1
|
Evangelina R, Ganesan S, George M. The Epigenetic Landscape: From Molecular Mechanisms to Biological Aging. Rejuvenation Res 2025; 28:93-112. [PMID: 40094262 DOI: 10.1089/rej.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Epigenetics, the study of heritable changes in gene expression that do not involve alterations to the deoxyribonucleic acid (DNA) sequence, plays a pivotal role in cellular function, development, and aging. This review explores key epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, chromatin remodeling, RNA-based regulation, and long-distance chromosomal interactions. These modifications contribute to cellular differentiation and function, mediating the dynamic interplay between the genome and environmental factors. Epigenetic clocks, biomarkers based on DNAm patterns, have emerged as powerful tools to measure biological age and predict health span. This article highlights the evolution of epigenetic clocks, from first-generation models such as Horvath's multi-tissue clock to advanced second- and third-generation clocks such as DNAGrimAge and DunedinPACE, which incorporate biological parameters and clinical biomarkers for precise age estimation. Moreover, the role of epigenetics in aging and age-related diseases is discussed, emphasizing its impact on genomic stability, transcriptional regulation, and cellular senescence. Epigenetic dysregulation is implicated in cancer, genetic disorders, and neurodegenerative diseases, making it a promising target for therapeutic interventions. The reversibility of epigenetic modifications offers hope for mitigating age acceleration and enhancing health span through lifestyle changes and pharmacological approaches.
Collapse
Affiliation(s)
- Rachel Evangelina
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Subhashree Ganesan
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Melvin George
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
2
|
Zhang H, Sun S, Izpisua Belmonte JC, Liu GH, Wang S, Zhang W, Qu J. Protocols for the application of human embryonic stem cell-derived neurons for aging modeling and gene manipulation. STAR Protoc 2025; 6:103633. [PMID: 39932849 PMCID: PMC11867521 DOI: 10.1016/j.xpro.2025.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/02/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
In vitro models of neuronal aging and gene manipulation in human neurons (hNeurons) are valuable tools for investigating human brain aging and diseases. Here, we present a protocol for applying human embryonic stem cell (hESC)-derived neurons to model aging and the further application of small interfering RNA (siRNA)-mediated gene silencing for functional investigations. We describe steps for neuronal differentiation and culture, siRNA transfection, and technical considerations to ensure reproducibility. Our protocol enables investigations of the molecular mechanism underlying neuronal aging and facilitates drug evaluation. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.
Collapse
Affiliation(s)
- Hui Zhang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Shuhui Sun
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | | | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Jing Qu
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
3
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|