1
|
Liu Y, Weng K, Li G, Wang H, Tan Y, He D. Genetic and metabolic mechanisms underlying webbed feet pigmentation in geese: Insights from histological, transcriptomic, and metabolomic analyses. Poult Sci 2025; 104:105233. [PMID: 40367570 DOI: 10.1016/j.psj.2025.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
This study systematically investigated the genetic and metabolic mechanisms underlying pigmentation in goose webbed feet by integrating histological, transcriptomic, and metabolomic analyses. Histological examinations revealed significant differences in melanin deposition among webbed feet of varying colors. Dark black webbed feet exhibited the highest melanin content, light black webbed feet showed moderate levels, and colorless webbed feet lacked detectable melanin. Transcriptomic analysis identified substantial variations in the expression levels of key genes involved in melanin biosynthesis, including TYRP1, PMEL, DCT, TYR, OCA2, MC1R, RAB38, WNT16, CAMK2A, and MLANA, between pigmented and colorless webbed feet. Notably, the OCA2 gene exhibited significantly higher expression in dark black webbed feet compared to light black webbed feet, underscoring its pivotal role in regulating pigmentation intensity. Enrichment analysis emphasized the importance of pathways related to tyrosine metabolism, melanin production, and amino acid biosynthesis in determining pigmentation differences. Metabolomic profiling supported these findings, revealing that L-tyrosine and 5,6-dihydroxyindole-2-carboxylic acid are critical metabolites in the melanin biosynthesis pathway. Specifically, elevated levels of L-tyrosine were detected in colorless webbed feet, likely due to inhibited melanin synthesis, whereas 5,6-dihydroxyindole-2-carboxylic acid levels were highest in dark black webbed feet, reflecting active melanin production. Correlation analysis between transcriptomic and metabolomic data further validated the central role of tyrosine metabolism and melanin biosynthesis pathways in pigmentation. In conclusion, this study employed multi-omics approaches to elucidate the critical role of the OCA2-centered genetic-metabolic regulatory network in melanin deposition of goose webbed feet, providing important insights into the molecular mechanisms of avian pigmentation and valuable references for poultry breeding.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Kaiqi Weng
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huiying Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Tan
- Hunan Wugang Tong Geese Agricultural Development Co. Ltd., Hunan, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
2
|
Guimarães-Moreira M, Marques CI, Afonso S, Lacerda B, Carneiro M, Araújo PM. A missense mutation in the tyrosinase gene explains acromelanism in domesticated canaries. Anim Genet 2024; 55:838-842. [PMID: 39377483 DOI: 10.1111/age.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Acromelanism is a form of albinism observed in several vertebrate species. In mammals, acromelanism is known to be caused by mutations in the tyrosinase gene (TYR) that induce a temperature-sensitive behavior of melanin synthesis, resulting in a characteristic hair color gradient. In birds, several phenotypes consistent with acromelanism have been reported, but their genetic basis remains unknown. This study aimed to identify the genetic basis of an acromelanistic phenotype in domesticated canaries known as pearl and test whether it is caused by the same molecular mechanism described for mammals. To do this, we compared the genomes of pearl and non-pearl canaries and searched for potentially causative genetic mutations. Our results suggest that the pearl phenotype is caused by a mutation in the TYR gene encoding a TYR-P45H missense substitution. Our findings further suggest that reports of acromelanism in other bird species might be explained by TYR mutations.
Collapse
Affiliation(s)
- Margarida Guimarães-Moreira
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Beatriz Lacerda
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Natural History Museum of London, London, UK
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro M Araújo
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
3
|
Lim HC, Bennett KFP, Justyn NM, Powers MJ, Long KM, Kingston SE, Lindsay WR, Pease JB, Fuxjager MJ, Bolton PE, Balakrishnan CN, Day LB, Parsons TJ, Brawn JD, Hill GE, Braun MJ. Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins. SCIENCE ADVANCES 2024; 10:eadn8339. [PMID: 39565864 PMCID: PMC11578183 DOI: 10.1126/sciadv.adn8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identify BCO2 as the major gene responsible for the color polymorphism. The BCO2 gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
- National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20013, USA
| | - Kevin F. P. Bennett
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Kira M. Long
- Program in Ecology Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Willow R. Lindsay
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - James B. Pease
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew J. Fuxjager
- Department of Ecology Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Peri E. Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Christopher N. Balakrishnan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Division of Environmental Biology, National Science Foundation, Alexandria, VA 22314, USA
| | - Lainy B. Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - Thomas J. Parsons
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Michael J. Braun
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
4
|
Liu S, Wang S, Zhao L, Li T, Zhang Y, Wang H, Bao Z, Hu X. Functional Analysis of β-Carotene Oxygenase 2 ( BCO2) Gene in Yesso Scallop ( Patinopecten yessoensis). Int J Mol Sci 2024; 25:3947. [PMID: 38612756 PMCID: PMC11012205 DOI: 10.3390/ijms25073947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Increasingly, studies have demonstrated that vertebrate carotenoid cleavage oxygenases (CCOs) are essential enzymes in carotenoid metabolism and are therefore potential candidate genes for improving carotenoid deposition. However, our understanding of carotenoid bioavailability and CCOs functions in invertebrates, particularly marine species, is currently quite limited. We previously identified that a CCO homolog, PyBCO-like 1, was the causal gene for carotenoid coloration in the 'Haida golden scallop', a variety of Yesso scallop (Patinopecten yessoensis) characterized by carotenoid enrichment. Here, we found that another CCO-encoding gene named PyBCO2 (β-carotene oxygenase 2) was widely expressed in P. yessoensis organs/tissues, with the highest expression in striated muscle. Inhibiting BCO2 expression in P. yessoensis through RNA interference led to increased carotenoid (pectenolone and pectenoxanthin) deposition in the striated muscle, and the color of the striated muscle changed from white to light orange. Our results indicate that PyBCO2 might be a candidate gene used for improving carotenoid content in normal Yesso scallops, and also in 'Haida golden scallops'.
Collapse
Affiliation(s)
- Shiqi Liu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Shuyue Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Liang Zhao
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Tingting Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Yihan Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Huizhen Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Liao Y, Shi H, Han T, Jiang D, Lu B, Shi G, Zhu C, Li G. Pigment Identification and Gene Expression Analysis during Erythrophore Development in Spotted Scat ( Scatophagus argus) Larvae. Int J Mol Sci 2023; 24:15356. [PMID: 37895036 PMCID: PMC10607709 DOI: 10.3390/ijms242015356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and β-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Tong Han
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Baoyue Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Gang Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| |
Collapse
|
6
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
7
|
Alonso-Alvarez C, Andrade P, Cantarero A, Morales J, Carneiro M. Relocation to avoid costs: A hypothesis on red carotenoid-based signals based on recent CYP2J19 gene expression data. Bioessays 2022; 44:e2200037. [PMID: 36209392 DOI: 10.1002/bies.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
In many vertebrates, the enzymatic oxidation of dietary yellow carotenoids generates red keto-carotenoids giving color to ornaments. The oxidase CYP2J19 is here a key effector. Its purported intracellular location suggests a shared biochemical pathway between trait expression and cell functioning. This might guarantee the reliability of red colorations as individual quality signals independent of production costs. We hypothesize that the ornament type (feathers vs. bare parts) and production costs (probably CYP2J19 activity compromising vital functions) could have promoted tissue-specific gene relocation. We review current avian tissue-specific CYP2J19 expression data. Among the ten red-billed species showing CYP2J19 bill expression, only one showed strong hepatic expression. Moreover, a phylogenetically-controlled analysis of 25 red-colored species shows that those producing red bare parts are less likely to have strong hepatic CYP2J19 expression than species with only red plumages. Thus, both production costs and shared pathways might have contributed to the evolution of red signals.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alejandro Cantarero
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain.,Department of Physiology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Judith Morales
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
8
|
Araújo PM, Dias MR, Matos DM, Norte AC. Reliability of steatocrit as an indicator of intestinal health in young birds – Relationships with morphology and growth rate of canary Serinus canaria nestlings. ZOOLOGY 2022; 151:126004. [DOI: 10.1016/j.zool.2022.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
9
|
De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022; 806:145929. [PMID: 34461150 DOI: 10.1016/j.gene.2021.145929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
The body color of Neocaridina denticulate sinensis is a compelling phenotypic trait, in which a cascade of carotenoid metabolic processes plays an important role. The study was conducted to compare the transcriptome of cephalothoraxes among three pigmentation phenotypes (red, blue, and chocolate) of N. denticulate sinensis. The purpose of this study was to explore the candidate genes associated with different colors of N. denticulate sinensis. Nine cDNA libraries in three groups were constructed from the cephalothoraxes of shrimps. After assembly, 75022 unigenes were obtained in total with an average length of 1026 bp and N50 length of 1876 bp. There were 45977, 25284, 23605, 21913 unigenes annotated in the Nr, Swissprot, KOG, and KEGG databases, respectively. Differential expression analysis revealed that there were 829, 554, and 3194 differentially expressed genes (DEGs) in RD vs BL, RD vs CH, and BL vs CH, respectively. These DEGs may play roles in the absorption, transport, and metabolism of carotenoids. We also emphasized that electron transfer across the inner mitochondrial membrane (IMM) was a key process in pigment metabolism. In addition, a total of 6328 simple sequence repeats (SSRs) were also detected in N. denticulate sinensis. The results laid a solid foundation for further research on the molecular mechanism of integument pigmentation in the crustacean and contributed to developing more attractive aquatic animals.
Collapse
|
10
|
Toomey MB, Smith DJ, Gonzales DM, McGraw KJ. Methods for extracting and analyzing carotenoids from bird feathers. Methods Enzymol 2022; 670:459-497. [DOI: 10.1016/bs.mie.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Pedersen MW, Antunes C, De Cahsan B, Moreno-Mayar JV, Sikora M, Vinner L, Mann D, Klimov PB, Black S, Michieli CT, Braig HR, Perotti MA. Ancient human genomes and environmental DNA from the cement attaching 2,000 year-old head lice nits. Mol Biol Evol 2021; 39:6481551. [PMID: 34963129 PMCID: PMC8829908 DOI: 10.1093/molbev/msab351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Over the past few decades, there has been a growing demand for genome analysis of ancient human remains. Destructive sampling is increasingly difficult to obtain for ethical reasons, and standard methods of breaking the skull to access the petrous bone or sampling remaining teeth are often forbidden for curatorial reasons. However, most ancient humans carried head lice and their eggs abound in historical hair specimens. Here we show that host DNA is protected by the cement that glues head lice nits to the hair of ancient Argentinian mummies, 1,500–2,000 years old. The genetic affinities deciphered from genome-wide analyses of this DNA inform that this population migrated from north-west Amazonia to the Andes of central-west Argentina; a result confirmed using the mitochondria of the host lice. The cement preserves ancient environmental DNA of the skin, including the earliest recorded case of Merkel cell polyomavirus. We found that the percentage of human DNA obtained from nit cement equals human DNA obtained from the tooth, yield 2-fold compared with a petrous bone, and 4-fold to a bloodmeal of adult lice a millennium younger. In metric studies of sheaths, the length of the cement negatively correlates with the age of the specimens, whereas hair linear distance between nit and scalp informs about the environmental conditions at the time before death. Ectoparasitic lice sheaths can offer an alternative, nondestructive source of high-quality ancient DNA from a variety of host taxa where bones and teeth are not available and reveal complementary details of their history.
Collapse
Affiliation(s)
- Mikkel W Pedersen
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Catia Antunes
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Binia De Cahsan
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Sikora
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Lasse Vinner
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Darren Mann
- Oxford University Museum of Natural History, Oxford, United Kingdom
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom.,Department of Ecology and Evolutionary Biology, University of Michigan, Museum of Zoology, Ann Arbor, USA
| | - Stuart Black
- Department of Geography and Environmental Science, Wager Building, University of Reading, Reading, United Kingdom
| | - Catalina Teresa Michieli
- Instituto de Investigaciones Arqueológicas y Museo "Prof. Mariano Gambier", Universidad Nacional de San Juan, San Juan, Argentina
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom.,Institute and Museum of Natural Sciences, Faculty of Exact, Physical and Natural Sciences, National University of San Juan, San Juan, Argentina
| | - M Alejandra Perotti
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
12
|
Enbody ED, Sprehn CG, Abzhanov A, Bi H, Dobreva MP, Osborne OG, Rubin CJ, Grant PR, Grant BR, Andersson L. A multispecies BCO2 beak color polymorphism in the Darwin's finch radiation. Curr Biol 2021; 31:5597-5604.e7. [PMID: 34687609 DOI: 10.1016/j.cub.2021.09.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Carotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles,1 but generally little is known about the factors affecting their maintenance in populations.2 We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.3 Here we show that the polymorphism arose in the Galápagos half a million years ago through a mutation associated with regulatory change in the BCO2 gene and is shared by 14 descendant species. The polymorphism is probably a balanced polymorphism, maintained by ecological selection associated with survival and diet. In cactus finches, the frequency of the yellow genotype is correlated with cactus fruit abundance and greater hatching success and may be altered by introgressive hybridization. Polymorphisms that are hidden as adults, as here, may be far more common than is currently recognized, and contribute to diversification in ways that are yet to be discovered.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Huijuan Bi
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mariya P Dobreva
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Owen G Osborne
- School of Natural Sciences, Bangor University, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UK
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| |
Collapse
|
13
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
14
|
Toomey MB, Ronald KL. Avian color expression and perception: is there a carotenoid link? J Exp Biol 2021; 224:269205. [PMID: 34142139 DOI: 10.1242/jeb.203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carotenoids color many of the red, orange and yellow ornaments of birds and also shape avian vision. The carotenoid-pigmented oil droplets in cone photoreceptors filter incoming light and are predicted to aid in color discrimination. Carotenoid use in both avian coloration and color vision raises an intriguing question: is the evolution of visual signals and signal perception linked through these pigments? Here, we explore the genetic, physiological and functional connections between these traits. Carotenoid color and droplet pigmentation share common mechanisms of metabolic conversion and are both affected by diet and immune system challenges. Yet, the time scale and magnitude of these effects differ greatly between plumage and the visual system. Recent observations suggest a link between retinal carotenoid levels and color discrimination performance, but the mechanisms underlying these associations remain unclear. Therefore, we performed a modeling exercise to ask whether and how changes in droplet carotenoid content could alter the perception of carotenoid-based plumage. This exercise revealed that changing oil droplet carotenoid concentration does not substantially affect the discrimination of carotenoid-based colors, but might change how reliably a receiver can predict the carotenoid content of an ornament. These findings suggest that, if present, a carotenoid link between signal and perception is subtle. Deconstructing this relationship will require a deeper understanding of avian visual perception and the mechanisms of color production. We highlight several areas where we see opportunities to gain new insights, including comparative genomic studies of shared mechanisms of carotenoid processing and alternative approaches to investigating color vision.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, 800 S Tucker Dr., Tulsa, OK 74104, USA
| | - Kelly L Ronald
- Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49422, USA
| |
Collapse
|
15
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
16
|
Wu L, Lu P, Guo X, Song K, Lyu Y, Bothwell J, Wu J, Hawkins O, Clarke SL, Lucas EA, Smith BJ, Chowanadisai W, Hartson SD, Ritchey JW, Wang W, Medeiros DM, Li S, Lin D. β-carotene oxygenase 2 deficiency-triggered mitochondrial oxidative stress promotes low-grade inflammation and metabolic dysfunction. Free Radic Biol Med 2021; 164:271-284. [PMID: 33453359 PMCID: PMC7946548 DOI: 10.1016/j.freeradbiomed.2021.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Low-grade inflammation is a critical pathological factor contributing to the development of metabolic disorders. β-carotene oxygenase 2 (BCO2) was initially identified as an enzyme catalyzing carotenoids in the inner mitochondrial membrane. Mutations in BCO2 are associated with inflammation and metabolic disorders in humans, yet the underlying mechanisms remain unknown. Here, we used loss-of-function approaches in mice and cell culture models to investigate the role of BCO2 in inflammation and metabolic dysfunction. We demonstrated decreases in BCO2 mRNA and protein levels and suppression of mitochondrial respiratory complex I proteins and mitochondrial superoxide dismutase levels in the liver of type 2 diabetic human subjects. Deficiency of BCO2 caused disruption of assembly of the mitochondrial respiratory supercomplexes, such as supercomplex III2+IV in mice, and overproduction of superoxide radicals in primary mouse embryonic fibroblasts. Further, deficiency of BCO2 increased protein carbonylation and populations of natural killer cells and M1 macrophages, and decreased populations of T cells, including CD4+ and/or CD8+ in the bone marrow and white adipose tissues. Elevation of plasma inflammatory cytokines and adipose tissue hypertrophy and inflammation were also characterized in BCO2 deficient mice. Moreover, BCO2 deficient mice were more susceptible to high-fat diet-induced obesity and hyperglycemia. Double knockout of BCO2 and leptin receptor genes caused a significantly greater elevation of the fasting blood glucose level in mice at 4 weeks of age, compared to the age- and sex-matched leptin receptor knockout. Finally, administration of Mito-TEMPO, a mitochondrial specific antioxidant attenuated systemic low-grade inflammation induced by BCO2 deficiency. Collectively, these findings suggest that BCO2 is essential for mitochondrial respiration and metabolic homeostasis in mammals. Loss or decreased expression of BCO2 leads to mitochondrial oxidative stress, low-grade inflammation, and the subsequent development of metabolic disorders.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Peiran Lu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Yi Lyu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - James Bothwell
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jinglong Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Olivia Hawkins
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steve D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Denis M Medeiros
- Department of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
17
|
Pigmentation Genes Show Evidence of Repeated Divergence and Multiple Bouts of Introgression in Setophaga Warblers. Curr Biol 2021; 31:643-649.e3. [DOI: 10.1016/j.cub.2020.10.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
|
18
|
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Goessler W, Sefc KM. Expression levels of the tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish. Biol Lett 2020; 16:20200629. [PMID: 33236977 PMCID: PMC7728679 DOI: 10.1098/rsbl.2020.0629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Carotenoid pigments play a major role in animal body colouration, generating strong interest in the genes involved in the metabolic processes that lead from their dietary uptake to their storage in the integument. Here, we used RNA sequencing (RNA-Seq) to test for differentially expressed genes in a taxonomically replicated design using three pairs of related cichlid fish taxa from the genera Tropheus and Aulonocara. Within each pair, taxa differed in terms of red and yellow body colouration, and high‐performance liquid chromatography (HPLC) analyses of skin extracts revealed different carotenoid profiles and concentrations across the studied taxa. Five genes were differentially expressed in all three yellow–red skin contrasts (dhrsx, nlrc3, tcaf2, urah and ttc39b), but only the tetratricopeptide repeat protein-coding gene ttc39b, whose gene product is linked to mammalian lipid metabolism, was consistently expressed more highly in the red skin samples. The RNA-Seq results were confirmed by quantitative PCR. We propose ttc39b as a compelling candidate gene for variation in animal carotenoid colouration. Since differential expression of ttc39b was correlated with the presence/absence of yellow carotenoids in a previous study, we suggest that ttc39b is more likely associated with the concentration of total carotenoids than with the metabolic formation of red carotenoids.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Laurène A Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | - Oliver Steiner
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Kristina M Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
19
|
Kirschel ANG, Nwankwo EC, Pierce DK, Lukhele SM, Moysi M, Ogolowa BO, Hayes SC, Monadjem A, Brelsford A. CYP2J19 mediates carotenoid colour introgression across a natural avian hybrid zone. Mol Ecol 2020; 29:4970-4984. [PMID: 33058329 DOI: 10.1111/mec.15691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
It has long been of interest to identify the phenotypic traits that mediate reproductive isolation between related species, and more recently, the genes that underpin them. Much work has focused on identifying genes associated with animal colour, with the candidate gene CYP2J19 identified in laboratory studies as the ketolase converting yellow dietary carotenoids to red ketocarotenoids in birds with red pigments. However, evidence that CYP2J19 explains variation between red and yellow feather coloration in wild populations of birds is lacking. Hybrid zones provide the opportunity to identify genes associated with specific traits. Here we investigate genomic regions associated with colour in red-fronted and yellow-fronted tinkerbirds across a hybrid zone in southern Africa. We sampled 85 individuals, measuring spectral reflectance of forecrown feathers and scoring colours from photographs, while testing for carotenoid presence with Raman spectroscopy. We performed a genome-wide association study to identify associations with carotenoid-based coloration, using double-digest RAD sequencing aligned to a short-read whole genome of a Pogoniulus tinkerbird. Admixture mapping using 104,933 single nucleotide polymorphisms (SNPs) identified a region of chromosome 8 that includes CYP2J19 as the only locus with more than two SNPs significantly associated with both crown hue and crown score, while Raman spectra provided evidence of ketocarotenoids in red feathers. Asymmetric backcrossing in the hybrid zone suggests that yellow-fronted females mate more often with red-fronted males than vice versa. Female red-fronted tinkerbirds mating assortatively with red-crowned males is consistent with the hypothesis that converted carotenoids are an honest signal of quality.
Collapse
Affiliation(s)
| | - Emmanuel C Nwankwo
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Daniel K Pierce
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Bridget O Ogolowa
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sophia C Hayes
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini.,Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
20
|
Sin SYW, Lu L, Edwards SV. De Novo Assembly of the Northern Cardinal ( Cardinalis cardinalis) Genome Reveals Candidate Regulatory Regions for Sexually Dichromatic Red Plumage Coloration. G3 (BETHESDA, MD.) 2020; 10:3541-3548. [PMID: 32792344 PMCID: PMC7534441 DOI: 10.1534/g3.120.401373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022]
Abstract
Northern cardinals (Cardinalis cardinalis) are common, mid-sized passerines widely distributed in North America. As an iconic species with strong sexual dichromatism, it has been the focus of extensive ecological and evolutionary research, yet genomic studies investigating the evolution of genotype-phenotype association of plumage coloration and dichromatism are lacking. Here we present a new, highly-contiguous assembly for C. cardinalis We generated a 1.1 Gb assembly comprised of 4,762 scaffolds, with a scaffold N50 of 3.6 Mb, a contig N50 of 114.4 kb and a longest scaffold of 19.7 Mb. We identified 93.5% complete and single-copy orthologs from an Aves dataset using BUSCO, demonstrating high completeness of the genome assembly. We annotated the genomic region comprising the CYP2J19 gene, which plays a pivotal role in the red coloration in birds. Comparative analyses demonstrated non-exonic regions unique to the CYP2J19 gene in passerines and a long insertion upstream of the gene in C. cardinalis Transcription factor binding motifs discovered in the unique insertion region in C. cardinalis suggest potential androgen-regulated mechanisms underlying sexual dichromatism. Pairwise Sequential Markovian Coalescent (PSMC) analysis of the genome reveals fluctuations in historic effective population size between 100,000-250,000 in the last 2 millions years, with declines concordant with the beginning of the Pleistocene epoch and Last Glacial Period. This draft genome of C. cardinalis provides an important resource for future studies of ecological, evolutionary, and functional genomics in cardinals and other birds.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong
| | - Lily Lu
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138
| |
Collapse
|
21
|
Khalil S, Welklin JF, McGraw KJ, Boersma J, Schwabl H, Webster MS, Karubian J. Testosterone regulates CYP2J19-linked carotenoid signal expression in male red-backed fairywrens ( Malurus melanocephalus). Proc Biol Sci 2020; 287:20201687. [PMID: 32933448 PMCID: PMC7542802 DOI: 10.1098/rspb.2020.1687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Carotenoid pigments produce most red, orange and yellow colours in vertebrates. This coloration can serve as an honest signal of quality that mediates social and mating interactions, but our understanding of the underlying mechanisms that control carotenoid signal production, including how different physiological pathways interact to shape and maintain these signals, remains incomplete. We investigated the role of testosterone in mediating gene expression associated with a red plumage sexual signal in red-backed fairywrens (Malurus melanocephalus). In this species, males within a single population can flexibly produce either red/black nuptial plumage or female-like brown plumage. Combining correlational analyses with a field-based testosterone implant experiment and quantitative polymerase chain reaction, we show that testosterone mediates expression of carotenoid-based plumage in part by regulating expression of CYP2J19, a ketolase gene associated with ketocarotenoid metabolism and pigmentation in birds. This is, to our knowledge, the first time that hormonal regulation of a specific genetic locus has been linked to carotenoid production in a natural context, revealing how endocrine mechanisms produce sexual signals that shape reproductive success.
Collapse
Affiliation(s)
- Sarah Khalil
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Joseph F. Welklin
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Kevin J. McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jordan Boersma
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael S. Webster
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
22
|
Gazda MA, Araújo PM, Lopes RJ, Toomey MB, Andrade P, Afonso S, Marques C, Nunes L, Pereira P, Trigo S, Hill GE, Corbo JC, Carneiro M. A genetic mechanism for sexual dichromatism in birds. Science 2020; 368:1270-1274. [DOI: 10.1126/science.aba0803] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Sexual dichromatism, a difference in coloration between males and females, may be due to sexual selection for ornamentation and mate choice. Here, we show that carotenoid-based dichromatism in mosaic canaries, a hybrid phenotype that arises in offspring of the sexually dichromatic red siskin and monochromatic canaries, is controlled by the gene that encodes the carotenoid-cleaving enzyme β-carotene oxygenase 2 (BCO2). Dichromatism in mosaic canaries is explained by differential carotenoid degradation in the integument, rather than sex-specific variation in physiological functions such as pigment uptake or transport. Transcriptome analyses suggest that carotenoid degradation in the integument might be a common mechanism contributing to sexual dichromatism across finches. These results suggest that differences in ornamental coloration between sexes can evolve through simple molecular mechanisms controlled by genes of major effect.
Collapse
Affiliation(s)
- Małgorzata A. Gazda
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro M. Araújo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- MARE – Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ricardo J. Lopes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Matthew B. Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Pedro Andrade
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Cristiana Marques
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Luís Nunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paulo Pereira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Trigo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Twomey E, Johnson JD, Castroviejo-Fisher S, Van Bocxlaer I. A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 2020; 29:2004-2015. [PMID: 32402099 DOI: 10.1111/mec.15466] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023]
Abstract
The accumulation of red ketocarotenoids is an important component of coloration in many organisms, but the underlying mechanisms are poorly understood. In some organisms, ketocarotenoids are sequestered from the diet and can accumulate when enzymes responsible for carotenoid breakdown are disrupted. In other organisms, ketocarotenoids are formed endogenously from dietary precursors via oxidation reactions carried out by carotenoid ketolase enzymes. Here, we study the genetic basis of carotenoid coloration in an amphibian. We demonstrate that a red/yellow polymorphism in the dendrobatid poison frog Ranitomeya sirensis is due to the presence/absence of ketocarotenoids. Using whole-transcriptome sequencing of skins and livers, we found that a transcript encoding a cytochrome P450 enzyme (CYP3A80) is expressed 3.4-fold higher in livers of red frogs versus yellow. As CYP3A enzymes are known carotenoid ketolases in other organisms, our results point to CYP3A80 as a strong candidate for a carotenoid ketolase in amphibians. Furthermore, in red frogs, the transcript encoding the carotenoid cleavage enzyme BCO2 is expressed at a low level or as a splice variant lacking key catalytic amino acids. This suggests that BCO2 function may be disrupted in red frogs, providing a mechanism whereby the accumulation of ketocarotenoids and their dietary precursors may be enhanced.
Collapse
Affiliation(s)
- Evan Twomey
- Laboratorio de Sistemática de Vertebrados, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - James D Johnson
- Department of Chemistry, Florida State University, Tallahassee, FL, USA
| | - Santiago Castroviejo-Fisher
- Laboratorio de Sistemática de Vertebrados, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Herpetology, American Museum of Natural History, New York, NY, USA
| | - Ines Van Bocxlaer
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|