei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaopei Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minglong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuqing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minghao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shitang Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoying Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peng Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiyu Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangping Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhichuan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Liya Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dagang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaokui Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Yang H, Li Y, Li D, Liu L, Qiao Y, Sun H, Liu W, Qiao W, Ma Y, Liu M, Li C, Dong B. Wheat Escapes Low Light Stress by Altering Pollination Types. FRONTIERS IN PLANT SCIENCE 2022; 13:924565. [PMID: 35755640 PMCID: PMC9218482 DOI: 10.3389/fpls.2022.924565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 05/11/2023]
Abstract
Although low light stress seriously affects florets fertility and grain number during the reproductive period, crops can be fertilized by heterologous pollen to alleviate the reduction of grain number. However, wheat is strongly autogamous, how to change to outcross after low light remains unclear. To understand the mechanisms of this change process, an approach combined morphological, physiological, and transcriptomic analyses was performed under low light stress imposed at the young microspore stage the booting stage from tetrad to uni-nucleate microspores stage. The results showed that low light stress caused pollen abortion, and the unfertilized ovary is fertilized by heterologous pollen after floret opening. Compared to control, the opening angle of lemma and glume were increased by 11.6-48.6 and 48.4-78.5%, respectively. The outcross of stressed wheat compensated for the 2.1-18.0% of grain number loss. During this process, phytohormones played an important role. Jasmonic acid (JA) and methyl jasmonate (MeJA) levels in spikelets were increased. Meanwhile, lignin and cellulose content decreased, and genes associated with cell wall related GO terms were enriched. Among the differentially expressed genes (DEGs), were identified 88-710 transcription factors genes, of which some homologs in Arabidopsis are proposed to function in lignin and cellulose, influencing the glume and lemma opening. Our finding can provide new insight into a survival mechanism to set seeds through pollination way alteration in the absence of self-fertilization after the stress of adversity.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yongpeng Li
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Dongxiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yunzhou Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Hongyong Sun
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenwen Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhao Ma
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Mengyu Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
- *Correspondence: Cundong Li,
| | - Baodi Dong
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, State Key Laboratory of North China Crop Improvement and Regulation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Baodi Dong,
| |
Collapse
|
21
|
Zou X, Liu L, Hu Z, Wang X, Zhu Y, Zhang J, Li X, Kang Z, Lin Y, Yin C. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-jasmonate interaction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5656-5672. [PMID: 33999128 DOI: 10.1093/jxb/erab206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The phytohormones ethylene and jasmonate play important roles in the adaptation of rice plants to salt stress. However, the molecular interactions between ethylene and jasmonate on rice seminal root growth under salt stress are unknown. In this study, the effects of NaCl on the homeostasis of ethylene and jasmonate, and on rice seminal root growth were investigated. Our results indicate that NaCl treatment promotes ethylene biosynthesis by up-regulating the expression of ethylene biosynthesis genes, whereas NaCl-induced ethylene does not inhibit rice seminal root growth directly, but rather indirectly, by promoting jasmonate biosynthesis. NaCl treatment also promotes jasmonate biosynthesis through an ethylene-independent pathway. Moreover, NaCl-induced jasmonate reduces meristem cell number and cell division activity via down-regulated expression of Oryza sativa PLETHORA (OsPLT) and cell division-related genes, respectively. Additionally, NaCl-induced jasmonate inhibits seminal root cell elongation by down-regulating the expression of cell elongation-related genes. Overall, salt stress promotes jasmonate biosynthesis through ethylene-dependent and -independent pathways in rice seminal roots, and jasmonate inhibits rice seminal root growth by inhibiting root meristem cell proliferation and root cell elongation.
Collapse
Affiliation(s)
- Xiao Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science, Shandong University of Technology, Zibo 255000, China
| | - Zhubing Hu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuekui Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialiang Zhang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuefei Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyi Kang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxi Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
He Y, Liu C, Zhu L, Fu M, Sun Y, Zeng H. Jasmonic Acid Plays a Pivotal Role in Pollen Development and Fertility Regulation in Different Types of P(T)GMS Rice Lines. Int J Mol Sci 2021; 22:ijms22157926. [PMID: 34360691 PMCID: PMC8348444 DOI: 10.3390/ijms22157926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023] Open
Abstract
Two-line hybrid rice systems represent a new technical approach to utilizing the advantages of rice hybrids. However, the mechanism underlying the male sterile-line fertility transition in rice remains unclear. Peiai 64S (PA64S) is a photoperiod- and thermo-sensitive genic male sterile (PTGMS) line in which male sterility manifests at an average temperature above 23.5 °C under long-day (LD) conditions. Nongken 58S (NK58S) is a LD-sensitive genic male sterile (PGMS) rice that is sterile under LD conditions (above 13.75 h-day). In contrast, D52S is a short-day (SD)-PGMS line that manifests male sterility under SD conditions (below 13.5 h-day). In this study, we obtained fertile and sterile plants from all three lines and performed transcriptome analyses on the anthers of the plants. Gene ontology (GO) analysis suggested that the differentially expressed genes identified were significantly enriched in common terms involved in the response to jasmonic acid (JA) and in JA biosynthesis. On the basis of the biochemical and molecular validation of dynamic, tissue-specific changes in JA, indole-3-acetic acid (IAA) levels, gibberellin (GA) levels, and JA biosynthetic enzyme activities and expression, we proposed that JA could play a pivotal role in viable pollen production through its initial upregulation, constant fluctuation and leaf-spikelet signaling under certain fertility-inducing conditions. Furthermore, we also sprayed methyl jasmonate (MEJA) and salicylhydroxamic acid (SHAM) on the plants, thereby achieving fertility reversal in the PGMS lines NK58S and D52S, with 12.91–63.53% pollen fertility changes. Through qPCR and enzyme activity analyses, we identified two key enzymes—allene oxide synthase (AOS) and allene oxide cyclase (AOC)—that were produced and upregulated by 20–500-fold in PGMS in response to spraying; the activities of these enzymes reversed pollen fertility by influencing the JA biosynthetic pathway. These results provide a new understanding of hormone interactions and networks in male-sterile rice based on the role of JA that will help us to better understand the potential regulatory mechanisms of fertility development in rice in the future.
Collapse
|
23
|
Li Q, Tong T, Jiang W, Cheng J, Deng F, Wu X, Chen ZH, Ouyang Y, Zeng F. Highly Conserved Evolution of Aquaporin PIPs and TIPs Confers Their Crucial Contribution to Flowering Process in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:761713. [PMID: 35058944 PMCID: PMC8764411 DOI: 10.3389/fpls.2021.761713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 05/10/2023]
Abstract
Flowering is the key process for the sexual reproduction in seed plants. In gramineous crops, the process of flowering, which includes the actions of both glume opening and glume closing, is directly driven by the swelling and withering of lodicules due to the water flow into and out of lodicule cells. All these processes are considered to be controlled by aquaporins, which are the essential transmembrane proteins that facilitate the transport of water and other small molecules across the biological membranes. In the present study, the evolution of aquaporins and their contribution to flowering process in plants were investigated via an integration of genome-wide analysis and gene expression profiling. Across the barley genome, we found that HvTIP1;1, HvTIP1;2, HvTIP2;3, and HvPIP2;1 were the predominant aquaporin genes in lodicules and significantly upregulated in responding to glume opening and closing, suggesting the importance of them in the flowering process of barley. Likewise, the putative homologs of the above four aquaporin genes were also abundantly expressed in lodicules of the other monocots like rice and maize and in petals of eudicots like cotton, tobacco, and tomato. Furthermore, all of them were mostly upregulated in responding to the process of floret opening, indicating a conserved function of these aquaporin proteins in plant flowering. The phylogenetic analysis based on the OneKP database revealed that the homologs of TIP1;1, TIP1;2, TIP2;3, and PIP2;1 were highly conserved during the evolution, especially in the angiosperm species, in line with their conserved function in controlling the flowering process. Taken together, it could be concluded that the highly evolutionary conservation of TIP1;1, TIP1;2, TIP2;3 and PIP2;1 plays important roles in the flowering process for both monocots and eudicots.
Collapse
Affiliation(s)
- Qi Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Younan Ouyang
- China National Rice Research Institute, Hangzhou, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Fanrong Zeng,
| |
Collapse
|
24
|
Chen J, Miao W, Fei K, Shen H, Zhou Y, Shen Y, Li C, He J, Zhu K, Wang Z, Yang J. Jasmonates Alleviate the Harm of High-Temperature Stress During Anthesis to Stigma Vitality of Photothermosensitive Genetic Male Sterile Rice Lines. FRONTIERS IN PLANT SCIENCE 2021; 12:634959. [PMID: 33854518 PMCID: PMC8039518 DOI: 10.3389/fpls.2021.634959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 05/19/2023]
Abstract
Using photothermosensitive genic male sterile (PTSGMS) rice (Oryza sativa L.) lines to produce hybrids can obtain great heterosis. However, PTSGMS rice lines exhibit low stigma vitality when high-temperature (HT) stress happens during anthesis. Jasmonates (JAs) are novel phytohormones and play vital roles in mediating biotic and abiotic stresses. Little is known, however, if and how JAs could alleviate the harm of HT stress during anthesis to the stigma vitality of PTSGMS lines. This study investigated the question. Two PTSGMS lines and one restorer line of rice were pot-grown and subjected to normal temperature and HT stress during anthesis. The stigma exertion rate, sigma fresh weight, stigma area, contents of JAs, hydrogen peroxide (H2O2), and ascorbic acid (AsA), activity of catalase in stigmas, and the number of pollens germinated on the stigma of PTSGMS lines were determined. The results showed that a rice line with higher JAs content in the stigma under HT stress showed lower H2O2 content, higher AsA content and catalase activity in stigmas, larger stigma area, heavier stigma fresh weight, more pollens germinated on the stigma, and higher fertilization and seed-setting and rates. Applying methyl JAs during anthesis to rice panicles decreased the accumulation of reactive oxygen species and enhanced stigma vitality, thereby increasing fertilization and seed-setting rates of the hybrids of PTSGMS rice lines under HT stress. The results demonstrate that JAs attenuate the injury of HT stress to the stigma vitality of PTSGMS rice lines through enhancing antioxidant ability.
Collapse
|
25
|
Yang J, Fei K, Chen J, Wang Z, Zhang W, Zhang J. Jasmonates alleviate spikelet‐opening impairment caused by high temperature stress during anthesis of photo‐thermo‐sensitive genic male sterile rice lines. Food Energy Secur 2020. [DOI: 10.1002/fes3.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Keqi Fei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Jing Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Hong Kong China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Hong Kong China
| |
Collapse
|
26
|
Chen J, Xu Y, Fei K, Wang R, He J, Fu L, Shao S, Li K, Zhu K, Zhang W, Wang Z, Yang J. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines. Sci Rep 2020; 10:2210. [PMID: 32042005 PMCID: PMC7010791 DOI: 10.1038/s41598-020-59183-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/24/2020] [Indexed: 12/03/2022] Open
Abstract
Decrease in the grain yield resulted from a low percentage of opened spikelets under high temperature (HT) during anthesis is a serious problem in the seed production of photo-thermo-sensitive genic male sterile (PTGMS) rice (Oryza sativa L.) lines, and the mechanism is little understood. Elucidating the physiological mechanism underlying the effect of HT during anthesis on spikelet-opening of PTGMS lines would have great significance in exploring the effective way to mitigate the adverse effect of HT. In this study, two PTGMS lines and one restorer line of rice were used and were subjected to normal temperature (NT) and HT treatments. The results showed that, compared with NT, HT significantly decreased the percentage of opened spikelets, fertilization percentage and seed-setting by significantly increasing the percentage of wrapped spikelets and reducing the spikelet-opening angle, length of spikelet-opening time. The HT significantly decreased the contents of soluble sugars, jasmonic acid (JA) and methyl jasmonate (MeJA) in the lodicules before and at glume-opening, which were significantly correlated with and accounts for the low percentage of opened spikelets under HT for rice, especially for the PTGMS lines.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yangdong Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Keqi Fei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiang He
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lidong Fu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shimei Shao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ke Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
27
|
Rao Y, Xu N, Li S, Hu J, Jiao R, Hu P, Lin H, Lu C, Lin X, Dai Z, Zhang Y, Zhu X, Wang Y. PE-1, Encoding Heme Oxygenase 1, Impacts Heading Date and Chloroplast Development in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7249-7257. [PMID: 31244201 DOI: 10.1021/acs.jafc.9b01676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The duration of the rice growth phase has always been an important target trait. The identification of mutations in rice that alter these processes and result in a shorter growth phase could have potential benefits for crop production. In this study, we isolated an early aging rice mutant, pe-1, with light green leaves, using γ-mutated indica rice cultivar and subsequent screening methods, which is known as the phytochrome synthesis factor Se5 that controls rice flowering. The pe-1 plant is accompanied by a decreased chlorophyll content, an enhanced photosynthesis, and a decreased pollen fertility. PE-1, a close homologue of HY1, is localized in the chloroplast. Expression pattern analysis indicated that PE-1 was mainly expressed in roots, stems, leaves, leaf sheaths, and young panicles. The knockout of PE-1 using the CRISPR/Cas9 system decreased the chlorophyll content and downregulated the expression of PE-1-related genes. Furthermore, the chloroplasts of pe-1 were filled with many large-sized starch grains, and the number of osmiophilic granules (a chloroplast lipid reservoir) was significantly decreased. Altogether, our findings suggest that PE-1 functions as a master regulator to mediate in chlorophyll biosynthesis and photosynthetic pathways.
Collapse
Affiliation(s)
- Yuchun Rao
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Na Xu
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Juan Hu
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Ran Jiao
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Ping Hu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Han Lin
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Caolin Lu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Xue Lin
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Zhijun Dai
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Yilan Zhang
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| |
Collapse
|
28
|
Tang C, Zhang H, Zhang P, Ma Y, Cao M, Hu H, Shah FA, Zhao W, Li M, Wu L. iTRAQ-based quantitative proteome analysis reveals metabolic changes between a cleistogamous wheat mutant and its wild-type wheat counterpart. PeerJ 2019; 7:e7104. [PMID: 31245178 PMCID: PMC6585907 DOI: 10.7717/peerj.7104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/08/2019] [Indexed: 11/20/2022] Open
Abstract
Background Wheat is one of the most important staple crops worldwide. Fusarium head blight (FHB) severely affects wheat yield and quality. A novel bread wheat mutant, ZK001, characterized as cleistogamic was isolated from a non-cleistogamous variety Yumai 18 (YM18) through static magnetic field mutagenesis. Cleistogamy is a promising strategy for controlling FHB. However, little is known about the mechanism of cleistogamy in wheat. Methods We performed a FHB resistance test to identify the FHB infection rate of ZK001. We also measured the agronomic traits of ZK001 and the starch and total soluble sugar contents of lodicules in YM18 and ZK001. Finally, we performed comparative studies at the proteome level between YM18 and ZK001 based on the proteomic technique of isobaric tags for relative and absolute quantification. Results The infection rate of ZK001 was lower than that of its wild-type and Aikang 58. The abnormal lodicules of ZK001 lost the ability to push the lemma and palea apart during the flowering stage. Proteome analysis showed that the main differentially abundant proteins (DAPs) were related to carbohydrate metabolism, protein transport, and calcium ion binding. These DAPs may work together to regulate cellular homeostasis, osmotic pressure and the development of lodicules. This hypothesis is supported by the analysis of starch, soluble sugar content in the lodicules as well as the results of Quantitative reverse transcription polymerase chain reaction. Conclusions Proteomic analysis has provided comprehensive information that should be useful for further research on the lodicule development mechanism in wheat. The ZK001 mutant is optimal for studying flower development in wheat and could be very important for FHB resistant projects via conventional crossing.
Collapse
Affiliation(s)
- Caiguo Tang
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Huilan Zhang
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Pingping Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuhan Ma
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Minghui Cao
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Hu
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Faheem Afzal Shah
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Weiwei Zhao
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Minghao Li
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lifang Wu
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
29
|
Hazman M, Sühnel M, Schäfer S, Zumsteg J, Lesot A, Beltran F, Marquis V, Herrgott L, Miesch L, Riemann M, Heitz T. Characterization of Jasmonoyl-Isoleucine (JA-Ile) Hormonal Catabolic Pathways in Rice upon Wounding and Salt Stress. RICE (NEW YORK, N.Y.) 2019; 12:45. [PMID: 31240493 PMCID: PMC6592992 DOI: 10.1186/s12284-019-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Jasmonate (JA) signaling and functions have been established in rice development and response to a range of biotic or abiotic stress conditions. However, information on the molecular actors and mechanisms underlying turnover of the bioactive jasmonoyl-isoleucine (JA-Ile) is very limited in this plant species. RESULTS Here we explored two gene families in rice in which some members were described previously in Arabidopsis to encode enzymes metabolizing JA-Ile hormone, namely cytochrome P450 of the CYP94 subfamily (CYP94, 20 members) and amidohydrolases (AH, 9 members). The CYP94D subclade, of unknown function, was most represented in the rice genome with about 10 genes. We used phylogeny and gene expression analysis to narrow the study to candidate members that could mediate JA-Ile catabolism upon leaf wounding used as mimic of insect chewing or seedling exposure to salt, two stresses triggering jasmonate metabolism and signaling. Both treatments induced specific transcriptional changes, along with accumulation of JA-Ile and a complex array of oxidized jasmonate catabolites, with some of these responses being abolished in the JASMONATE RESISTANT 1 (jar1) mutant. However, upon response to salt, a lower dependence on JAR1 was evidenced. Dynamics of CYP94B5, CYP94C2, CYP94C4 and AH7 transcripts matched best the accumulation of JA-Ile catabolites. To gain direct insight into JA-Ile metabolizing activities, recombinant expression of some selected genes was undertaken in yeast and bacteria. CYP94B5 was demonstrated to catalyze C12-hydroxylation of JA-Ile, whereas similarly to its Arabidopsis bi-functional homolog IAR3, AH8 performed cleavage of JA-Ile and auxin-alanine conjugates. CONCLUSIONS Our data shed light on two rice gene families encoding enzymes related to hormone homeostasis. Expression data along with JA profiling and functional analysis identifies likely actors of JA-Ile catabolism in rice seedlings. This knowledge will now enable to better understand the metabolic fate of JA-Ile and engineer optimized JA signaling under stress conditions.
Collapse
Affiliation(s)
- Mohamed Hazman
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza, 12619 Egypt
| | - Martin Sühnel
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sandra Schäfer
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Agnès Lesot
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Fréderic Beltran
- Synthèse Organique et Phytochimie (SOPhy), Institut de Chimie, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valentin Marquis
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Herrgott
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Miesch
- Synthèse Organique et Phytochimie (SOPhy), Institut de Chimie, Université de Strasbourg, CNRS, Strasbourg, France
| | - Michael Riemann
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Liu D, Shi S, Hao Z, Xiong W, Luo M. OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. Int J Mol Sci 2019; 20:ijms20092360. [PMID: 31086007 PMCID: PMC6539606 DOI: 10.3390/ijms20092360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif (bZIP) TFs play pivotal roles through the whole life of plant growth. However, the relationship between JA and bZIP TFs were rarely reported, especially in rice. In this study, we found two rice homologues of Arabidopsis VIP1 (VirE2-interacting protein 1), OsbZIP81, and OsbZIP84. OsbZIP81 has at least two alternative transcripts, OsbZIP81.1 and OsbZIP81.2. OsbZIP81.1 and OsbZIP84 are typical bZIP TFs, while OsbZIP81.2 is not. OsbZIP81.1 can directly bind OsPIOX and activate its expression. In OsbZIP81.1 overexpression transgenic rice plant, JA (Jasmonic Acid) and SA (Salicylic acid) were up-regulated, while ABA (Abscisic acid) was down-regulated. Moreover, Agrobacterium, Methyl Jasmonic Acid (MeJA), and PEG6000 can largely induce OsbZIP81. Based on ChIP-Seq and Random DNA Binding Selection Assay (RDSA), we identified a novel cis-element OVRE (Oryza VIP1 response element). Combining ChIP-Seq and RNA-Seq, we obtained 1332 targeted genes that were categorized in biotic and abiotic responses, including α-linolenic acid metabolism and fatty acid degradation. Together, these results suggest that OsbZIP81 may positively regulate JA levels by directly targeting the genes in JA signaling and metabolism pathway in rice.
Collapse
Affiliation(s)
- Defang Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaopeng Shi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhijun Hao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wentao Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|