1
|
Broz AK, Hodous MM, Zou Y, Vail PC, Wu Z, Sloan DB. Flipping the switch on some of the slowest mutating genomes: Direct measurements of plant mitochondrial and plastid mutation rates in msh1 mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631957. [PMID: 39829752 PMCID: PMC11741330 DOI: 10.1101/2025.01.08.631957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Plant mitochondrial and plastid genomes have exceptionally slow rates of sequence evolution, and recent work has identified an unusual member of the MutS gene family ("plant MSH1") as being instrumental in preventing point mutations in these genomes. However, the effects of disrupting MSH1-mediated DNA repair on "germline" mutation rates have not been quantified. Here, we used Arabidopsis thaliana mutation accumulation (MA) lines to measure mutation rates in msh1 mutants and matched wild type (WT) controls. We detected 124 single nucleotide variants (SNVs: 49 mitochondrial and 75 plastid) and 668 small insertions and deletions (indels: 258 mitochondrial and 410 plastid) in msh1 MA lines. In striking contrast, we did not find any organelle mutations in the WT MA lines, and reanalysis of data from a much larger WT MA experiment also failed to detect any variants. The observed number of SNVs in the msh1 MA lines corresponds to estimated mutation rates of 6.1×10-7 and 3.2 ×10-6 per bp per generation in mitochondrial and plastid genomes, respectively. These rates exceed those of species known to have very high mitochondrial mutation rates (e.g., nematodes and fruit flies) by an order of magnitude or more and are on par with estimated rates in humans despite the generation times of A. thaliana being nearly 100-fold shorter. Therefore, disruption of a single plant-specific genetic factor in A. thaliana is sufficient to erase or even reverse the enormous difference in organelle mutation rates between plants and animals.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Mychaela M. Hodous
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Patricia C. Vail
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Maruki T, Ozere A, Freeman J, Cristescu ME. What can we infer about mutation calling by using time-series mutation accumulation data and a Bayesian Mutation Finder? Ecol Evol 2024; 14:e70339. [PMID: 39524312 PMCID: PMC11550904 DOI: 10.1002/ece3.70339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 11/16/2024] Open
Abstract
Accurate estimates of mutation rates derived from genome-wide mutation accumulation (MA) data are fundamental to understanding basic evolutionary processes. The rapidly improving high-throughput sequencing technologies provide unprecedented opportunities to identify single nucleotide mutations across genomes. However, such MA derived data are often difficult to analyze and the performance of the available methods of analysis is not well understood. In this study, we used the existing Bayesian Genotype Caller adapted for MA data that we refer to as Bayesian Mutation Finder (BMF) for identifying single nucleotide mutations while considering the characteristics of the data. We compared the performance of BMF with the widely used Genome Analysis Toolkit (GATK) by applying these two methods to time-series MA data as well as simulated data. The time-series data were obtained by propagating Daphnia pulex over an average of 188 generations and performing whole-genome sequencing of 14 MA lines across three time points. The results indicate that BMF enables more accurate identification of single nucleotide mutations than GATK especially when applied to the empirical data. Furthermore, BMF involves the use of fewer parameters and is more computationally efficient than GATK. Both BMF and GATK found surprisingly many candidate mutations that were not confirmed at later time points. We systematically infer causes of the unconfirmed candidate mutations, introduce a framework for estimating mutation rates based on genome-wide candidate mutations confirmed by subsequent sequencing, and provide an improved mutation rate estimate for D. pulex.
Collapse
Affiliation(s)
| | - April Ozere
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jack Freeman
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
3
|
Popovic I, Bergeron LA, Bozec YM, Waldvogel AM, Howitt SM, Damjanovic K, Patel F, Cabrera MG, Wörheide G, Uthicke S, Riginos C. High germline mutation rates, but not extreme population outbreaks, influence genetic diversity in a keystone coral predator. PLoS Genet 2024; 20:e1011129. [PMID: 38346089 PMCID: PMC10861045 DOI: 10.1371/journal.pgen.1011129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Lewontin's paradox, the observation that levels of genetic diversity (π) do not scale linearly with census population size (Nc) variation, is an evolutionary conundrum. The most extreme mismatches between π and Nc are found for highly abundant marine invertebrates. Yet, the influences of new mutations on π relative to extrinsic processes such as Nc fluctuations are unknown. Here, we provide the first germline mutation rate (μ) estimate for a marine invertebrate in corallivorous crown-of-thorns sea stars (Acanthaster cf. solaris). We use high-coverage whole-genome sequencing of 14 parent-offspring trios alongside empirical estimates of Nc in Australia's Great Barrier Reef to jointly examine the determinants of π in populations undergoing extreme Nc fluctuations. The A. cf. solaris mean μ was 9.13 x 10-09 mutations per-site per-generation (95% CI: 6.51 x 10-09 to 1.18 x 10-08), exceeding estimates for other invertebrates and showing greater concordance with vertebrate mutation rates. Lower-than-expected Ne (~70,000-180,000) and low Ne/Nc values (0.0047-0.048) indicated weak influences of population outbreaks on long-term π. Our findings are consistent with elevated μ evolving in response to reduced Ne and generation time length, with important implications for explaining high mutational loads and the determinants of genetic diversity in marine invertebrate taxa.
Collapse
Affiliation(s)
- Iva Popovic
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Lucie A. Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yves-Marie Bozec
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Samantha M. Howitt
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Frances Patel
- Australian Institute of Marine Science, Townsville, Australia
| | | | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Legrand C, Andriantsoa R, Lichter P, Raddatz G, Lyko F. Time-resolved, integrated analysis of clonally evolving genomes. PLoS Genet 2023; 19:e1011085. [PMID: 38096267 PMCID: PMC10754456 DOI: 10.1371/journal.pgen.1011085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/28/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Clonal genome evolution is a key feature of asexually reproducing species and human cancer development. While many studies have described the landscapes of clonal genome evolution in cancer, few determine the underlying evolutionary parameters from molecular data, and even fewer integrate theory with data. We derived theoretical results linking mutation rate, time, expansion dynamics, and biological/clinical parameters. Subsequently, we inferred time-resolved estimates of evolutionary parameters from mutation accumulation, mutational signatures and selection. We then applied this framework to predict the time of speciation of the marbled crayfish, an enigmatic, globally invasive parthenogenetic freshwater crayfish. The results predict that speciation occurred between 1986 and 1990, which is consistent with biological records. We also used our framework to analyze whole-genome sequencing datasets from primary and relapsed glioblastoma, an aggressive brain tumor. The results identified evolutionary subgroups and showed that tumor cell survival could be inferred from genomic data that was generated during the resection of the primary tumor. In conclusion, our framework allowed a time-resolved, integrated analysis of key parameters in clonally evolving genomes, and provided novel insights into the evolutionary age of marbled crayfish and the progression of glioblastoma.
Collapse
Affiliation(s)
- Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Precision Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Chen HY, Krieg T, Mautz B, Jolly C, Scofield D, Maklakov AA, Immler S. Germline mutation rate is elevated in young and old parents in Caenorhabditis remanei. Evol Lett 2023; 7:478-489. [PMID: 38045724 PMCID: PMC10692996 DOI: 10.1093/evlett/qrad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 12/05/2023] Open
Abstract
The effect of parental age on germline mutation rate across generations is not fully understood. While some studies report a positive linear relationship of mutation rate with increasing age, others suggest that mutation rate varies with age but not in a linear fashion. We investigated the effect of parental age on germline mutations by generating replicated mutation accumulation lines in Caenorhabditis remanei at three parental ages ("Young T1" [Day 1], "Peak T2" [Day 2], and "Old T5" [Day 5] parents). We conducted whole-genome resequencing and variant calling to compare differences in mutation rates after three generations of mutation accumulation. We found that Peak T2 lines had an overall reduced mutation rate compared to Young T1 and Old T5 lines, but this pattern of the effect varied depending on the variant impact. Specifically, we found no high-impact variants in Peak T2 lines, and modifiers and up- and downstream gene variants were less frequent in these lines. These results suggest that animals at the peak of reproduction have better DNA maintenance and repair compared to young and old animals. We propose that C. remanei start to reproduce before they optimize their DNA maintenance and repair, trading the benefits of earlier onset of reproduction against offspring mutation load. The increase in offspring mutation load with age likely represents germline senescence.
Collapse
Affiliation(s)
- Hwei-yen Chen
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Therese Krieg
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Brian Mautz
- Department of Medicine, Division of Epidemiology, Vanderbilt University, Nashville, United States
| | - Cécile Jolly
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Douglas Scofield
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Simone Immler
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Pflughaupt P, Sahakyan AB. Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule. Nucleic Acids Res 2023; 51:7409-7423. [PMID: 37293966 PMCID: PMC10415130 DOI: 10.1093/nar/gkad477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Chargaff's second parity rule (PR-2), where the complementary base and k-mer contents are matching within the same strand of a double stranded DNA (dsDNA), is a phenomenon that invited many explanations. The strict compliance of nearly all nuclear dsDNA to PR-2 implies that the explanation should also be similarly adamant. In this work, we revisited the possibility of mutation rates driving PR-2 compliance. Starting from the assumption-free approach, we constructed kinetic equations for unconstrained simulations. The results were analysed for their PR-2 compliance by employing symbolic regression and machine learning techniques. We arrived to a generalised set of mutation rate interrelations in place in most species that allow for their full PR-2 compliance. Importantly, our constraints explain PR-2 in genomes out of the scope of the prior explanations based on the equilibration under mutation rates with simpler no-strand-bias constraints. We thus reinstate the role of mutation rates in PR-2 through its molecular core, now shown, under our formulation, to be tolerant to previously noted strand biases and incomplete compositional equilibration. We further investigate the time for any genome to reach PR-2, showing that it is generally earlier than the compositional equilibrium, and well within the age of life on Earth.
Collapse
Affiliation(s)
- Patrick Pflughaupt
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
7
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Wang Y, McNeil P, Abdulazeez R, Pascual M, Johnston SE, Keightley PD, Obbard DJ. Variation in mutation, recombination, and transposition rates in Drosophila melanogaster and Drosophila simulans. Genome Res 2023; 33:587-598. [PMID: 37037625 PMCID: PMC10234296 DOI: 10.1101/gr.277383.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The rates of mutation, recombination, and transposition are core parameters in models of evolution. They impact genetic diversity, responses to ongoing selection, and levels of genetic load. However, even for key evolutionary model species such as Drosophila melanogaster and Drosophila simulans, few estimates of these parameters are available, and we have little idea of how rates vary between individuals, sexes, or populations. Knowledge of this variation is fundamental for parameterizing models of genome evolution. Here, we provide direct estimates of mutation, recombination, and transposition rates and their variation in a West African and a European population of D. melanogaster and a European population of D. simulans Across 89 flies, we observe 58 single-nucleotide mutations, 286 crossovers, and 89 transposable element (TE) insertions. Compared to the European D. melanogaster, we find the West African population has a lower mutation rate (1.67 × 10-9 site-1 gen-1 vs. 4.86 × 10-9 site-1 gen-1) and a lower transposition rate (8.99 × 10-5 copy-1 gen-1 vs. 23.36 × 10-5 copy-1 gen-1), but a higher recombination rate (3.44 cM/Mb vs. 2.06 cM/Mb). The European D. simulans population has a similar mutation rate to European D. melanogaster, but a significantly higher recombination rate and a lower, but not significantly different, transposition rate. Overall, we find paternal-derived mutations are more frequent than maternal ones in both species. Our study quantifies the variation in rates of mutation, recombination, and transposition among different populations and sexes, and our direct estimates of these parameters in D. melanogaster and D. simulans will benefit future studies in population and evolutionary genetics.
Collapse
Affiliation(s)
- Yiguan Wang
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Paul McNeil
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística and IRBio, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Susan E Johnston
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
9
|
Hamza W, Hazzouri KM, Sudalaimuthuasari N, Amiri KMA, Neretina AN, Al Neyadi SES, Kotov AA. Genome Assembly of a Relict Arabian Species of Daphnia O. F. Müller (Crustacea: Cladocera) Adapted to the Desert Life. Int J Mol Sci 2023; 24:ijms24010889. [PMID: 36614331 PMCID: PMC9820869 DOI: 10.3390/ijms24010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
The water flea Daphnia O.F. Müller 1776 (Crustacea: Cladocera) is an important model of recent evolutionary biology. Here, we report a complete genome of Daphnia (Ctenodaphnia) arabica (Crustacea: Cladocera), recently described species endemic to deserts of the United Arab Emirates. In this study, genome analysis of D. arabica was carried out to investigate its genomic differences, complexity as well as its historical origins within the subgenus Daphnia (Ctenodaphnia). Hybrid genome assembly of D. arabica resulted in ~116 Mb of the assembled genome, with an N50 of ~1.13 Mb (BUSCO score of 99.2%). From the assembled genome, in total protein coding, 5374 tRNA and 643 rRNA genes were annotated. We found that the D. arabica complete genome differed from those of other Daphnia species deposited in the NCBI database but was close to that of D. cf. similoides. However, its divergence time estimate sets D. arabica in the Mesozoic, and our demographic analysis showed a great reduction in its genetic diversity compared to other Daphnia species. Interestingly, the population expansion in its diversity occurred during the megadrought climate around 100 Ka ago, reflecting the adaptive feature of the species to arid and drought-affected environments. Moreover, the PFAM comparative analysis highlights the presence of the important domain SOSS complex subunit C in D. arabica, which is missing in all other studied species of Daphnia. This complex consists of a few subunits (A, B, C) working together to maintain the genome stability (i.e., promoting the reparation of DNA under stress). We propose that this domain could play a role in maintaining the fitness and survival of this species in the desert environment. The present study will pave the way for future research to identify the genes that were gained or lost in this species and identify which of these were key factors to its adaptation to the harsh desert environment.
Collapse
Affiliation(s)
- Waleed Hamza
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (W.H.); (A.A.K.)
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M. A. Amiri
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Anna N. Neretina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Shamma E. S. Al Neyadi
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alexey A. Kotov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: (W.H.); (A.A.K.)
| |
Collapse
|
10
|
Angst P, Ameline C, Haag CR, Ben-Ami F, Ebert D, Fields PD. Genetic Drift Shapes the Evolution of a Highly Dynamic Metapopulation. Mol Biol Evol 2022; 39:msac264. [PMID: 36472514 PMCID: PMC9778854 DOI: 10.1093/molbev/msac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The dynamics of extinction and (re)colonization in habitat patches are characterizing features of dynamic metapopulations, causing them to evolve differently than large, stable populations. The propagule model, which assumes genetic bottlenecks during colonization, posits that newly founded subpopulations have low genetic diversity and are genetically highly differentiated from each other. Immigration may then increase diversity and decrease differentiation between subpopulations. Thus, older and/or less isolated subpopulations are expected to have higher genetic diversity and less genetic differentiation. We tested this theory using whole-genome pool-sequencing to characterize nucleotide diversity and differentiation in 60 subpopulations of a natural metapopulation of the cyclical parthenogen Daphnia magna. For comparison, we characterized diversity in a single, large, and stable D. magna population. We found reduced (synonymous) genomic diversity, a proxy for effective population size, weak purifying selection, and low rates of adaptive evolution in the metapopulation compared with the large, stable population. These differences suggest that genetic bottlenecks during colonization reduce effective population sizes, which leads to strong genetic drift and reduced selection efficacy in the metapopulation. Consistent with the propagule model, we found lower diversity and increased differentiation in younger and also in more isolated subpopulations. Our study sheds light on the genomic consequences of extinction-(re)colonization dynamics to an unprecedented degree, giving strong support for the propagule model. We demonstrate that the metapopulation evolves differently from a large, stable population and that evolution is largely driven by genetic drift.
Collapse
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
- Evolutionary Biology, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Christoph R Haag
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier 34293, France
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| | - Frida Ben-Ami
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| |
Collapse
|
11
|
Sobel E, Coate JE, Schaack S. Estimating somatic mutation rates by bottlenecked duplex sequencing in non-model organisms: Daphnia magna as a case study. J Biol Methods 2022; 9:e165. [PMID: 36992917 PMCID: PMC10040303 DOI: 10.14440/jbm.2022.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Somatic mutations are evolutionarily important as determinants of individual organismal fitness, as well as being a focus of clinical research on age-related disease, such as cancer. Identifying somatic mutations and quantifying mutation rates, however, is extremely challenging and genome-wide somatic mutation rates have only been reported for a few model organisms. Here, we describe the application of Duplex Sequencing on bottlenecked WGS libraries to quantify somatic nuclear genome-wide base substitution rates in Daphnia magna. Daphnia, historically an ecological model system, has more recently been the focus of mutation studies, in part because of its high germline mutation rates. Using our protocol and pipeline, we estimate a somatic mutation rate of 5.6 × 10-7 substitutions per site (in a genotype where the germline rate is 3.60 × 10-9 substitutions per site per generation). To obtain this estimate, we tested multiple dilution levels to maximize sequencing efficiency and developed bioinformatic filters needed to minimize false positives when a high-quality reference genome is not available. In addition to laying the groundwork for estimating genotypic variation in rates of somatic mutations within D. magna, we provide a framework for quantifying somatic mutations in other non-model systems, and also highlight recent innovations to single molecule sequencing that will help to further refine such estimates.
Collapse
Affiliation(s)
| | | | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR 97202
| |
Collapse
|
12
|
Scheffer H, Coate JE, Ho EKH, Schaack S. Thermal stress and mutation accumulation increase heat shock protein expression in Daphnia. Evol Ecol 2022; 36:829-844. [PMID: 36193163 PMCID: PMC9522699 DOI: 10.1007/s10682-022-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Understanding the short- and long-term consequences of climate change is a major challenge in biology. For aquatic organisms, temperature changes and drought can lead to thermal stress and habitat loss, both of which can ultimately lead to higher mutation rates. Here, we examine the effect of high temperature and mutation accumulation on gene expression at two loci from the heat shock protein (HSP) gene family, HSP60 and HSP90. HSPs have been posited to serve as 'mutational capacitors' given their role as molecular chaperones involved in protein folding and degradation, thus buffering against a wide range of cellular stress and destabilization. We assayed changes in HSP expression across 5 genotypes of Daphnia magna, a sentinel species in ecology and environmental biology, with and without acute exposure to thermal stress and accumulated mutations. Across genotypes, HSP expression increased ~ 6× in response to heat and ~ 4× with mutation accumulation, individually. Both factors simultaneously (lineages with high mutation loads exposed to high heat) increased gene expression ~ 23×-much more than that predicted by an additive model. Our results corroborate suggestions that HSPs can buffer against not only the effects of heat, but also mutations-a combination of factors both likely to increase in a warming world. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10209-1.
Collapse
Affiliation(s)
- Henry Scheffer
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Jeremy E. Coate
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Eddie K. H. Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Sarah Schaack
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
13
|
Abstract
The ways in which genetic variation is distributed within and among populations is a key determinant of the evolutionary features of a species. However, most comprehensive studies of these features have been restricted to studies of subdivision in settings known to have been driven by local adaptation, leaving our understanding of the natural dispersion of allelic variation less than ideal. Here, we present a geographic population-genomic analysis of 10 populations of the freshwater microcrustacean Daphnia pulex, an emerging model system in evolutionary genomics. These populations exhibit a pattern of moderate isolation-by-distance, with an average migration rate of 0.6 individuals per generation, and average effective population sizes of ∼650,000 individuals. Most populations contain numerous private alleles, and genomic scans highlight the presence of islands of excessively high population subdivision for more common alleles. A large fraction of such islands of population divergence likely reflect historical neutral changes, including rare stochastic migration and hybridization events. The data do point to local adaptive divergence, although the precise nature of the relevant variation is diffuse and cannot be associated with particular loci, despite the very large sample sizes involved in this study. In contrast, an analysis of between-species divergence highlights positive selection operating on a large set of genes with functions nearly nonoverlapping with those involved in local adaptation, in particular ribosome structure, mitochondrial bioenergetics, light reception and response, detoxification, and gene regulation. These results set the stage for using D. pulex as a model for understanding the relationship between molecular and cellular evolution in the context of natural environments.
Collapse
Affiliation(s)
- Takahiro Maruki
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Zhiqiang Ye
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Conradsen C, Blows MW, McGuigan K. Causes of variability in estimates of mutational variance from mutation accumulation experiments. Genetics 2022; 221:6569838. [PMID: 35435211 PMCID: PMC9157167 DOI: 10.1093/genetics/iyac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
Characteristics of the new phenotypic variation introduced via mutation have broad implications in evolutionary and medical genetics. Standardized estimates of this mutational variance, VM, span 2 orders of magnitude, but the causes of this remain poorly resolved. We investigated estimate heterogeneity using 2 approaches. First, meta-analyses of ∼150 estimates of standardized VM from 37 mutation accumulation studies did not support a difference among taxa (which differ in mutation rate) but provided equivocal support for differences among trait types (life history vs morphology, predicted to differ in mutation rate). Notably, several experimental factors were confounded with taxon and trait, and further empirical data are required to resolve their influences. Second, we analyzed morphological data from an experiment in Drosophila serrata to determine the potential for unintentional heterogeneity among environments in which phenotypes were measured (i.e. among laboratories or time points) or transient segregation of mutations within mutation accumulation lines to affect standardized VM. Approximating the size of an average mutation accumulation experiment, variability among repeated estimates of (accumulated) mutational variance was comparable to variation among published estimates of standardized VM. This heterogeneity was (partially) attributable to unintended environmental variation or within line segregation of mutations only for wing size, not wing shape traits. We conclude that sampling error contributed substantial variation within this experiment, and infer that it will also contribute substantially to differences among published estimates. We suggest a logistically permissive approach to improve the precision of estimates, and consequently our understanding of the dynamics of mutational variance of quantitative traits.
Collapse
Affiliation(s)
- Cara Conradsen
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| | - Mark W Blows
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| |
Collapse
|
15
|
Ye Z, Zhao C, Raborn RT, Lin M, Wei W, Hao Y, Lynch M. Genetic Diversity, Heteroplasmy, and Recombination in Mitochondrial Genomes of Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Mol Biol Evol 2022; 39:msac059. [PMID: 35325186 PMCID: PMC9004417 DOI: 10.1093/molbev/msac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Chaoxian Zhao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - R. Taylor Raborn
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Man Lin
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yue Hao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
16
|
Pfenninger M, Doria HB, Nickel J, Thielsch A, Schwenk K, Cordellier M. Spontaneous rate of clonal single nucleotide mutations in Daphnia galeata. PLoS One 2022; 17:e0265632. [PMID: 35363773 PMCID: PMC8975155 DOI: 10.1371/journal.pone.0265632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022] Open
Abstract
Mutations are the ultimate source of heritable variation and therefore the fuel for evolution, but direct estimates of mutation rates exist only for few species. We estimated the spontaneous single nucleotide mutation rate among clonal generations in the waterflea Daphnia galeata with a short-term mutation accumulation approach. Individuals from eighteen mutation accumulation lines over five generations were deep sequenced to count de novo mutations that were not present in a pool of F1 individuals, representing the parental genotype. We identified 12 new nucleotide mutations in 90 clonal generational passages. This resulted in an estimated single nucleotide mutation rate of 0.745 x 10-9 (95% c.f. 0.39 x 10-9-1.26 x 10-9), which is slightly lower than recent estimates for other Daphnia species. We discuss the implications for the population genetics of Cladocerans.
Collapse
Affiliation(s)
- Markus Pfenninger
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Halina Binde Doria
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jana Nickel
- Institut für Zoologie, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, Hamburg, Germany
| | - Anne Thielsch
- Institute for Environmental Sciences, Universität Koblenz-Landau, Landau, Germany
| | - Klaus Schwenk
- Institute for Environmental Sciences, Universität Koblenz-Landau, Landau, Germany
| | - Mathilde Cordellier
- Institut für Zoologie, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Fields PD, McTaggart S, Reisser CMO, Haag C, Palmer WH, Little TJ, Ebert D, Obbard DJ. Population-genomic analysis identifies a low rate of global adaptive fixation in the proteins of the cyclical parthenogen Daphnia magna. Mol Biol Evol 2022; 39:6542319. [PMID: 35244177 PMCID: PMC8963301 DOI: 10.1093/molbev/msac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Daphnia are well-established ecological and evolutionary models, and the interaction between D. magna and its microparasites is widely considered a paragon of the host-parasite coevolutionary process. Like other well-studied arthropods such as Drosophila melanogaster and Anopheles gambiae, D. magna is a small, widespread, and abundant species that is therefore expected to display a large long-term population size and high rates of adaptive protein evolution. However, unlike these other species, D. magna is cyclically asexual and lives in a highly structured environment (ponds and lakes) with moderate levels of dispersal, both of which are predicted to impact upon long-term effective population size and adaptive protein evolution. To investigate patterns of adaptive protein fixation, we produced the complete coding genomes of 36 D. magna clones sampled from across the European range (Western Palaearctic), along with draft sequences for the close relatives D. similis and D. lumholtzi, used as outgroups. We analyzed genome-wide patterns of adaptive fixation, with a particular focus on genes that have an a priori expectation of high rates, such as those likely to mediate immune responses, RNA interference against viruses and transposable elements, and those with a strongly male-biased expression pattern. We find that, as expected, D. magna displays high levels of diversity and that this is highly structured among populations. However, compared with Drosophila, we find that D. magna proteins appear to have a high proportion of weakly deleterious variants and do not show evidence of pervasive adaptive fixation across its entire range. This is true of the genome as a whole, and also of putative ‘arms race’ genes that often show elevated levels of adaptive substitution in other species. In addition to the likely impact of extensive, and previously documented, local adaptation, we speculate that these findings may reflect reduced efficacy of selection associated with cyclical asexual reproduction.
Collapse
Affiliation(s)
- Peter D Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Seanna McTaggart
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Céline M O Reisser
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France.,MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Christoph Haag
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - William H Palmer
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Tom J Little
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Darren J Obbard
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
18
|
Ho EKH, Schaack S. Intraspecific Variation in the Rates of Mutations Causing Structural Variation in Daphnia magna. Genome Biol Evol 2021; 13:6444992. [PMID: 34849778 PMCID: PMC8691059 DOI: 10.1093/gbe/evab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations that cause structural variation are important sources of genetic variation upon which other evolutionary forces can act, however, they are difficult to observe and therefore few direct estimates of their rate and spectrum are available. Understanding mutation rate evolution, however, requires adding to the limited number of species for which direct estimates are available, quantifying levels of intraspecific variation in mutation rates, and assessing whether rate estimates co-vary across types of mutation. Here, we report structural variation-causing mutation rates (svcMRs) for six categories of mutations (short insertions and deletions, long deletions and duplications, and deletions and duplications at copy number variable sites) from nine genotypes of Daphnia magna collected from three populations in Finland, Germany, and Israel using a mutation accumulation approach. Based on whole-genome sequence data and validated using simulations, we find svcMRs are high (two orders of magnitude higher than base substitution mutation rates measured in the same lineages), highly variable among populations, and uncorrelated across categories of mutation. Furthermore, to assess the impact of scvMRs on the genome, we calculated rates while adjusting for the lengths of events and ran simulations to determine if the mutations occur in genic regions more or less frequently than expected by chance. Our results pose a challenge to most prevailing theories aimed at explaining the evolution of the mutation rate, underscoring the importance of obtaining additional mutation rate estimates in more genotypes, for more types of mutation, in more species, in order to improve our future understanding of mutation rates, their variation, and their evolution.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| |
Collapse
|
19
|
Ho EKH, Bellis ES, Calkins J, Adrion JR, Latta IV LC, Schaack S. Engines of change: Transposable element mutation rates are high and variable within Daphnia magna. PLoS Genet 2021; 17:e1009827. [PMID: 34723969 PMCID: PMC8594854 DOI: 10.1371/journal.pgen.1009827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) represent a major portion of most eukaryotic genomes, yet little is known about their mutation rates or how their activity is shaped by other evolutionary forces. Here, we compare short- and long-term patterns of genome-wide mutation accumulation (MA) of TEs among 9 genotypes from three populations of Daphnia magna from across a latitudinal gradient. While the overall proportion of the genome comprised of TEs is highly similar among genotypes from Finland, Germany, and Israel, populations are distinguishable based on patterns of insertion site polymorphism. Our direct rate estimates indicate TE movement is highly variable (net rates ranging from -11.98 to 12.79 x 10-5 per copy per generation among genotypes), differing both among populations and TE families. Although gains outnumber losses when selection is minimized, both types of events appear to be highly deleterious based on their low frequency in control lines where propagation is not limited to random, single-progeny descent. With rate estimates 4 orders of magnitude higher than base substitutions, TEs clearly represent a highly mutagenic force in the genome. Quantifying patterns of intra- and interspecific variation in TE mobility with and without selection provides insight into a powerful mechanism generating genetic variation in the genome.
Collapse
Affiliation(s)
- Eddie K. H. Ho
- Department of Biology, Reed College, Portland, Oregon, United States of America
| | - Emily S. Bellis
- Department of Biology, Reed College, Portland, Oregon, United States of America
- Department of Computer Science, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Jaclyn Calkins
- Department of Biology, Reed College, Portland, Oregon, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey R. Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Leigh C. Latta IV
- Department of Biology, Reed College, Portland, Oregon, United States of America
- Lewis-Clark State College, Lewiston, Idaho, United States of America
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, United States of America
| |
Collapse
|
20
|
Lemmen KD, Verhoeven KJF, Declerck SAJ. Experimental evidence of rapid heritable adaptation in the absence of initial standing genetic variation. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kimberley D. Lemmen
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Steven A. J. Declerck
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Biology Laboratory of Aquatic Ecology, Evolution and Conservation KULeuven Leuven Belgium
| |
Collapse
|
21
|
Snyman M, Huynh TV, Smith MT, Xu S. The genome-wide rate and spectrum of EMS-induced heritable mutations in the microcrustacean Daphnia: on the prospect of forward genetics. Heredity (Edinb) 2021; 127:535-545. [PMID: 34667306 DOI: 10.1038/s41437-021-00478-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Forward genetic screening using the alkylating mutagen ethyl methanesulfonate (EMS) is an effective method for identifying phenotypic mutants of interest, which can be further genetically dissected to pinpoint the causal genetic mutations. An accurate estimate of the rate of EMS-induced heritable mutations is fundamental for determining the mutant sample size of a screening experiment that aims to saturate all the genes in a genome with mutations. This study examines the genome-wide EMS-induced heritable base-substitutions in three species of the freshwater microcrustacean Daphnia to help guide screening experiments. Our results show that the 10 mM EMS treatment induces base substitutions at an average rate of 1.17 × 10-6/site/generation across the three species, whereas a significantly higher average mutation rate of 1.75 × 10-6 occurs at 25 mM. The mutation spectrum of EMS-induced base substitutions at both concentration is dominated by G:C to A:T transitions. Furthermore, we find that female Daphnia exposed to EMS (F0 individuals) can asexually produce unique mutant offspring (F1) for at least 3 consecutive broods, suggestive of multiple broods as F1 mutants. Lastly, we estimate that about 750 F1s are needed for all genes in the Daphnia genome to be mutated at least once with a 95% probability. We also recommend 4-5 F2s should be collected from each F1 mutant through sibling crossing so that all induced mutations could appear in the homozygous state in the F2 population at 70-80% probability.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Trung V Huynh
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Matthew T Smith
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
22
|
O'Grady CJ, Dhandapani V, Colbourne JK, Frisch D. Refining the evolutionary time machine: An assessment of whole genome amplification using single historical Daphnia eggs. Mol Ecol Resour 2021; 22:946-961. [PMID: 34672105 DOI: 10.1111/1755-0998.13524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Whole genome sequencing is instrumental for the study of genome variation in natural populations, delivering important knowledge on genomic modifications and potential targets of natural selection at the population level. Large dormant eggbanks of aquatic invertebrates such as the keystone herbivore Daphnia, a microcrustacean widespread in freshwater ecosystems, provide detailed sedimentary archives to study genomic processes over centuries. To overcome the problem of limited DNA amounts in single Daphnia dormant eggs, we developed an optimized workflow for whole genome amplification (WGA), yielding sufficient amounts of DNA for downstream whole genome sequencing of individual historical eggs, including polyploid lineages. We compare two WGA kits, applied to recently produced Daphnia magna dormant eggs from laboratory cultures, and to historical dormant eggs of Daphnia pulicaria collected from Arctic lake sediment between 10 and 300 years old. Resulting genome coverage breadth in most samples was ~70%, including those from >100-year-old isolates. Sequence read distribution was highly correlated among samples amplified with the same kit, but less correlated between kits. Despite this, a high percentage of genomic positions with single nucleotide polymorphisms in one or more samples (maximum of 74% between kits, and 97% within kits) were recovered at a depth required for genotyping. As a by-product of sequencing we obtained 100% coverage of the mitochondrial genomes even from the oldest isolates (~300 years). The mitochondrial DNA provides an additional source for evolutionary studies of these populations. We provide an optimized workflow for WGA followed by whole genome sequencing including steps to minimize exogenous DNA.
Collapse
Affiliation(s)
- Christopher James O'Grady
- School of Life Sciences, University of Warwick, Coventry, UK.,Cell and Gene Therapy Catapult, London, UK.,School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | - Dagmar Frisch
- School of Biosciences, University of Birmingham, Birmingham, UK.,Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
23
|
López-Cortegano E, Craig RJ, Chebib J, Samuels T, Morgan AD, Kraemer SA, Böndel KB, Ness RW, Colegrave N, Keightley PD. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas. Mol Biol Evol 2021; 38:3709-3723. [PMID: 33950243 PMCID: PMC8383909 DOI: 10.1093/molbev/msab140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is μ = 7.6 × 10-10, and is highly variable between MA lines, ranging from μ = 0.35 × 10-10 to μ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jobran Chebib
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby Samuels
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Morgan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Katharina B Böndel
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Bourgeois Y, Fields P, Bento G, Ebert D. Balancing selection for pathogen resistance reveals an intercontinental signature of Red Queen coevolution. Mol Biol Evol 2021; 38:4918-4933. [PMID: 34289047 PMCID: PMC8557431 DOI: 10.1093/molbev/msab217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The link between long-term host–parasite coevolution and genetic diversity is key to understanding genetic epidemiology and the evolution of resistance. The model of Red Queen host–parasite coevolution posits that high genetic diversity is maintained when rare host resistance variants have a selective advantage, which is believed to be the mechanistic basis for the extraordinarily high levels of diversity at disease-related genes such as the major histocompatibility complex in jawed vertebrates and R-genes in plants. The parasites that drive long-term coevolution are, however, often elusive. Here we present evidence for long-term balancing selection at the phenotypic (variation in resistance) and genomic (resistance locus) level in a particular host–parasite system: the planktonic crustacean Daphnia magna and the bacterium Pasteuria ramosa. The host shows widespread polymorphisms for pathogen resistance regardless of geographic distance, even though there is a clear genome-wide pattern of isolation by distance at other sites. In the genomic region of a previously identified resistance supergene, we observed consistent molecular signals of balancing selection, including higher genetic diversity, older coalescence times, and lower differentiation between populations, which set this region apart from the rest of the genome. We propose that specific long-term coevolution by negative-frequency-dependent selection drives this elevated diversity at the host's resistance loci on an intercontinental scale and provide an example of a direct link between the host’s resistance to a virulent pathogen and the large-scale diversity of its underlying genes.
Collapse
Affiliation(s)
- Yann Bourgeois
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Gilberto Bento
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
25
|
Krasovec M. The spontaneous mutation rate of Drosophila pseudoobscura. G3 GENES|GENOMES|GENETICS 2021; 11:6265464. [PMID: 33950174 PMCID: PMC8495931 DOI: 10.1093/g3journal/jkab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
Abstract
The spontaneous mutation rate is a very variable trait that is subject to drift, selection and is sometimes highly plastic. Consequently, its variation between close species, or even between populations from the same species, can be very large. Here, I estimated the spontaneous mutation rate of Drosophila pseudoobscura and Drosophila persimilis crosses to explore the mutation rate variation within the Drosophila genus. All mutation rate estimations in Drosophila varied fourfold, probably explained by the sensitivity of the mutation rate to environmental and experimental conditions. Moreover, I found a very high mutation rate in the hybrid cross between D. pseudoobscura and D. persimilis, in agreement with known elevated mutation rate in hybrids. This mutation rate increase can be explained by heterozygosity and fitness decrease effects in hybrids.
Collapse
Affiliation(s)
- Marc Krasovec
- CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| |
Collapse
|
26
|
Cornetti L, Ebert D. No evidence for genetic sex determination in Daphnia magna. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202292. [PMID: 34150315 PMCID: PMC8206689 DOI: 10.1098/rsos.202292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Mechanisms of sex determination (SD) differ widely across the tree of life. In genotypic sex determination (GSD), genetic elements determine whether individuals are male or female, while in environmental sex determination (ESD), external cues control the sex of the offspring. In cyclical parthenogens, females produce mostly asexual daughters, but environmental stimuli such as crowding, temperature or photoperiod may cause them to produce sons. In aphids, sons are induced by ESD, even though GSD is present, with females carrying two X chromosomes and males only one (X0 SD system). By contrast, although ESD exists in Daphnia, the two sexes were suggested to be genetically identical, based on a 1972 study on Daphnia magna (2n=20) that used three allozyme markers. This study cannot, however, rule out an X0 system, as all three markers may be located on autosomes. Motivated by the life cycle similarities of Daphnia and aphids, and the absence of karyotype information for Daphnia males, we tested for GSD (homomorphic sex chromosomes and X0) systems in D. magna using a whole-genome approach by comparing males and females of three genotypes. Our results confirm the absence of haploid chromosomes or haploid genomic regions in D. magna males as well as the absence of sex-linked genomic regions and sex-specific single-nucleotide polymorphisms. Within the limitations of the three studied populations here and the methods used, we suggest that our results make the possibility of genetic differences among sexes in the widely used Daphnia model system very unlikely.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Environmental Sciences, Zoology, University of Basel, 4051, Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, 4051, Basel, Switzerland
| |
Collapse
|
27
|
Cornetti L, Fields PD, Ebert D. Genomic characterization of selfing in the cyclic parthenogen Daphnia magna. J Evol Biol 2021; 34:792-802. [PMID: 33704857 DOI: 10.1111/jeb.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 11/29/2022]
Abstract
Inbreeding refers to the fusion of related individuals' gametes, with self-fertilization (selfing) being an extreme form of inbreeding-involving gametes produced by the same individual. Selfing is expected to reduce heterozygosity by an average of 50% in one generation; however, little is known about the empirical variation on a genome level surrounding this figure and the factors that affect variation. We selfed genotypes of the cyclic parthenogen Daphnia magna and analysed whole genomes of mothers and selfed offspring, observing the predicted 50% heterozygosity reduction on average. We also saw substantial variation around this value and significant differences among mother-offspring pairs. Crossover analysis confirmed the known trend of recombination occurring more often towards the telomeres. This effect was shown, through simulations, to increase the variance of heterozygosity reduction compared to when a uniform distribution of crossovers was used. Similarly, we simulated inbred line production after several generations of selfing and we observed higher variance in achieved homozygosity when we consider a higher recombination rate towards the telomeres. Our empirical and simulation study highlights that the expected mean values of heterozygosity reduction show remarkable variation, which can help understand, for example, differences among inbred individuals.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Davenport ES, Agrelius TC, Harmon KB, Dudycha JL. Fitness effects of spontaneous mutations in a warming world. Evolution 2021; 75:1513-1524. [PMID: 33751559 PMCID: PMC8252619 DOI: 10.1111/evo.14208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Spontaneous mutations fuel evolutionary processes and differ in consequence, but the consequences depend on the environment. Biophysical considerations of protein thermostability predict that warm temperatures may systematically increase the deleteriousness of mutation. We sought to test whether mutation reduced fitness more when measured in an environment that reflected climate change projections for temperature. We investigated the effects of spontaneous mutations on life history, size, and fitness in 21 mutation accumulation lines and 12 control lines of Daphnia pulex at standard and elevated (+4℃) temperatures. Warmer temperature accelerated life history and reduced body length and clutch sizes. Mutation led to reduced mean clutch sizes and fitness estimates at both temperatures. We found no evidence of a systematic temperature–mutation interaction on trait means, although some lines showed evidence of beneficial mutation at one temperature and deleterious mutation at the other. However, trait variances are also influenced by mutation, and we observed increased variances due to mutation for most traits. For variance of the intrinsic rate of increase and some reproductive traits, we found significant temperature–mutation interactions, with a larger increase due to mutation in the warmer environment. This suggests that selection on new mutations will be more efficient at elevated temperatures.
Collapse
Affiliation(s)
- Elizabeth S Davenport
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208.,Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109
| | - Trenton C Agrelius
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - Krista B Harmon
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| |
Collapse
|