1
|
Wu S, Zhang Y, Luzarowska U, Yang L, Salem MA, Thirumalaikumar VP, Sade N, Galperin VE, Fernie A, Sampathkumar A, Bershtein S, Fusari CM, Brotman Y. The homeostasis of β-alanine is key for Arabidopsis reproductive growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70134. [PMID: 40181510 PMCID: PMC11969031 DOI: 10.1111/tpj.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
β-Alanine, an abundant non-proteinogenic amino acid, acts as a precursor for coenzyme A and plays a role in various stress responses. However, a comprehensive understanding of its metabolism in plants remains incomplete. Previous metabolic genome-wide association studies (mGWAS) identified ALANINE:GLYOXYLATE AMINOTRANSFERASE2 (AGT2, AT4G39660) linked to β-alanine levels in Arabidopsis under normal conditions. In this study, we aimed to deepen our insights into β-alanine regulation by conducting mGWAS under two contrasting environmental conditions: control (12 h photoperiod, 21°C, 150 μmol m-2 sec-1) and stress (harvested after 1820 min at 32°C and darkness). We identified two highly significant quantitative trait loci (QTL) for β-alanine, including the AGT2 locus associated in both environments and ALDEHYDE DEHYDROGENASE6B2 (ALDH6B2, AT2G14170) associated only under stress conditions. A coexpression-correlation network revealed that the regulatory pathway involving β-alanine levels, AGT2, and ALDH6B2 connects the branched chained amino acid (BCAA) degradation through the propionate pathway. Metabolic profiles of AGT2 overexpression (OE) and knock-out (KO) lines (agt2) across various organs and developmental stages established the critical role of AGT2 in β-alanine metabolism. This work underscores the importance of β-alanine homeostasis for proper growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Si Wu
- Department of Life SciencesBen Gurion University of the NegevBeershevaIsrael
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
- Present address:
Computational Oncology, AbbVieSouth San FranciscoCalifornia94080USA
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Urszula Luzarowska
- Department of Life SciencesBen Gurion University of the NegevBeershevaIsrael
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Lei Yang
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Mohamed A. Salem
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | | | - Nir Sade
- School of Plant Sciences and Food SecurityInstitute for Cereal Crops Research, Tel Aviv UniversityTel Aviv69978Israel
| | - Vadim E. Galperin
- BLAVATNIK CENTER for Drug DiscoveryTel Aviv UniversityTel Aviv69978Israel
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Shimon Bershtein
- Department of Life SciencesBen Gurion University of the NegevBeershevaIsrael
| | - Corina M. Fusari
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI‐CONICET‐UNR)Suipacha 570RosarioS2000LRJArgentina
| | - Yariv Brotman
- School of Plant Sciences and Food SecurityInstitute for Cereal Crops Research, Tel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
2
|
Han Y, Zhao H, Gao Y, Chen H, Du J, Hu Z. Identification of miRNA-mRNA regulatory network during the germination of soybean seed (Glycine max) and the role of Gma-miR1512a-GmKIN10 interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109853. [PMID: 40168859 DOI: 10.1016/j.plaphy.2025.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Seed germination is a key and complex physiological process in plant life, including soybeans. Here, we explored the miRNA-mRNA transcriptome changes and the key genes in the germination stages of the soybean. Morphological analysis showed that the imbibition of seeds was completed at 12 h, and the embryo broke through the seed coat at 36 h. During seed germination, mRNA and miRNA sequencing identified 20845 differentially expressed mRNAs (DEMs) and 421 differentially expressed miRNAs (DEMIs) at three specific time points: 12 h, 36 h, and 108 h. KEGG enrichment revealed that plant hormone signal transduction, plant-pathogen interaction and MAPK signaling pathway-plant were the crucial biological processes for seed germination. ABA and GA related DEMs on plant hormone signal transduction were abundant. miRNA-mRNA integrated analysis showed that 5170 miRNA-mRNA pairs were found. During germination, 20 significant miRNA-mRNA interactions were identified, involving the top 10 differentially expressed miRNAs (DEMIs) and 198 differentially expressed mRNAs (DEMs). Interestingly, the expression level of Gma-miR1512a increased significantly during soybean seed germination. This miRNA specifically regulates GmKIN10, homologous to AtKIN10, which mediates germination. To verify this interaction, co-agroinjection of GmKIN10-GFP/GUS and Gma-miR1512a into tobacco leaves demonstrated that Gma-miR1512a can inhibit GmKIN10 expression by cleaving its target site. Furthermore, the function of Gma-miR1512a-GmKIN10 were verified by overexpression transgene. Although Arabidopsis seeds overexpressing Gma-miR1512a (OE-Gma-miR1512a) showed no significant differences in germination indices compared to wild-type (WT) seeds, those overexpressing GmKIN10 (OE-GmKIN10) exhibited significantly lower germination indices. The seeds germination index of GmKIN10 and Gma-miR1512a double overexpression lines recovered. Additionally, the yeast two-hybrid assay, protein interaction prediction,and molecular docking all showed that GmKIN10 might interact with GmPP2A and GmDSP4. This study identified a complex miRNA-mRNA regulatory network that plays a crucial role in soybean seed germination. Specifically, Gma-miR1512a was found to regulate GmKIN10, significantly influencing germination rates and hormone signaling pathways.
Collapse
Affiliation(s)
- Yiqiang Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang Province, PR China.
| | - Hongyan Zhao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang Province, PR China
| | - Yamei Gao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in the Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Haonan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang Province, PR China
| | - Jidao Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China
| | - Zheng Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| |
Collapse
|
3
|
Persyn F, Smagghe W, Eeckhout D, Mertens T, Smorscek T, De Winne N, Persiau G, Van De Slijke E, Crepin N, Gadeyne A, Van Leene J, De Jaeger G. A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling. Mol Cell Proteomics 2024; 23:100842. [PMID: 39307424 PMCID: PMC11526089 DOI: 10.1016/j.mcpro.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Nitrogen (N) is of utmost importance for plant growth and development. Multiple studies have shown that N signaling is tightly coupled with carbon (C) levels, but the interplay between C/N metabolism and growth remains largely an enigma. Nonetheless, the protein kinases Sucrose Non-fermenting 1 (SNF1)-Related Kinase 1 (SnRK1) and Target Of Rapamycin (TOR), two ancient central metabolic regulators, are emerging as key integrators that link C/N status with growth. Despite their pivotal importance, the exact mechanisms behind the sensing of N status and its integration with C availability to drive metabolic decisions are largely unknown. Especially for SnRK1, it is not clear how this kinase responds to altered N levels. Therefore, we first monitored N-dependent SnRK1 kinase activity with an in vivo Separation of Phase-based Activity Reporter of Kinase (SPARK) sensor, revealing a contrasting N-dependency in Arabidopsis thaliana (Arabidopsis) shoot and root tissues. Next, using affinity purification (AP) and proximity labeling (PL) coupled to mass spectrometry (MS) experiments, we constructed a comprehensive SnRK1 and TOR interactome in Arabidopsis cell cultures during N-starved and N-repleted growth conditions. To broaden our understanding of the N-specificity of the TOR/SnRK1 signaling events, the resulting network was compared to corresponding C-related networks, identifying a large number of novel, N-specific interactors. Moreover, through integration of N-dependent transcriptome and phosphoproteome data, we were able to pinpoint additional N-dependent network components, highlighting for instance SnRK1 regulatory proteins that might function at the crosstalk of C/N signaling. Finally, confirmation of known and identification of novel SnRK1 interactors, such as Inositol-Requiring 1 (IRE1A) and the RAB GTPase RAB18, indicate that SnRK1, present at the ER, is involved in N signaling and autophagy induction.
Collapse
Affiliation(s)
- Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Smorscek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
4
|
Jorge GL, Kim D, Xu C, Cho SH, Su L, Xu D, Bartley LE, Stacey G, Thelen JJ. Unveiling orphan receptor-like kinases in plants: novel client discovery using high-confidence library predictions in the Kinase-Client (KiC) assay. FRONTIERS IN PLANT SCIENCE 2024; 15:1372361. [PMID: 38633461 PMCID: PMC11021772 DOI: 10.3389/fpls.2024.1372361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Plants are remarkable in their ability to adapt to changing environments, with receptor-like kinases (RLKs) playing a pivotal role in perceiving and transmitting environmental cues into cellular responses. Despite extensive research on RLKs from the plant kingdom, the function and activity of many kinases, i.e., their substrates or "clients", remain uncharted. To validate a novel client prediction workflow and learn more about an important RLK, this study focuses on P2K1 (DORN1), which acts as a receptor for extracellular ATP (eATP), playing a crucial role in plant stress resistance and immunity. We designed a Kinase-Client (KiC) assay library of 225 synthetic peptides, incorporating previously identified P2K phosphorylated peptides and novel predictions from a deep-learning phosphorylation site prediction model (MUsite) and a trained hidden Markov model (HMM) based tool, HMMER. Screening the library against purified P2K1 cytosolic domain (CD), we identified 46 putative substrates, including 34 novel clients, 27 of which may be novel peptides, not previously identified experimentally. Gene Ontology (GO) analysis among phosphopeptide candidates revealed proteins associated with important biological processes in metabolism, structure development, and response to stress, as well as molecular functions of kinase activity, catalytic activity, and transferase activity. We offer selection criteria for efficient further in vivo experiments to confirm these discoveries. This approach not only expands our knowledge of P2K1's substrates and functions but also highlights effective prediction algorithms for identifying additional potential substrates. Overall, the results support use of the KiC assay as a valuable tool in unraveling the complexities of plant phosphorylation and provide a foundation for predicting the phosphorylation landscape of plant species based on peptide library results.
Collapse
Affiliation(s)
- Gabriel Lemes Jorge
- Division of Biochemistry, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Daewon Kim
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Chunhui Xu
- Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Sung-Hwan Cho
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Lingtao Su
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jay J. Thelen
- Division of Biochemistry, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Saile J, Wießner-Kroh T, Erbstein K, Obermüller DM, Pfeiffer A, Janocha D, Lohmann J, Wachter A. SNF1-RELATED KINASE 1 and TARGET OF RAPAMYCIN control light-responsive splicing events and developmental characteristics in etiolated Arabidopsis seedlings. THE PLANT CELL 2023; 35:3413-3428. [PMID: 37338062 PMCID: PMC10473197 DOI: 10.1093/plcell/koad168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.
Collapse
Affiliation(s)
- Jennifer Saile
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Theresa Wießner-Kroh
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Katarina Erbstein
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Dominik M Obermüller
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Anne Pfeiffer
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Denis Janocha
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Jan Lohmann
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Lu P, Dai SY, Yong LT, Zhou BH, Wang N, Dong YY, Liu WC, Wang FW, Yang HY, Li XW. A Soybean Sucrose Non-Fermenting Protein Kinase 1 Gene, GmSNF1, Positively Regulates Plant Response to Salt and Salt-Alkali Stress in Transgenic Plants. Int J Mol Sci 2023; 24:12482. [PMID: 37569858 PMCID: PMC10419833 DOI: 10.3390/ijms241512482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean is one of the most widely grown oilseed crops worldwide. Several unfavorable factors, including salt and salt-alkali stress caused by soil salinization, affect soybean yield and quality. Therefore, exploring the molecular basis of salt tolerance in plants and developing genetic resources for genetic breeding is important. Sucrose non-fermentable protein kinase 1 (SnRK1) belongs to a class of Ser/Thr protein kinases that are evolutionarily highly conserved direct homologs of yeast SNF1 and animal AMPKs and are involved in various abiotic stresses in plants. The GmPKS4 gene was experimentally shown to be involved with salinity tolerance. First, using the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique, the GmSNF1 protein was shown to interact with the GmPKS4 protein. Second, the GmSNF1 gene responded positively to salt and salt-alkali stress according to qRT-PCR analysis, and the GmSNF1 protein was localized in the nucleus and cytoplasm using subcellular localization assay. The GmSNF1 gene was then heterologously expressed in yeast, and the GmSNF1 gene was tentatively identified as having salt and salt-alkali tolerance function. Finally, the salt-alkali tolerance function of the GmSNF1 gene was demonstrated by transgenic Arabidopsis thaliana, soybean hairy root complex plants overexpressing GmSNF1 and GmSNF1 gene-silenced soybean using VIGS. These results indicated that GmSNF1 might be useful in genetic engineering to improve plant salt and salt-alkali tolerance.
Collapse
Affiliation(s)
- Ping Lu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Si-Yu Dai
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Ling-Tao Yong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Bai-Hui Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Yuan-Yuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Wei-Can Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Fa-Wei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Hao-Yu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiao-Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| |
Collapse
|
7
|
Yang C, Li X, Yang L, Chen S, Liao J, Li K, Zhou J, Shen W, Zhuang X, Bai M, Bassham DC, Gao C. A positive feedback regulation of SnRK1 signaling by autophagy in plants. MOLECULAR PLANT 2023; 16:1192-1211. [PMID: 37408307 DOI: 10.1016/j.molp.2023.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
SnRK1, an evolutionarily conserved heterotrimeric kinase complex that acts as a key metabolic sensor in maintaining energy homeostasis in plants, is an important upstream activator of autophagy that serves as a cellular degradation mechanism for the healthy growth of plants. However, whether and how the autophagy pathway is involved in regulating SnRK1 activity remains unknown. In this study, we identified a clade of plant-specific and mitochondria-localized FCS-like zinc finger (FLZ) proteins as currently unknown ATG8-interacting partners that actively inhibit SnRK1 signaling by repressing the T-loop phosphorylation of the catalytic α subunits of SnRK1, thereby negatively modulating autophagy and plant tolerance to energy deprivation caused by long-term carbon starvation. Interestingly, these AtFLZs are transcriptionally repressed by low-energy stress, and AtFLZ proteins undergo a selective autophagy-dependent pathway to be delivered to the vacuole for degradation, thereby constituting a positive feedback regulation to relieve their repression of SnRK1 signaling. Bioinformatic analyses show that the ATG8-FLZ-SnRK1 regulatory axis first appears in gymnosperms and seems to be highly conserved during the evolution of seed plants. Consistent with this, depletion of ATG8-interacting ZmFLZ14 confers enhanced tolerance, whereas overexpression of ZmFLZ14 leads to reduced tolerance to energy deprivation in maize. Collectively, our study reveals a previously unknown mechanism by which autophagy contributes to the positive feedback regulation of SnRK1 signaling, thereby enabling plants to better adapt to stressful environments.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shunquan Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mingyi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
8
|
Avidan O, Moraes TA, Mengin V, Feil R, Rolland F, Stitt M, Lunn JE. In vivo protein kinase activity of SnRK1 fluctuates in Arabidopsis rosettes during light-dark cycles. PLANT PHYSIOLOGY 2023; 192:387-408. [PMID: 36725081 PMCID: PMC10152665 DOI: 10.1093/plphys/kiad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Sucrose-nonfermenting 1 (SNF1)-related kinase 1 (SnRK1) is a central hub in carbon and energy signaling in plants, and is orthologous with SNF1 in yeast and the AMP-activated protein kinase (AMPK) in animals. Previous studies of SnRK1 relied on in vitro activity assays or monitoring of putative marker gene expression. Neither approach gives unambiguous information about in vivo SnRK1 activity. We have monitored in vivo SnRK1 activity using Arabidopsis (Arabidopsis thaliana) reporter lines that express a chimeric polypeptide with an SNF1/SnRK1/AMPK-specific phosphorylation site. We investigated responses during an equinoctial diel cycle and after perturbing this cycle. As expected, in vivo SnRK1 activity rose toward the end of the night and rose even further when the night was extended. Unexpectedly, although sugars rose after dawn, SnRK1 activity did not decline until about 12 h into the light period. The sucrose signal metabolite, trehalose 6-phosphate (Tre6P), has been shown to inhibit SnRK1 in vitro. We introduced the SnRK1 reporter into lines that harbored an inducible trehalose-6-phosphate synthase construct. Elevated Tre6P decreased in vivo SnRK1 activity in the light period, but not at the end of the night. Reporter polypeptide phosphorylation was sometimes negatively correlated with Tre6P, but a stronger and more widespread negative correlation was observed with glucose-6-phosphate. We propose that SnRK1 operates within a network that controls carbon utilization and maintains diel sugar homeostasis, that SnRK1 activity is regulated in a context-dependent manner by Tre6P, probably interacting with further inputs including hexose phosphates and the circadian clock, and that SnRK1 signaling is modulated by factors that act downstream of SnRK1.
Collapse
Affiliation(s)
- Omri Avidan
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thiago A Moraes
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven, B-3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), B-3001 Leuven, Belgium
| | - Mark Stitt
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
9
|
He C, Berkowitz O, Hu S, Zhao Y, Qian K, Shou H, Whelan J, Wang Y. Co-regulation of mitochondrial and chloroplast function: Molecular components and mechanisms. PLANT COMMUNICATIONS 2023; 4:100496. [PMID: 36435968 PMCID: PMC9860188 DOI: 10.1016/j.xplc.2022.100496] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The metabolic interdependence, interactions, and coordination of functions between chloroplasts and mitochondria are established and intensively studied. However, less is known about the regulatory components that control these interactions and their responses to external stimuli. Here, we outline how chloroplastic and mitochondrial activities are coordinated via common components involved in signal transduction pathways, gene regulatory events, and post-transcriptional processes. The endoplasmic reticulum emerges as a point of convergence for both transcriptional and post-transcriptional pathways that coordinate chloroplast and mitochondrial functions. Although the identification of molecular components and mechanisms of chloroplast and mitochondrial signaling increasingly suggests common players, this raises the question of how these allow for distinct organelle-specific downstream pathways. Outstanding questions with respect to the regulation of post-transcriptional pathways and the cell and/or tissue specificity of organelle signaling are crucial for understanding how these pathways are integrated at a whole-plant level to optimize plant growth and its response to changing environmental conditions.
Collapse
Affiliation(s)
- Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shanshan Hu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yang Zhao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
10
|
Gutierrez-Beltran E, Crespo JL. Compartmentalization, a key mechanism controlling the multitasking role of the SnRK1 complex. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7055-7067. [PMID: 35861169 PMCID: PMC9664234 DOI: 10.1093/jxb/erac315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
SNF1-related protein kinase 1 (SnRK1), the plant ortholog of mammalian AMP-activated protein kinase/fungal (yeast) Sucrose Non-Fermenting 1 (AMPK/SNF1), plays a central role in metabolic responses to reduced energy levels in response to nutritional and environmental stresses. SnRK1 functions as a heterotrimeric complex composed of a catalytic α- and regulatory β- and βγ-subunits. SnRK1 is a multitasking protein involved in regulating various cellular functions, including growth, autophagy, stress response, stomatal development, pollen maturation, hormone signaling, and gene expression. However, little is known about the mechanism whereby SnRK1 ensures differential execution of downstream functions. Compartmentalization has been recently proposed as a new key mechanism for regulating SnRK1 signaling in response to stimuli. In this review, we discuss the multitasking role of SnRK1 signaling associated with different subcellular compartments.
Collapse
Affiliation(s)
| | - Jose L Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
11
|
Van Leene J, Eeckhout D, Gadeyne A, Matthijs C, Han C, De Winne N, Persiau G, Van De Slijke E, Persyn F, Mertens T, Smagghe W, Crepin N, Broucke E, Van Damme D, Pleskot R, Rolland F, De Jaeger G. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. NATURE PLANTS 2022; 8:1245-1261. [PMID: 36376753 DOI: 10.1038/s41477-022-01269-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The central metabolic regulator SnRK1 controls plant growth and survival upon activation by energy depletion, but detailed molecular insight into its regulation and downstream targets is limited. Here we used phosphoproteomics to infer the sucrose-dependent processes targeted upon starvation by kinases as SnRK1, corroborating the relation of SnRK1 with metabolic enzymes and transcriptional regulators, while also pointing to SnRK1 control of intracellular trafficking. Next, we integrated affinity purification, proximity labelling and crosslinking mass spectrometry to map the protein interaction landscape, composition and structure of the SnRK1 heterotrimer, providing insight in its plant-specific regulation. At the intersection of this multi-dimensional interactome, we discovered a strong association of SnRK1 with class II T6P synthase (TPS)-like proteins. Biochemical and cellular assays show that TPS-like proteins function as negative regulators of SnRK1. Next to stable interactions with the TPS-like proteins, similar intricate connections were found with known regulators, suggesting that plants utilize an extended kinase complex to fine-tune SnRK1 activity for optimal responses to metabolic stress.
Collapse
Affiliation(s)
- Jelle Van Leene
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Caroline Matthijs
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Han
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Nancy De Winne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Freya Persyn
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Heverlee-Leuven, Belgium
- KU Leuven Plant Institute-LPI, Heverlee-Leuven, Belgium
| | - Ellen Broucke
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Heverlee-Leuven, Belgium
- KU Leuven Plant Institute-LPI, Heverlee-Leuven, Belgium
| | - Daniël Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Heverlee-Leuven, Belgium
- KU Leuven Plant Institute-LPI, Heverlee-Leuven, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
12
|
Zhao Y, Wang XQ. VvTOR interacts with VvSnRK1.1 and regulates sugar metabolism in grape. PLANTA 2022; 256:56. [PMID: 35932402 DOI: 10.1007/s00425-022-03969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
VvTOR interacts with VvSnRK1.1 and regulates sugar accumulation and sugar-related genes expression in grape. Target of rapamycin (TOR) and sucrose-non-fermenting-related protein kinase 1.1 (SnRK1.1) both are critical proteins in plant sugar metabolism. Glucose-TOR signaling dictates transcriptional reprogramming of gene sets involved in central and secondary metabolism, cell cycle, transcription, signaling, transport and folding. SnRK1.1 is involved in sucrose-induced hypocotyl elongation. However, the relationship of TOR and SnRK1.1 in regulating sugar metabolism is unclear. In the study, we utilized grape (Vitis vinifera) calli to explore the relationship between TOR and SnRK1.1 in the sugar metabolism. We found that VvTOR interacted with VvSnRK1.1. By subcellular localization, VvTOR was found in the nucleus and cell membrane. Transgenic grape calli achieved by Agrobacterium-mediated transformation contained less glucose compared to WT calli. The fructose contents were markedly increased in the overexpressing VvTOR (OE-VvTOR), OE-VvTOR + RNAi-VvSnRK1.1 and RNAi-VvTOR + OE-VvSnRK1.1 transgenic calli. Sucrose contents were significantly increased in the OE-VvTOR transgenic calli and reduced in the OE-VvTOR + RNAi-VvSnRK1.1 transgenic calli, which implied that the pathway of VvTOR improving sucrose content might need the expression of VvSnRK1.1. VvTOR interacted with VvSnRK1.1 and regulated sugar metabolism in grape. These results suggest that there is a crosstalk between TOR and SnRK1.1 in plant sugar metabolism.
Collapse
Affiliation(s)
- Ying Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Xiu-Qin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
13
|
Jamsheer K M, Jindal S, Sharma M, Awasthi P, S S, Sharma M, Mannully CT, Laxmi A. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants. Cell Rep 2022; 39:110631. [PMID: 35385724 DOI: 10.1016/j.celrep.2022.110631] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
TOR kinase is a central coordinator of nutrient-dependent growth in eukaryotes. Maintaining optimal TOR signaling is critical for the normal development of organisms. In this study, we describe a negative feedback loop of TOR signaling helping in the adaptability of plants in changing environmental conditions. Using an interdisciplinary approach, we show that the plant-specific zinc finger protein FLZ8 acts as a regulator of TOR signaling in Arabidopsis. In sugar sufficiency, TOR-dependent and -independent histone modifications upregulate the expression of FLZ8. FLZ8 negatively regulates TOR signaling by promoting antagonistic SnRK1α1 signaling and bridging the interaction of SnRK1α1 with RAPTOR1B, a crucial accessory protein of TOR. This negative feedback loop moderates the TOR-growth signaling axis in the favorable condition and helps in the activation of stress signaling in unfavorable conditions, establishing its importance in the adaptability of plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakhar Awasthi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sreejath S
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manvi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
14
|
Henninger M, Pedrotti L, Krischke M, Draken J, Wildenhain T, Fekete A, Rolland F, Müller MJ, Fröschel C, Weiste C, Dröge-Laser W. The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. THE PLANT CELL 2022; 34:616-632. [PMID: 34755865 PMCID: PMC8774017 DOI: 10.1093/plcell/koab270] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/28/2021] [Indexed: 05/02/2023]
Abstract
The onset of plant life is characterized by a major phase transition. During early heterotrophic seedling establishment, seed storage reserves fuel metabolic demands, allowing the plant to switch to autotrophic metabolism. Although metabolic pathways leading to storage compound mobilization are well-described, the regulatory circuits remain largely unresolved. Using an inducible knockdown approach of the evolutionarily conserved energy master regulator Snf1-RELATED-PROTEIN-KINASE1 (SnRK1), phenotypic studies reveal its crucial function in Arabidopsis thaliana seedling establishment. Importantly, glucose feeding largely restores growth defects of the kinase mutant, supporting its major impact in resource mobilization. Detailed metabolite studies reveal sucrose as a primary resource early in seedling establishment, in a SnRK1-independent manner. Later, SnRK1 orchestrates catabolism of triacylglycerols and amino acids. Concurrent transcriptomic studies highlight SnRK1 functions in controlling metabolic hubs fuelling gluconeogenesis, as exemplified by cytosolic PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK). Here, SnRK1 establishes its function via phosphorylation of the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63), which directly targets and activates the cyPPDK promoter. Taken together, our results disclose developmental and catabolic functions of SnRK1 in seed storage mobilization and describe a prototypic gene regulatory mechanism. As seedling establishment is important for plant vigor and crop yield, our findings are of agronomical importance.
Collapse
Affiliation(s)
- Markus Henninger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Lorenzo Pedrotti
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Jan Draken
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Theresa Wildenhain
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Agnes Fekete
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Martin J Müller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Christian Fröschel
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
15
|
Wang P, Yan Y, Bai Y, Dong Y, Wei Y, Zeng H, Shi H. Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava. Cell Rep 2021; 37:110119. [PMID: 34910906 DOI: 10.1016/j.celrep.2021.110119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
Related to ABI3/VP1 (RAV) transcription factors have important roles in plant stress responses; however, it is unclear whether RAVs regulates oxidative stress response in cassava (Manihot esculenta). In this study, we report that MeRAV1/2 positively regulate oxidative stress resistance and catalase (CAT) activity in cassava. Consistently, RNA sequencing (RNA-seq) identifies three MeCATs that are differentially expressed in MeRAV1/2-silenced cassava leaves. Interestingly, MeCAT6 and MeCAT7 are identified as direct transcriptional targets of MeRAV1/2 via binding to their promoters. In addition, protein kinase MeKIN10 directly interacts with MeRAV1/2 to phosphorylate them at Ser45 and Ser44 residues, respectively, to promote their direct transcriptional activation on MeCAT6 and MeCAT7. Site mutation of MeRAV1S45A or MeRAV2S44A has no significant effect on the activities of MeCAT6 and MeCAT7 promoters or on oxidative stress resistance. In summary, this study demonstrates that the phosphorylation of MeRAV1/2 by MeKIN10 is essential for its direct transcriptional activation of MeCAT6/7 in response to oxidative stress.
Collapse
Affiliation(s)
- Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
16
|
Welchen E, Gonzalez DH. Breaking boundaries: exploring short- and long-distance mitochondrial signalling in plants. THE NEW PHYTOLOGIST 2021; 232:494-501. [PMID: 34255867 DOI: 10.1111/nph.17614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Communication of mitochondria with other cell compartments is essential for the coordination of cellular functions. Mitochondria send retrograde signals through metabolites, redox changes, direct organelle contacts and protein trafficking. Accumulating evidence indicates that, in animal systems, changes in mitochondrial function also trigger responses in other, either neighbouring or distantly located, cells. Although not clearly established, there are indications that this type of communication may also be operative in plants. Grafting experiments suggested that the translocation of entire mitochondria or submitochondrial vesicles between neighbouring cells is possible in plants, as already documented in animals. Changes in mitochondrial function also regulate cell-to-cell communication via plasmodesmata and may be transmitted over long distances through plant hormones acting as mitokines to relay mitochondrial signals to distant tissues. Long-distance movement of transcripts encoding mitochondrial proteins involved in crucial aspects of metabolism and retrograde signalling was also described. Finally, changes in mitochondrial reactive species (ROS) production may affect the 'ROS wave' that triggers systemic acquired acclimation throughout the plant. In this review, we summarise available evidence suggesting that mitochondria establish sophisticated communications not only within the cell but also with neighbouring cells and distant tissues to coordinate plant growth and stress responses in a cell nonautonomous manner.
Collapse
Affiliation(s)
- Elina Welchen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| |
Collapse
|
17
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
18
|
Liu XJ, Sun J, Huang Y, Li C, Zheng P, Yuan Y, Chen H, Jan M, Zheng H, Du H, Tu J. Osj10gBTF3-Mediated Import of Chloroplast Protein Is Essential for Pollen Development in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:713544. [PMID: 34421965 PMCID: PMC8377413 DOI: 10.3389/fpls.2021.713544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Chloroplasts are crucial organelles for the generation of fatty acids and starch required for plant development. Nascent polypeptide-associated complex (NAC) proteins have been implicated in development as transcription factors. However, their chaperone roles in chloroplasts and their relationship with pollen development in plants remain to be elucidated. Here, we demonstrated that Osj10gBTF3, a NAC protein, regulates pollen and chloroplast development in rice by coordinating with a Hsp90 family chaperone OsHSP82 to mediate chloroplast import. Knockout of Osj10gBTF3 affects pollen and chloroplast development and significantly reduces the accumulation of fertility-related chloroplast protein OsPPR676. Both Osj10gBTF3 and OsHSP82 interact with OsPPR676. Interestingly, the interaction between OsHSP82 and OsPPR676 is only found in the cytoplasm, while the interaction between Osj10gBTF3 and OsPPR676 also occurs inside the chloroplast. The chloroplast stroma chaperone OsCpn60 can also be co-precipitated with Osj10gBTF3, but not with OsHSP82. Further investigation indicates that Osj10gBTF3 enters the chloroplast stroma possibly through the inner chloroplast membrane channel protein Tic110 and then recruits OsCpn60 for the folding or assembly of OsPPR676. Our results reveal a chaperone role of Osj10gBTF3 in chloroplast import different from Hsp90 and provide a link between chloroplast transport and pollen development in rice.
Collapse
Affiliation(s)
- Xue-jiao Liu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jiaqi Sun
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Yuqing Huang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Chao Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Peng Zheng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yue Yuan
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Hao Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehmood Jan
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Hao Du
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jumin Tu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Chowdhury MR, Ahamed MS, Mas-ud MA, Islam H, Fatamatuzzohora M, Hossain MF, Billah M, Hossain MS, Matin MN. Stomatal development and genetic expression in Arabidopsis thaliana L. Heliyon 2021; 7:e07889. [PMID: 34485750 PMCID: PMC8408637 DOI: 10.1016/j.heliyon.2021.e07889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Stomata are turgor-driven microscopic epidermal valves of land plants. The controlled opening and closing of the valves are essential for regulating the gas exchange and minimizing the water loss and eventually regulating the internal temperatures. Stomata are also a major site of pathogen/microbe entry and plant defense system. Maintaining proper stomatal density, distribution, and development are pivotal for plant survival. Arabidopsis is a model plant to study molecular basis including signaling pathways, transcription factors, and key components for the growth and development of specific organs as well as the whole plant. It has intensively been studied and found out the driver for the development and patterning of stomata. In this review, we have explained how the MAPK signaling cascade is controlled by TOO MANY MOUTHS (TMM) receptor-like protein and the Erecta (ER) receptor-like kinase family. We have also summarized how this MAPK cascade affects primary transcriptional regulators to finally activate the main three basic Helix-Loop-Helix (bHLH) principal transcription factors, which are required for the development and patterning of stomata. Moreover, regulatory activity and cellular connections of polar proteins and environmentally mediated ligand-receptor interactions in the stomatal developmental pathways have extensively been discussed in this review.
Collapse
Affiliation(s)
- Md. Rayhan Chowdhury
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Sabbir Ahamed
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Atik Mas-ud
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hiya Islam
- Biotechnology, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Mst Fatamatuzzohora
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Firose Hossain
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mutasim Billah
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Shahadat Hossain
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Nurul Matin
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
20
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
21
|
Depaepe T, Hendrix S, Janse van Rensburg HC, Van den Ende W, Cuypers A, Van Der Straeten D. At the Crossroads of Survival and Death: The Reactive Oxygen Species-Ethylene-Sugar Triad and the Unfolded Protein Response. TRENDS IN PLANT SCIENCE 2021; 26:338-351. [PMID: 33431325 DOI: 10.1016/j.tplants.2020.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 05/13/2023]
Abstract
Upon stress, a trade-off between plant growth and defense responses defines the capacity for survival. Stress can result in accumulation of misfolded proteins in the endoplasmic reticulum (ER) and other organelles. To cope with these proteotoxic effects, plants rely on the unfolded protein response (UPR). The involvement of reactive oxygen species (ROS), ethylene (ETH), and sugars, as well as their crosstalk, in general stress responses is well established, yet their role in UPR deserves further scrutiny. Here, a synopsis of current evidence for ROS-ETH-sugar crosstalk in UPR is discussed. We propose that this triad acts as a major signaling hub at the crossroads of survival and death, integrating information from ER, chloroplasts, and mitochondria, thereby facilitating a coordinated stress response.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Henry C Janse van Rensburg
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001, Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001, Leuven, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide Identification and Characterization of FCS-Like Zinc Finger (FLZ) Family Genes in Maize ( Zea mays) and Functional Analysis of ZmFLZ25 in Plant Abscisic Acid Response. Int J Mol Sci 2021; 22:3529. [PMID: 33805388 PMCID: PMC8037668 DOI: 10.3390/ijms22073529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 01/20/2023] Open
Abstract
FCS-like zinc finger family proteins (FLZs), a class of plant-specific scaffold of SnRK1 complex, are involved in the regulation of various aspects of plant growth and stress responses. Most information of FLZ family genes was obtained from the studies in Arabidopsis thaliana, whereas little is known about the potential functions of FLZs in crop plants. In this study, 37 maize FLZ (ZmFLZ) genes were identified to be asymmetrically distributed on 10 chromosomes and can be divided into three subfamilies. Protein interaction and subcellular localization assays demonstrated that eight typical ZmFLZs interacted and partially co-localized with ZmKIN10, the catalytic α-subunit of the SnRK1 complex in maize leaf mesophyll cells. Expression profile analysis revealed that several ZmFLZs were differentially expressed across various tissues and actively responded to diverse abiotic stresses. In addition, ectopic overexpression of ZmFLZ25 in Arabidopsis conferred hypersensitivity to exogenous abscisic acid (ABA) and triggered higher expression of ABA-induced genes, pointing to the positive regulatory role of ZmFLZ25 in plant ABA signaling, a scenario further evidenced by the interactions between ZmFLZ25 and ABA receptors. In summary, these data provide the most comprehensive information on FLZ family genes in maize, and shed light on the biological function of ZmFLZ25 in plant ABA signaling.
Collapse
Affiliation(s)
- Shunquan Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| |
Collapse
|
23
|
Han C, Liu Y, Shi W, Qiao Y, Wang L, Tian Y, Fan M, Deng Z, Lau OS, De Jaeger G, Bai MY. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nat Commun 2020; 11:4214. [PMID: 32843632 PMCID: PMC7447634 DOI: 10.1038/s41467-020-18048-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/26/2020] [Indexed: 11/09/2022] Open
Abstract
Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiping Deng
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
24
|
Baena-González E, Lunn JE. SnRK1 and trehalose 6-phosphate - two ancient pathways converge to regulate plant metabolism and growth. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:52-59. [PMID: 32259743 DOI: 10.1016/j.pbi.2020.01.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
SUCROSE-NON-FERMENTING1-RELATED KINASE1 (SnRK1) belongs to a family of protein kinases that originated in the earliest eukaryotes and plays a central role in energy and metabolic homeostasis. Trehalose 6-phosphate (Tre6P) is the intermediate of trehalose biosynthesis, and has even more ancient roots, being found in all three domains of life - Archaea, Bacteria and Eukarya. In plants, the function of SnRK1 has diverged from its orthologues in fungi and animals, evolving new roles in signalling of nutrient status and abiotic stress. Tre6P has also acquired a novel function in plants as a signal and homeostatic regulator of sucrose, the dominant sugar in plant metabolism. These two ancient pathways have converged in a unique way in plants, enabling them to coordinate their metabolism, growth, and development with their environment, which is essential for their autotrophic and sessile lifestyle.
Collapse
Affiliation(s)
- Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
25
|
Ryabova LA, Robaglia C, Meyer C. Target of Rapamycin kinase: central regulatory hub for plant growth and metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2211-2216. [PMID: 30984977 PMCID: PMC6463030 DOI: 10.1093/jxb/erz108] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Aix Marseille Université, CEA, CNRS, BIAM, Faculté des Sciences de Luminy, Marseille, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
26
|
Wang L, Wang H, He S, Meng F, Zhang C, Fan S, Wu J, Zhang S, Xu P. GmSnRK1.1, a Sucrose Non-fermenting-1(SNF1)-Related Protein Kinase, Promotes Soybean Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2019; 10:996. [PMID: 31428116 PMCID: PMC6688127 DOI: 10.3389/fpls.2019.00996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 05/22/2023]
Abstract
Phytophthora root and stem rot, a destructive disease of soybean [Glycine max (L.) Merr.], is caused by the oomycete Phytophthora sojae. However, how the disease resistance mechanisms of soybean respond to P. sojae infection remains unclear. Previously, we showed that GmWRKY31, which interacts with a sucrose non-fermenting-1(SNF1)-related protein kinase (SnRK), enhances resistance to P. sojae in soybean. Here, we report that the membrane-localized SnRK GmSnRK1.1 is involved in the soybean host response to P. sojae. The overexpression of GmSnRK1.1 (GmSnRK1.1-OE) increased soybean resistance to P. sojae, and the RNA interference (RNAi)-mediated silencing of GmSnRK1.1 (GmSnRK1.1-R) reduced resistance to P. sojae. Moreover, the activities and transcript levels of the antioxidant enzymes superoxide dismutase and peroxidase were markedly higher in the GmSnRK1.1-OE transgenic soybean plants than in the wild type (WT), but were reduced in the GmSnRK1.1-R plants. Several isoflavonoid phytoalexins related genes GmPAL, GmIFR, Gm4CL and GmCHS were significantly higher in "Suinong 10" and GmSnRK1.1-OE lines than these in "Dongnong 50," and were significantly lower in GmSnRK1.1-R lines. In addition, the accumulation of salicylic acid (SA) and the expression level of the SA biosynthesis-related gene were significantly higher in the GmSnRK1.1-OE plants than in the WT and GmSnRK1.1-R plants, moreover, SA biosynthesis inhibitor treated GmSnRK1.1-R lines plants displayed clearly increased pathogen biomass compared with H2O-treated plants after 24 h post-inoculation. These results showed that GmSnRK1.1 positively regulates soybean resistance to P. sojae, potentially functioning via effects on the expression of SA-related genes and increased accumulation of SA.
Collapse
Affiliation(s)
- Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Huiyu Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Shengfu He
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fanshan Meng
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Chuanzhong Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Sujie Fan
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- *Correspondence: Shuzhen Zhang,
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- Pengfei Xu,
| |
Collapse
|