1
|
Tiwari LD, Kurtz-Sohn A, Bdolach E, Fridman E. Crops under past diversification and ongoing climate change: more than just selection of nuclear genes for flowering. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5431-5440. [PMID: 37480516 DOI: 10.1093/jxb/erad283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Diversification and breeding following domestication and under current climate change across the globe are the two most significant evolutionary events experienced by major crops. Diversification of crops from their wild ancestors has favored dramatic changes in the sensitivity of the plants to the environment, particularly significantly in transducing light inputs to the circadian clock, which has allowed the growth of major crops in the relatively short growing season experienced in the Northern Hemisphere. Historically, mutants and the mapping of quantitative trait loci (QTL) have facilitated the identification and the cloning of genes that underlie major changes of the clock and the regulation of flowering. Recent studies have suggested that the thermal plasticity of the circadian clock output, and not just the core genes that follow temperature compensation, has also been under selection during diversification and breeding. Wild alleles that accelerate output rhythmicity could be beneficial for crop resilience. Furthermore, wild alleles with beneficial and flowering-independent effects under stress indicate their possible role in maintaining a balanced source-sink relationship, thereby allowing productivity under climatic change. Because the chloroplast genome also regulates the plasticity of the clock output, mapping populations including cytonuclear interactions should be utilized within an integrated field and clock phenomics framework. In this review, we highlight the need to integrate physiological and developmental approaches (physio-devo) to gain a better understanding when re-domesticating wild gene alleles into modern cultivars to increase their robustness under abiotic heat and drought stresses.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Ayelet Kurtz-Sohn
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Bdolach
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Eyal Fridman
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| |
Collapse
|
2
|
Dang VH, Hill CB, Zhang XQ, Angessa TT, McFawn LA, Li C. Multi-locus genome-wide association studies reveal novel alleles for flowering time under vernalisation and extended photoperiod in a barley MAGIC population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3087-3102. [PMID: 35879467 PMCID: PMC9482607 DOI: 10.1007/s00122-022-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Key genes controlling flowering and interactions of different photoperiod alleles with various environments were identified in a barley MAGIC population. A new candidate gene for vernalisation requirements was also detected. Optimal flowering time has a major impact on grain yield in crop species, including the globally important temperate cereal crop barley (Hordeum vulgare L.). Understanding the genetics of flowering is a key avenue to enhancing yield potential. Although bi-parental populations were used intensively to map genes controlling flowering, their lack of genetic diversity requires additional work to obtain desired gene combinations in the selected lines, especially when the two parental cultivars did not carry the genes. Multi-parent mapping populations, which use a combination of four or eight parental cultivars, have higher genetic and phenotypic diversity and can provide novel genetic combinations that cannot be achieved using bi-parental populations. This study uses a Multi-parent advanced generation intercross (MAGIC) population from four commercial barley cultivars to identify genes controlling flowering time in different environmental conditions. Genome-wide association studies (GWAS) were performed using 5,112 high-quality markers from Diversity Arrays Technology sequencing (DArT-seq), and Kompetitive allele-specific polymerase chain reaction (KASP) genetic markers were developed. Phenotypic data were collected from fifteen different field trials for three consecutive years. Planting was conducted at various sowing times, and plants were grown with/without additional vernalisation and extended photoperiod treatments. This study detected fourteen stable regions associated with flowering time across multiple environments. GWAS combined with pangenome data highlighted the role of CEN gene in flowering and enabled the prediction of different CEN alleles from parental lines. As the founder lines of the multi-parental population are elite germplasm, the favourable alleles identified in this study are directly relevant to breeding, increasing the efficiency of subsequent breeding strategies and offering better grain yield and adaptation to growing conditions.
Collapse
Affiliation(s)
- Viet Hoang Dang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | - Camilla Beate Hill
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
| | - Lee-Anne McFawn
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia.
- Department of Primary Industries and Regional Development, Perth, WA, Australia.
| |
Collapse
|
3
|
Grieco M, Schmidt M, Warnemünde S, Backhaus A, Klück HC, Garibay A, Tandrón Moya YA, Jozefowicz AM, Mock HP, Seiffert U, Maurer A, Pillen K. Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111123. [PMID: 35067296 DOI: 10.1016/j.plantsci.2021.111123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Biofortification, the enrichment of nutrients in crop plants, is of increasing importance to improve human health. The wild barley nested association mapping (NAM) population HEB-25 was developed to improve agronomic traits including nutrient concentration. Here, we evaluated the potential of high-throughput hyperspectral imaging in HEB-25 to predict leaf concentration of 15 mineral nutrients, sampled from two field experiments and four developmental stages. Particularly accurate predictions were obtained by partial least squares regression (PLS) modeling of leaf concentrations for N, P and K reaching coefficients of determination of 0.90, 0.75 and 0.89, respectively. We recognized nutrient-specific patterns of variation of leaf nutrient concentration between developmental stages. A number of quantitative trait loci (QTL) associated with the simultaneous expression of leaf nutrients were detected, indicating their potential co-regulation in barley. For example, the wild barley allele of QTL-4H-1 simultaneously increased leaf concentration of N, P, K and Cu. Similar effects of the same QTL were previously reported for nutrient concentrations in grains, supporting a potential parallel regulation of N, P, K and Cu in leaves and grains of HEB-25. Our study provides a new approach for nutrient assessment in large-scale field experiments to ultimately select genes and genotypes supporting plant biofortification.
Collapse
Affiliation(s)
- Michele Grieco
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Maria Schmidt
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Sebastian Warnemünde
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Hans-Christian Klück
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Adriana Garibay
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Yudelsy Antonia Tandrón Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Andreas Maurer
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Klaus Pillen
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
4
|
Maurer A, Pillen K. Footprints of Selection Derived From Temporal Heterozygosity Patterns in a Barley Nested Association Mapping Population. FRONTIERS IN PLANT SCIENCE 2021; 12:764537. [PMID: 34721490 PMCID: PMC8551860 DOI: 10.3389/fpls.2021.764537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, genetic diversity more than ever represents a key driver of adaptation to climate challenges like drought, heat, and salinity. Therefore, there is a need to replenish the limited elite gene pools with favorable exotic alleles from the wild progenitors of our crops. Nested association mapping (NAM) populations represent one step toward exotic allele evaluation and enrichment of the elite gene pool. We investigated an adaptive selection strategy in the wild barley NAM population HEB-25 based on temporal genomic data by studying the fate of 214,979 SNP loci initially heterozygous in individual BC1S3 lines after five cycles of selfing and field propagation. We identified several loci exposed to adaptive selection in HEB-25. In total, 48.7% (104,725 SNPs) of initially heterozygous SNP calls in HEB-25 were fixed in BC1S3:8 generation, either toward the wild allele (19.9%) or the cultivated allele (28.8%). Most fixed SNP loci turned out to represent gene loci involved in domestication and flowering time as well as plant height, for example, btr1/btr2, thresh-1, Ppd-H1, and sdw1. Interestingly, also unknown loci were found where the exotic allele was fixed, hinting at potentially useful exotic alleles for plant breeding.
Collapse
|
5
|
Cable J, Ronald PC, Voytas D, Zhang F, Levy AA, Takatsuka A, Arimura SI, Jacobsen SE, Toki S, Toda E, Gao C, Zhu JK, Boch J, Van Eck J, Mahfouz M, Andersson M, Fridman E, Weiss T, Wang K, Qi Y, Jores T, Adams T, Bagchi R. Plant genome engineering from lab to field-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:35-54. [PMID: 34435370 DOI: 10.1111/nyas.14675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
Facing the challenges of the world's food sources posed by a growing global population and a warming climate will require improvements in plant breeding and technology. Enhancing crop resiliency and yield via genome engineering will undoubtedly be a key part of the solution. The advent of new tools, such as CRIPSR/Cas, has ushered in significant advances in plant genome engineering. However, several serious challenges remain in achieving this goal. Among them are efficient transformation and plant regeneration for most crop species, low frequency of some editing applications, and high attrition rates. On March 8 and 9, 2021, experts in plant genome engineering and breeding from academia and industry met virtually for the Keystone eSymposium "Plant Genome Engineering: From Lab to Field" to discuss advances in genome editing tools, plant transformation, plant breeding, and crop trait development, all vital for transferring the benefits of novel technologies to the field.
Collapse
Affiliation(s)
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, and the Joint BioEnergy Institute, Davis, California
| | - Daniel Voytas
- Department of Genetics, Cell Biology and Development; Center for Precision Plant Genomics; and Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota
| | - Feng Zhang
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ayumu Takatsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Steven E Jacobsen
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; Department of Molecular, Cell and Developmental Biology; and Howard Hughes Medical Institute, University of California, Los Angeles, California
| | - Seiichi Toki
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, and College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jens Boch
- Department of Plant Biotechnology, Leibniz Universität Hannover, Hannover, Germany
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York, and Plant Breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eyal Fridman
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Trevor Weiss
- Department of Genetics, Cell Biology and Development; Center for Precision Plant Genomics; and Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, Iowa
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, and Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | - Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - Rammyani Bagchi
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
6
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
7
|
Hill CB, Angessa TT, Zhang XQ, Chen K, Zhou G, Tan C, Wang P, Westcott S, Li C. A global barley panel revealing genomic signatures of breeding in modern Australian cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:419-434. [PMID: 33506596 DOI: 10.1111/tpj.15173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The future of plant cultivar improvement lies in the evaluation of genetic resources from currently available germplasm. Today's gene pool of crop genetic diversity has been shaped during domestication and more recently by breeding. Recent efforts in plant breeding have been aimed at developing new and improved varieties from poorly adapted crops to suit local environments. However, the impact of these breeding efforts is poorly understood. Here, we assess the contributions of both historical and recent breeding efforts to local adaptation and crop improvement in a global barley panel by analysing the distribution of genetic variants with respect to geographic region or historical breeding category. By tracing the impact that breeding had on the genetic diversity of Hordeum vulgare (barley) released in Australia, where the history of barley production is relatively young, we identify 69 candidate regions within 922 genes that were under selection pressure. We also show that modern Australian barley varieties exhibit 12% higher genetic diversity than historical cultivars. Finally, field-trialling and phenotyping for agriculturally relevant traits across a diverse range of Australian environments suggests that genomic regions under strong breeding selection and their candidate genes are closely associated with key agronomic traits. In conclusion, our combined data set and germplasm collection provide a rich source of genetic diversity that can be applied to understanding and improving environmental adaptation and enhanced yields.
Collapse
Affiliation(s)
- Camilla Beate Hill
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Kefei Chen
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
- Statistics for the Australian Grains Industry (SAGI) West, Faculty of Science and Engineering, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Gaofeng Zhou
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Cong Tan
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Penghao Wang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Sharon Westcott
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| |
Collapse
|
8
|
Bdolach E, Prusty MR, Faigenboim-Doron A, Filichkin T, Helgerson L, Schmid KJ, Greiner S, Fridman E. Thermal plasticity of the circadian clock is under nuclear and cytoplasmic control in wild barley. PLANT, CELL & ENVIRONMENT 2019; 42:3105-3120. [PMID: 31272129 DOI: 10.1111/pce.13606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.
Collapse
Affiliation(s)
- Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Tanya Filichkin
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Laura Helgerson
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
9
|
Herzig P, Backhaus A, Seiffert U, von Wirén N, Pillen K, Maurer A. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:151-164. [PMID: 31203880 DOI: 10.1016/j.plantsci.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 05/05/2023]
Abstract
Enhancing the accumulation of essential mineral elements in cereal grains is of prime importance for combating human malnutrition. Biofortification by breeding holds great potential for improving nutrient accumulation in grains. However, conventional breeding approaches require element analysis of many grain samples, which causes high costs. Here we applied hyperspectral imaging to estimate the concentration of 15 grain elements (C, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Zn) in high-throughput in the wild barley nested association mapping (NAM) population HEB-25, comprising 1,420 BC1S3 lines derived from crossing 25 wild barley accessions with the cultivar 'Barke'. Nutrient concentrations varied largely with a multitude of lines having higher micronutrient concentration than 'Barke'. In a genome-wide association study (GWAS), we located 75 quantitative trait locus (QTL) hotspots, whereof many could be explained by major genes such as NO APICAL MERISTEM-1 (NAM-1) and PHOTOPERIOD 1 (Ppd-H1). The GWAS approach revealed exotic alleles that were able to increase grain element concentrations. Remarkably, a QTL linked to GIBBERELLIN 20 OXIDASE 2 (HvGA20ox2) significantly increased several grain elements without yield loss. We conclude that introgressing promising exotic alleles into elite breeding material can assist in improving the nutritional value of barley grains.
Collapse
Affiliation(s)
- Paul Herzig
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
10
|
Wiegmann M, Thomas WTB, Bull HJ, Flavell AJ, Zeyner A, Peiter E, Pillen K, Maurer A. "Wild barley serves as a source for biofortification of barley grains". PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:83-94. [PMID: 31128718 DOI: 10.1016/j.plantsci.2018.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 05/05/2023]
Abstract
The continuing growth of the human population creates an inevitable necessity for higher crop yields, which are mandatory for the supply with adequate amounts of food. However, increasing grain yield may lead to a reduction of grain quality, such as a decline in protein and mineral nutrient concentrations causing the so-called hidden hunger. To assess the interdependence between quantity and quality and to evaluate the biofortification potential of wild barley, we conducted field studies, examining the interplay between plant development, yield, and nutrient concentrations, using HEB-YIELD, a subset of the wild barley nested association mapping population HEB-25. A huge variation of nutrient concentration in grains was obtained, since we identified lines with a more than 50% higher grain protein, iron, and zinc concentration in comparison to the recurrent parent 'Barke'. We observed a negative relationship between grain yield and nutritional value in barley, indicated by predominantly negative correlations between yield and nutrient concentrations. Analyzing the genetic control of nutrient concentration in mature grains indicated that numerous genomic regions determine the final nutritional value of grains and wild alleles were frequently associated with higher nutrient concentrations. The targeted introgression of wild barley alleles may enable biofortification in future barley breeding.
Collapse
Affiliation(s)
- Mathias Wiegmann
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| | - William T B Thomas
- The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | - Hazel J Bull
- The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | - Andrew J Flavell
- University of Dundee at JHI, School of Life Sciences, Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | - Annette Zeyner
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Animal Nutrition, Theodor-Lieser-Str. 11, 06120 Halle, Germany.
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Nutrition, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
11
|
Merchuk-Ovnat L, Ovnat Z, Amir-Segev O, Kutsher Y, Saranga Y, Reuveni M. CoverageTool: A semi-automated graphic software: applications for plant phenotyping. PLANT METHODS 2019; 15:90. [PMID: 31404403 PMCID: PMC6683572 DOI: 10.1186/s13007-019-0472-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/26/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Characterization and quantification of visual plant traits is often limited to the use of tools and software that were developed to address a specific context, making them unsuitable for other applications. CoverageTool is flexible multi-purpose software capable of area calculation in cm2, as well as coverage area in percentages, suitable for a wide range of applications. RESULTS Here we present a novel, semi-automated and robust tool for detailed characterization of visual plant traits. We demonstrate and discuss the application of this tool to quantify a broad spectrum of plant phenotypes/traits such as: tissue culture parameters, ground surface covered by annual plant canopy, root and leaf projected surface area, and leaf senescence area ratio. The CoverageTool software provides easy to use functions to analyze images. While use of CoverageTool involves subjective operator color selections, applying them uniformly to full sets of samples makes it possible to provide quantitative comparison between test subjects. CONCLUSION The tool is simple and straightforward, yet suitable for the quantification of biological and environmental effects on a wide variety of visual plant traits. This tool has been very useful in quantifying different plant phenotypes in several recently published studies, and may be useful for many applications.
Collapse
Affiliation(s)
- Lianne Merchuk-Ovnat
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, P. O. Box 6, 5025001 Bet Dagan, Israel
| | | | - Orit Amir-Segev
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, P. O. Box 6, 5025001 Bet Dagan, Israel
| | - Yaarit Kutsher
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, P. O. Box 6, 5025001 Bet Dagan, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Moshe Reuveni
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, P. O. Box 6, 5025001 Bet Dagan, Israel
| |
Collapse
|