1
|
Bykova NV, Igamberdiev AU. Redox Control of Seed Germination is Mediated by the Crosstalk of Nitric Oxide and Reactive Oxygen Species. Antioxid Redox Signal 2025; 42:442-461. [PMID: 39602281 DOI: 10.1089/ars.2024.0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Significance: Seed germination and seedling establishment are characterized by changes in the intracellular redox state modulated by accelerated production of nitric oxide (NO) and reactive oxygen species (ROS). Redox regulation and enhanced accumulation of NO and ROS, approaching excessively high levels during seed imbibition, are critically important for breaking endodormancy and inducing germination. Recent Advances: Upon depletion of oxygen under the seed coat, NO is produced anaerobically in the reductive pathway associated mainly with mitochondria, and it participates in the energy metabolism of the seed until radicle protrusion. NO turnover involves nitrate reduction to nitrite in the cytosol, nitrite reduction to NO in mitochondria, and NO oxygenation in the cytosol in the reaction involving the hypoxically induced class 1 phytoglobin. In postgerminative degradation of seed tissues, NO and ROS are involved in redox signaling via post-translational modification of proteins and mediation of phytohormonal responses. Critical Issues: The crosstalk between the cellular redox potential, NO, ROS, and phytohormones integrates major physiological processes related to seed germination. Intensive accumulation of NO and ROS during imbibition is critically important for breaking seed dormancy. Upon oxygen depletion, NO and other nitrous oxides (NOx) are produced anaerobically and support energy metabolism prior to radicle protrusion. Future Directions: The turnover of NOx and ROS is determined by the intracellular redox balance, and it self-controls redox and energy levels upon germination. The particular details, regulation of this process, and its physiological significance remain to be established. Antioxid. Redox Signal. 42, 442-461.
Collapse
Affiliation(s)
- Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
2
|
Saini S, Sharma P, Pooja P, Sharma A. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024; 153:82-97. [PMID: 39395712 DOI: 10.1016/j.niox.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
3
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
4
|
Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108810. [PMID: 38857563 DOI: 10.1016/j.plaphy.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Seed vigor is a crucial indicator of seed quality. Variations in seed vigor are closely associated with seed properties and storage conditions. The vigor of mature seeds progressively declines during storage, which is called seed deterioration or aging. Seed aging induces a cascade of cellular damage, including impaired subcellular structures and macromolecules, such as lipids, proteins, and DNA. Reactive oxygen species (ROS) act as signaling molecules during seed aging causing oxidative damage and triggering programmed cell death (PCD). Mitochondria are the main site of ROS production and change morphology and function before other organelles during aging. The roles of other small redox-active molecules in regulating cell and seed vigor, such as nitric oxide (NO) and hydrogen sulfide (H2S), were identified later. ROS, NO, and H2S typically regulate protein function through post-translational modifications (PTMs), including carbonylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. These signaling molecules as well as the PTMs they induce interact to regulate cell fate and seed vigor. This review was conducted to describe the physiological changes and underlying molecular mechanisms that in seed aging and provides a comprehensive view of how ROS, NO, and H2S affect cell death and seed vigor.
Collapse
Affiliation(s)
- Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Tianxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Pathak PK, Yadav N, Kaladhar VC, Jaiswal R, Kumari A, Igamberdiev AU, Loake GJ, Gupta KJ. The emerging roles of nitric oxide and its associated scavengers-phytoglobins-in plant symbiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:563-577. [PMID: 37843034 DOI: 10.1093/jxb/erad399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.
Collapse
Affiliation(s)
- Pradeep Kumar Pathak
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Nidhi Yadav
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Rekha Jaiswal
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
6
|
Samant SB, Manbir, Rekha, Swain J, Singh P, Kumari A, Gupta KJ. Measurement of Reactive Oxygen Species and Nitric Oxide from Tomato Plants in Response to Abiotic and Biotic Stresses. Methods Mol Biol 2024; 2832:183-203. [PMID: 38869796 DOI: 10.1007/978-1-0716-3973-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Nitric oxide (NO) is a free radical molecule that has been known to influence several cellular processes such as plant growth, development, and stress responses. NO together with reactive oxygen species (ROS) play a role in signaling process. Due to extremely low half-life of these radicals in cellular environment, it is often difficult to precisely monitor them. Each method has some advantages and disadvantages; hence, it is important to measure using multiple methods. To interpret the role of each signaling molecule in numerous biological processes, sensitive and focused methods must be used. In addition to this complexity, these Reactive Oxygen Species (ROS) and NO react with each other leads to nitro-oxidative stress in plants. Using tomato as a model system here, we demonstrate stepwise protocols for measurement of NO by chemiluminescence, DAF fluorescence, nitrosative stress by western blot, and ROS measurement by NBT and DAB under stress conditions such as osmotic stress and Botrytis infection. While describing methods, we also emphasized on benefits, drawbacks, and broader applications of these methods.
Collapse
Affiliation(s)
| | - Manbir
- National Institute of Plant Genome Research, New Delhi, India
| | - Rekha
- National Institute of Plant Genome Research, New Delhi, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, New Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
7
|
Allagulova CR, Lubyanova AR, Avalbaev AM. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int J Mol Sci 2023; 24:11637. [PMID: 37511393 PMCID: PMC10380521 DOI: 10.3390/ijms241411637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.
Collapse
Affiliation(s)
- Chulpan R Allagulova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Alsu R Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Azamat M Avalbaev
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
8
|
Basit F, Bhat JA, Alyemeni MN, Shah T, Ahmad P. Nitric oxide mitigates vanadium toxicity in soybean (Glycine max L.) by modulating reactive oxygen species (ROS) and antioxidant system. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131085. [PMID: 36870130 DOI: 10.1016/j.jhazmat.2023.131085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Vanadium (V) induced hazardous effects posturing a serious concern on crop production as well as food security. However, the nitric oxide (NO)-mediated alleviation of V-induced oxidative stress in soybean seedlings is still unknown. Therefore, this research was designed to explore the effects of exogenous NO to mitigate the V-induced phytotoxicity in soybean plants. Our upshots disclosed that NO supplementation considerably improved the plant biomass, growth, and photosynthetic attributes by regulating the carbohydrates, and plants biochemical composition, which further improved the guard cells, and stomatal aperture of soybean leaves. Additionally, NO regulated the plant hormones, and phenolic profile which restricted the V contents absorption (65.6%), and translocation (57.9%) by maintaining the nutrient acquisition. Furthermore, it detoxified the excessive V contents, and upsurged the antioxidants defense mechanism to lower the MDA, and scavenge ROS production. The molecular analysis further verified the NO-based regulation of lipid, sugar production, and degradation as well as detoxification mechanism in the soybean seedlings. Exclusively, we elaborated very first time the behind mechanism of V-induced oxidative stress alleviation by exogenous NO, hence illustrating the NO supplementation role as a stress alleviating agent for soybean grown in V contaminated areas to elevate the crop development and production.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India.
| |
Collapse
|
9
|
Zhang Y, Wang R, Wang X, Zhao C, Shen H, Yang L. Nitric Oxide Regulates Seed Germination by Integrating Multiple Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109052. [PMID: 37240398 DOI: 10.3390/ijms24109052] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Seed germination is of great significance for plant development and crop yield. Recently, nitric oxide (NO) has been shown to not only serve as an important nitrogen source during seed development but also to participate in a variety of stress responses in plants to high salt, drought, and high temperature. In addition, NO can affect the process of seed germination by integrating multiple signaling pathways. However, due to the instability of NO gas activity, the network mechanism for its fine regulation of seed germination remains unclear. Therefore, this review aims to summarize the complex anabolic processes of NO in plants, to analyze the interaction mechanisms between NO-triggered signaling pathways and different plant hormones such as abscisic acid (ABA) and gibberellic acid (GA), ethylene (ET) and reactive oxygen species (ROS) signaling molecules, and to discuss the physiological responses and molecular mechanisms of seeds during the involvement of NO in abiotic stress, so as to provide a reference for solving the problems of seed dormancy release and improving plant stress tolerance.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ruirui Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaodong Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Caihong Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Research Center of Korean Pine Engineering and Technology, National Forestry and Grassland Administration, Harbin 150040, China
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
10
|
Li C, Lu X, Liu Y, Xu J, Yu W. Strigolactone Alleviates the Adverse Effects of Salt Stress on Seed Germination in Cucumber by Enhancing Antioxidant Capacity. Antioxidants (Basel) 2023; 12:antiox12051043. [PMID: 37237909 DOI: 10.3390/antiox12051043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strigolactones (SLs), as a new phytohormone, regulate various physiological and biochemical processes, and a number of stress responses, in plants. In this study, cucumber 'Xinchun NO. 4' is used to study the roles of SLs in seed germination under salt stress. The results show that the seed germination significantly decreases with the increase in the NaCl concentrations (0, 1, 10, 50, and 100 mM), and 50 mM NaCl as a moderate stress is used for further analysis. The different concentrations of SLs synthetic analogs GR24 (1, 5, 10, and 20 μM) significantly promote cucumber seed germination under NaCl stress, with a maximal biological response at 10 μM. An inhibitor of strigolactone (SL) synthesis TIS108 suppresses the positive roles of GR24 in cucumber seed germination under salt stress, suggesting that SL can alleviate the inhibition of seed germination caused by salt stress. To explore the regulatory mechanism of SL-alleviated salt stress, some contents, activities, and genes related to the antioxidant system are measured. The malondialdehyde (MDA), H2O2, O2-, and proline contents are increased, and the levels of ascorbic acid (AsA) and glutathione (GSH) are decreased under salt stress conditions, while GR24 treatment reduces MDA, H2O2, O2-, and proline contents, and increases AsA and GSH contents during seed germination under salt stress. Meanwhile, GR24 treatment enhances the decrease in the activities of antioxidant enzymes caused by salt stress [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)], following which antioxidant-related genes SOD, POD, CAT, APX, and GRX2 are up-regulated by GR24 under salt stress. However, TIS108 reversed the positive effects of GR24 on cucumber seed germination under salt stress. Together, the results of this study revealed that GR24 regulates the expression levels of genes related to antioxidants and, therefore, regulates enzymatic activity and non-enzymatic substances and enhances antioxidant capacity, alleviating salt toxicity during seed germination in cucumber.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Niu L, Tang Y, Zhu B, Huang Z, Wang D, Chen Q, Yu J. Nitric oxide promotes adventitious root formation in cucumber under cadmium stress through improving antioxidant system, regulating glycolysis pathway and polyamine homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1126606. [PMID: 36968381 PMCID: PMC10033535 DOI: 10.3389/fpls.2023.1126606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) as a potentially toxic heavy metal that not only pollutes the environment but also interferes with plant growth. Nitric oxide (NO) regulates plant growth and development as well as abiotic stress response. However, the mechanism underpinning NO-induced adventitious root development under Cd stress remains unclear. In this study, cucumber (Cucumis sativus 'Xinchun No. 4') was used as the experimental material to investigate the effect of NO on the development of adventitious roots in cucumber under Cd stress. Our results revealed that, as compared to Cd stress, 10 μM SNP (a NO donor) could considerably increase the number and length of adventitious roots by 127.9% and 289.3%, respectively. Simultaneously, exogenous SNP significantly increased the level of endogenous NO in cucumber explants under Cd stress. Our results revealed that supplementation of Cd with SNP significantly increased endogenous NO content by 65.6% compared with Cd treatment at 48 h. Furthermore, our study indicated that SNP treatment could improve the antioxidant capacity of cucumber explants under Cd stress by up-regulating the gene expression level of antioxidant enzymes, as well as reducing the levels of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion ( O 2 · - ) to alleviate oxidative damage and membrane lipid peroxidation. Application of NO resulted in a decrease of the O 2 · - , MDA, and H2O2 level by 39.6%, 31.4% and 60.8% as compared to Cd-alone treatment, respectively. Besides that, SNP treatment significantly increased the expression level of related genes involved in glycolysis processes and polyamine homeostasis. However, application of NO scavenger 2-(4-carboxy -2-phenyl)-4, 4, 5, 5-tetramethy limidazoline -1-oxyl -3-oxide (cPTIO) and the inhibitor tungstate significantly reversed the positive role of NO in promoting the adventitious root formation under Cd stress. These results suggest that exogenous NO can increase the level of endogenous NO, improve antioxidation ability, promote glycolysis pathway and polyamine homeostasis to enhance the occurrence of adventitious roots in cucumber under Cd stress. In summary, NO can effectively alleviate the damage of Cd stress and significantly promote the development of adventitious root of cucumber under Cd stress.
Collapse
|
12
|
Khan M, Ali S, Al Azzawi TNI, Yun BW. Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. Int J Mol Sci 2023; 24:4782. [PMID: 36902213 PMCID: PMC10002851 DOI: 10.3390/ijms24054782] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Nitric oxide (NO), a colorless gaseous molecule, is a lipophilic free radical that easily diffuses through the plasma membrane. These characteristics make NO an ideal autocrine (i.e., within a single cell) and paracrine (i.e., between adjacent cells) signalling molecule. As a chemical messenger, NO plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Furthermore, NO interacts with reactive oxygen species, antioxidants, melatonin, and hydrogen sulfide. It regulates gene expression, modulates phytohormones, and contributes to plant growth and defense mechanisms. In plants, NO is mainly produced via redox pathways. However, nitric oxide synthase, a key enzyme in NO production, has been poorly understood recently in both model and crop plants. In this review, we discuss the pivotal role of NO in signalling and chemical interactions as well as its involvement in the mitigation of biotic and abiotic stress conditions. In the current review, we have discussed various aspects of NO including its biosynthesis, interaction with reactive oxygen species (ROS), melatonin (MEL), hydrogen sulfide, enzymes, phytohormones, and its role in normal and stressful conditions.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants. Int J Mol Sci 2022; 23:ijms231911522. [PMID: 36232819 PMCID: PMC9569746 DOI: 10.3390/ijms231911522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.
Collapse
|
14
|
Nitric Oxide Acts as an Inhibitor of Postharvest Senescence in Horticultural Products. Int J Mol Sci 2022; 23:ijms231911512. [PMID: 36232825 PMCID: PMC9569437 DOI: 10.3390/ijms231911512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Horticultural products display fast senescence after harvest at ambient temperatures, resulting in decreased quality and shorter shelf life. As a gaseous signal molecule, nitric oxide (NO) has an important physiological effect on plants. Specifically, in the area of NO and its regulation of postharvest senescence, tremendous progress has been made. This review summarizes NO synthesis; the effect of NO in alleviating postharvest senescence; the mechanism of NO-alleviated senescence; and its interactions with other signaling molecules, such as ethylene (ETH), abscisic acid (ABA), melatonin (MT), hydrogen sulfide (H2S), hydrogen gas (H2), hydrogen peroxide (H2O2), and calcium ions (Ca2+). The aim of this review is to provide theoretical references for the application of NO in postharvest senescence in horticultural products.
Collapse
|
15
|
Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide 2022; 128:37-49. [PMID: 35981689 DOI: 10.1016/j.niox.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 01/09/2023]
Abstract
Agriculture and ecosystem are negatively influenced by the abiotic stresses which create solemn pressures on plants as they are sessile in nature leading to excessive losses in economy. For maintenance of sustainable agriculture and to fulfil the cumulative call of food for rapidly growing population worldwide, it becomes crucial to protects the crop plants from climate fluctuations. Plants fight back against these challenges by generation of redox molecules comprising reactive oxygen species (ROS) and reactive nitrogen species (RNS) and cause modulation at cellular, physiological and molecular levels. Nitric oxide (NO) deliver tolerance to several biotic and abiotic stresses in plants by acting as signalling molecule or free radicals. It is also intricated in several developmental processes in plants using different mechanisms. Supplementation of exogenous NO reduce toxicity of abiotic stresses and provide resistance. In this review article, we summarize the recent research studies (five years) depicting the functional role of NO in alleviation of abiotic stresses such as drought, cold, heat, heavy metals and flooding. Moreover, by investigating studies found that among heavy metals works associated with Hg, Pb, and Cr is limited comparatively. Additionally, role of NO in abiotic stress resistance such as cold, freezing and heat stress less/poorly investigated. Consequently, further emphasis should be diverted towards how NO can facilitate protection against these stresses. In recent studies mostly beneficial role of NO against abiotic challenges have been elucidated by observing physiological/biochemical parameters but relatively inadequate research done at the transcripts level or gene regulation subsequently researchers should include it in future. Lastly, brief outline and an evaluative discussion on the present information and future prospective provided. Altogether, these inclusive experimental agendas could facilitate in future to produce climate tolerant plants. This will help to confront the constant fluctuations in the environment and to reduce the challenges in way of agriculture productivity and global food demands.
Collapse
|
16
|
Gularte PS, Steffens CA, Cerezer B, Miqueloto T, da Silva JC, Heinzen AS, Amarante CVT. Use of nitric oxide for ripening delay and oxidative stress reduction in Cavendish banana stored in a controlled atmosphere. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paulo Sérgio Gularte
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Cristiano André Steffens
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Bernardo Cerezer
- Department of Plant Sciences Postharvest Research Center, Federal Institute of Santa Catarina São Miguel do Oeste Brazil
| | - Tiago Miqueloto
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Janaiana Catarina da Silva
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Angélica Schmitz Heinzen
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Cassandro Vidal Talamini Amarante
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| |
Collapse
|
17
|
Steffens CA, Santana GRO, Amarante CVTD, Antonovviski JL, Miqueloto T, Anami JM, Fenili CL. Treatment with nitric oxide in controlled atmosphere storage to preserve the quality of ‘Laetitia’ plums. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Zhao S, Zou H, Jia Y, Pan X, Huang D. Carrot ( Daucus carota L.) Seed Germination Was Promoted by Hydro-Electro Hybrid Priming Through Regulating the Accumulation of Proteins Involved in Carbohydrate and Protein Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:824439. [PMID: 35222483 PMCID: PMC8868939 DOI: 10.3389/fpls.2022.824439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Asynchronized and non-uniform seed germination is causing obstacles to the large-scale cultivation of carrot (Daucus carota L.). In the present study, the combination of high voltage electrostatic field treatment (EF) with hydropriming (HYD), namely hydro-electro hybrid priming (HEHP), significantly improved all germination indicators of carrot seeds, and the promoting effect was superior to that of the HYD treatment. A tandem mass tags (TMT)-based proteomic analysis identified 4,936 proteins from the seeds, and the maximum number of differentially abundant proteins (DAPs) appeared between CK and HEHP. KEGG analysis revealed that the upregulated DAPs were mainly enriched in the pathways related to protein synthesis and degradation such as "ribosome" and "proteasome," while the downregulated DAPs were mainly enriched in photosynthesis-related pathways. Furthermore, the maximum DAPs were annotated in carbohydrate metabolism. Some proteins identified as key enzymes of the glyoxylate cycle, the tricarboxylate cycle, glycolysis and the pentose phosphate pathway showed enhanced abundance in priming treatments. The activities of several key enzymes involved in carbohydrate metabolism were also enhanced by the priming treatments, especially the HEHP treatment. Real-time quantitative PCR (qRT-PCR) analysis revealed that the effect of priming is mainly reflected before sowing. In conclusion, the optimal effect of HEHP is to regulate the synthesis and degradation of proteins in seeds to meet the requirements of germination and initiate the utilization of seed storage reserves and respiratory metabolism. The present work expanded the understanding of the response mechanism of carrot seed germination to priming and the biological effects of high voltage electrostatic field.
Collapse
Affiliation(s)
- Shuo Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zou
- School of Mechanical Engineering, Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Jia
- Shanghai Vegetable Research Institute, Shanghai, China
| | - Xueqin Pan
- Shanghai Vegetable Research Institute, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Vegetable Research Institute, Shanghai, China
| |
Collapse
|
19
|
Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ. Nitric oxide regulation of plant metabolism. MOLECULAR PLANT 2022; 15:228-242. [PMID: 34971792 DOI: 10.1016/j.molp.2021.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/31/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) has emerged as an important signal molecule in plants, having myriad roles in plant development. In addition, NO also orchestrates both biotic and abiotic stress responses, during which intensive cellular metabolic reprogramming occurs. Integral to these responses is the location of NO biosynthetic and scavenging pathways in diverse cellular compartments, enabling plants to effectively organize signal transduction pathways. NO regulates plant metabolism and, in turn, metabolic pathways reciprocally regulate NO accumulation and function. Thus, these diverse cellular processes are inextricably linked. This review addresses the numerous redox pathways, located in the various subcellular compartments that produce NO, in addition to the mechanisms underpinning NO scavenging. We focus on how this molecular dance is integrated into the metabolic state of the cell. Within this context, a reciprocal relationship between NO accumulation and metabolite production is often apparent. We also showcase cellular pathways, including those associated with nitrate reduction, that provide evidence for this integration of NO function and metabolism. Finally, we discuss the potential importance of the biochemical reactions governing NO levels in determining plant responses to a changing environment.
Collapse
Affiliation(s)
- Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067 India.
| | - Vemula Chandra Kaladhar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067 India
| | - Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva 1211 Switzerland
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476 Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
20
|
Steffens CA, Soardi K, Heinzen AS, Amaral Vignali Alves J, da Silva JC, Talamini do Amarante C, Brackmann A. Quality of “Cripps Pink” apples following the application of 1‐MCP, ethanol vapor and nitric oxide as pretreatments for controlled atmosphere storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristiano André Steffens
- Department of Plant Science Postharvest Research Center, University of Santa Catarina State, Center for Agroveterinary Sciences Lages Brazil
| | - Karina Soardi
- Department of Plant Science Postharvest Research Center, University of Santa Catarina State, Center for Agroveterinary Sciences Lages Brazil
| | - Angélica Schmitz Heinzen
- Department of Plant Science Postharvest Research Center, University of Santa Catarina State, Center for Agroveterinary Sciences Lages Brazil
| | - Juliana Amaral Vignali Alves
- Department of Plant Science Postharvest Research Center, University of Santa Catarina State, Center for Agroveterinary Sciences Lages Brazil
| | - Janaiana Catarina da Silva
- Department of Plant Science Postharvest Research Center, University of Santa Catarina State, Center for Agroveterinary Sciences Lages Brazil
| | | | - Auri Brackmann
- Department of Plant Science Postharvest Research Center, Federal University of Santa Maria, Rural Sciences Center Santa Maria Brazil
| |
Collapse
|
21
|
Pandey S, Kumari A, Singh P, Gupta KJ. Isolation and Measurement of Respiration and Structural Studies of Purified Mitochondria from Heterotrophic Plant Tissues. Curr Protoc 2021; 1:e326. [PMID: 34919353 DOI: 10.1002/cpz1.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are the power houses of eukaryotic cells. These organelles contain various oxidoreductase complexes. Electron transfer from different reducing equivalents channeled via these complexes drives proton translocation across the inner mitochondrial membrane, leading to ATP generation. Plant mitochondria contain alternative NAD(P)H dehydrogenases, alternative oxidase, and uncoupling protein, and TCA cycle enzymes are located in their matrix. Apart from ATP production, mitochondria are also involved in synthesis of vitamins and cofactors and participate in fatty acid, nucleotide, photorespiratory, and antioxidant metabolism. Recent emerging evidence suggests that mitochondria play a role in redox signaling and generation of reactive oxygen and nitrogen species. For mitochondrial studies, it is essential to isolate physiologically active mitochondria with good structural integrity. In this article, we explain a detailed procedure for isolation of mitochondria from various heterotrophic tissues, such as germinating chickpea seeds, potato tubers, and cauliflower florets. This procedure requires discontinuous Percoll gradient centrifugation and can give a good yield of mitochondria, in the range of 4 to 8 mg per 50 g tissue with active respiratory capacity. After MitoTracker staining, isolated mitochondria can be visualized by using a confocal microscope. The structure of mitochondria can be monitored by scanning electron microscopy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation of mitochondria from germinating chickpea seeds, potato tubers, and cauliflower florets Basic Protocol 2: Quantification of mitochondrial protein concentration by Bradford assay Basic Protocol 3: Quantification of mitochondrial respiration using single-channel free-radical analyzer Basic Protocol 4: Staining of mitochondria and confocal imaging Basic Protocol 5: Visualization of isolated mitochondria under scanning electron microscope.
Collapse
Affiliation(s)
- Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
22
|
Patel MK, Pandey S, Kumar M, Haque MI, Pal S, Yadav NS. Plants Metabolome Study: Emerging Tools and Techniques. PLANTS (BASEL, SWITZERLAND) 2021; 10:2409. [PMID: 34834772 PMCID: PMC8621461 DOI: 10.3390/plants10112409] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Metabolomics is now considered a wide-ranging, sensitive and practical approach to acquire useful information on the composition of a metabolite pool present in any organism, including plants. Investigating metabolomic regulation in plants is essential to understand their adaptation, acclimation and defense responses to environmental stresses through the production of numerous metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus, it has great potential to be used in genome editing programs to develop superior next-generation crops. This review describes the recent analytical tools and techniques available to study plants metabolome, along with their significance of sample preparation using targeted and non-targeted methods. Advanced analytical tools, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) matrix-assisted laser desorption/ionization (MALDI), ion mobility spectrometry (IMS) and nuclear magnetic resonance (NMR) have speed up precise metabolic profiling in plants. Further, we provide a complete overview of bioinformatics tools and plant metabolome database that can be utilized to advance our knowledge to plant biology.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sonika Pandey
- Independent Researcher, Civil Line, Fathepur 212601, India;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Md Intesaful Haque
- Fruit Tree Science Department, Newe Ya’ar Research Center, Agriculture Research Organization, Volcani Center, Ramat Yishay 3009500, Israel;
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
23
|
Guo Z, Zhao J, Wang M, Song S, Xia Z. Sulfur dioxide promotes seed germination by modulating reactive oxygen species production in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111027. [PMID: 34620432 DOI: 10.1016/j.plantsci.2021.111027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Sulfur dioxide (SO2) is generally considered to be toxic to cells, but recent studies have shown that SO2 has positive roles in stress defense responses in plants. However, whether SO2 functions as a signaling molecule in the developmental process, especially in seed germination, is yet to be studied. Here, we present data supporting the role of SO2 in seed germination and possible molecular mechanisms. SO2 treatment significantly promoted the seed germination and seed vigor in maize. The germinating seeds treated with SO2 treatment exhibited higher reactive oxygen species (ROS) levels and NADPH oxidase activities. Furthermore, the specific NADPH oxidase inhibitor diphenyleneiodinium (DPI) strongly inhibited ROS accumulations, and SO2-promoted seed germination and vigor. Meanwhile, α-Amylase activity and transcripts in germinating seeds treated with SO2 were significantly elevated. These data have demonstrated that NADPH oxidase-dependent ROS production contributes to the induction of α-Amylase activity, thereby promoting seed germination upon SO2 exposure. SO2 might function as a signaling molecule in plant growth and development, especially in seed germination. This study might provide a theoretical foundation for the potential exploitation of hydrated SO2 in seed germination control in crop management.
Collapse
Affiliation(s)
- Ziting Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Jinjin Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Song Song
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, 450002, PR China.
| |
Collapse
|
24
|
Hydro-Electro Hybrid Priming Promotes Carrot ( Daucus carota L.) Seed Germination by Activating Lipid Utilization and Respiratory Metabolism. Int J Mol Sci 2021; 22:ijms222011090. [PMID: 34681749 PMCID: PMC8538415 DOI: 10.3390/ijms222011090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Carrot (Daucus carota L.) is widely cultivated as one of the most important root crops, and developing an effective presowing treatment method can promote the development of modern mechanized precision sowing. In the present study, a novel seed priming technology, named hydro-electro hybrid priming (HEHP), was used to promote the germination of carrot seeds. Seed germination experiments showed that HEHP was able to increase the germination index (GI) and vigor index (VI) by 3.1-fold and 6.8-fold, respectively, and the effect was significantly superior to that of hydro-priming (HYD) and electrostatic field treatment (EF). The consumption and utilization rate of seed storage reserves were also greatly improved. Meanwhile, both glyoxysomes and mitochondria were found to appear ahead of time in the endosperm cells of HEHP through observations of the subcellular structure of the endosperm. Activities of isocitrate lyase (ICL), NAD-dependent malate dehydrogenase (MDH), pyruvate kinase (PK), and alcohol dehydrogenase (ADH) were significantly increased by HEHP. From transcriptome results, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the glyoxylate cycle, glycolysis, gluconeogenesis, and the citrate cycle were significantly enriched and real-time quantitative PCR (qRT-PCR) analysis confirmed the expression pattern of 15 critical differentially expressed genes (DEGs) in these pathways. All DEGs encoding MDH, phosphoenolpyruvate carboxykinase (PEPCK), and PK were upregulated in HEHP; thus, it is reasonable to infer that the transformation of malate, oxalacetate, phosphoenolpyruvate, and pyruvate in the cytoplasm may be pivotal for the energy supply during early germination. The results suggest that the optimal effect of HEHP is achieved by initiating stored lipid utilization and respiratory metabolism pathways related to germination.
Collapse
|
25
|
Zhang Y, Cheng P, Wang J, Abdalmegeed D, Li Y, Wu M, Dai C, Wan S, Guan R, Pu H, Shen W. Nitric Oxide Is Associated With Heterosis of Salinity Tolerance in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2021; 12:649888. [PMID: 34122475 PMCID: PMC8194068 DOI: 10.3389/fpls.2021.649888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/13/2021] [Indexed: 06/01/2023]
Abstract
Heterosis is most frequently manifested as the superior performance of a hybrid than either of the parents, especially under stress conditions. Nitric oxide (NO) is a well-known gaseous signaling molecule that acts as a functional component during plant growth, development, and defense responses. In this study, the Brassica napus L. hybrid (F1, NJ4375 × MB1942) showed significant heterosis under salt stress, during both germination and post-germination periods. These phenotypes in the hybrid were in parallel with the better performance in redox homeostasis, including alleviation of reactive oxygen species accumulation and lipid peroxidation, and ion homeostasis, evaluated as a lower Na/K ratio in the leaves than parental lines. Meanwhile, stimulation of endogenous NO was more pronounced in hybrid plants, compared with parental lines, which might be mediated by nitrate reductase. Proteomic and biochemical analyses further revealed that protein abundance related to several metabolic processes, including chlorophyll biosynthesis, proline metabolism, and tricarboxylic acid cycle metabolism pathway, was greatly suppressed by salt stress in the two parental lines than in the hybrid. The above responses in hybrid plants were intensified by a NO-releasing compound, but abolished by a NO scavenger, both of which were matched with the changes in chlorophyll and proline contents. It was deduced that the above metabolic processes might play important roles in heterosis upon salt stress. Taken together, we proposed that heterosis derived from F1 hybridization in salt stress tolerance might be mediated by NO-dependent activation of defense responses and metabolic processes.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture’s Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dyaaaldin Abdalmegeed
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ying Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mangteng Wu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Huiming Pu
- Ministry of Agriculture’s Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication. Biochem J 2021; 478:1977-1984. [PMID: 34047788 DOI: 10.1042/bcj20200934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Underground early development of higher plants includes two distinct developmental processes, seed germination and then skotomorphogenesis, a mechanism which favours elongation of the hypocotyl and helps the seedling to find light. Interestingly, both processes, which are regulated by plant hormones, have been shown to depend on reactive oxygen species metabolism and to be related to mitochondrial retrograde signalling. Here we review the recent outcomes in this field of research and highlight the emerging role of ROS communication between organelles and cell compartments. We point out the role of mitochondria as an environmental and developmental sensor organelle that regulates ROS homeostasis and downstream events and we propose future directions of research that should help better understanding the roles of ROS in germination and seedling emergence.
Collapse
|
27
|
Popov VN, Syromyatnikov MY, Fernie AR, Chakraborty S, Gupta KJ, Igamberdiev AU. The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:793-807. [PMID: 33245770 DOI: 10.1093/jxb/eraa510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.
Collapse
Affiliation(s)
- Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Mikhail Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Subhra Chakraborty
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
28
|
Du C, Chen W, Wu Y, Wang G, Zhao J, Sun J, Ji J, Yan D, Jiang Z, Shi S. Effects of GABA and Vigabatrin on the Germination of Chinese Chestnut Recalcitrant Seeds and Its Implications for Seed Dormancy and Storage. PLANTS 2020; 9:plants9040449. [PMID: 32260136 PMCID: PMC7238225 DOI: 10.3390/plants9040449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Recalcitrant chestnut seeds are rich in γ-aminobutyric acid (GABA), which negatively regulates adventitious root development by altering carbon/nitrogen metabolism. However, little is known regarding the role of this metabolite in chestnut seeds. In this study, we investigated the effects of GABA changes on the germination of chestnut seeds treated with exogenous GABA and vigabatrin (VGB, which inhibits GABA degradation). Both treatments significantly inhibited seed germination and primary root growth and resulted in the considerable accumulation of H2O2, but the endogenous GABA content decreased before germination at 48 h. Soluble sugar levels increased before germination, but subsequently decreased, whereas starch contents were relatively unchanged. Changes to organic acids were observed at 120 h after sowing, including a decrease and increase in citrate and malate levels, respectively. Similarly, soluble protein contents increased at 120 h, but the abundance of most free amino acids decreased at 48 h. Moreover, the total amino acid levels increased only in response to VGB at 0 h. Accordingly, GABA and VGB altered the balance of carbon and nitrogen metabolism, thereby inhibiting chestnut seed germination. These results suggested that changes to GABA levels in chestnut seeds might prevent seed germination. The study data may also help clarify the dormancy and storage of chestnut seeds, as well as other recalcitrant seeds.
Collapse
Affiliation(s)
- Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (C.D.); (W.C.); (Y.W.); (J.S.); (J.J.)
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (C.D.); (W.C.); (Y.W.); (J.S.); (J.J.)
| | - Yanyan Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (C.D.); (W.C.); (Y.W.); (J.S.); (J.J.)
| | - Guangpeng Wang
- Institute for Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli 066600, China;
| | - Jiabing Zhao
- College of Forestry, Hebei Agricultural University, Baoding 071001, China;
| | - Jiacheng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (C.D.); (W.C.); (Y.W.); (J.S.); (J.J.)
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (C.D.); (W.C.); (Y.W.); (J.S.); (J.J.)
| | - Donghui Yan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (D.Y.); (Z.J.)
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (D.Y.); (Z.J.)
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (C.D.); (W.C.); (Y.W.); (J.S.); (J.J.)
- Correspondence: ; Tel.: +86-10-62889054
| |
Collapse
|
29
|
Brouquisse R. Multifaceted roles of nitric oxide in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4319-4322. [PMID: 31505682 DOI: 10.1093/jxb/erz352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|