1
|
Liu S, Liu Y, Fan W, Zhou H, Cai H. Yeast models of mutations in NFU1 gene for biochemical characterization and drug screening. Biochem Biophys Res Commun 2025; 763:151760. [PMID: 40233434 DOI: 10.1016/j.bbrc.2025.151760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/09/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
The mutations in the NFU1 gene result in the autosomal recessive hereditary disorder known as Multiple Mitochondrial Dysfunction Syndrome 1 (MMDS1). Pathogenic mutations cause the intra-mitochondrial target proteins of NFU1 (known as Nfu1 in yeast) to become dysfunctional. There have been reports of 20 NFU1 mutations to date, however the precise pathogenic mechanism of MMDS1 is yet unknown. In this study, we simulated the missense mutations identified in patients and constructed four yeast models to confirm the pathogenic relevance of these mutations in humans. We analyzed the mitochondrial phenotype of yeast cells, including their respiration and oxidative stress. Mutated yeast strains exhibited a higher frequency of small colony formation, suggesting enhanced mutability of mtDNA. There are differences in the effects of mutations at different sites on cells, and their severity may be related to the CxxC motif. Finally, we established an efficient, yeast-based method to select drugs capable of alleviating oxidative stress caused by NFU1 mutations. These yeast models are useful for studying the pathogenic association of novel mutations or rare polymorphisms in NFU1, which will provide theoretical guidance for treating MMDS1 disease or other mitochondrial diseases.
Collapse
Affiliation(s)
- Siru Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China
| | - Yi Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China
| | - Wanyan Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China
| | - Hua Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, China
| | - Heng Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China.
| |
Collapse
|
2
|
Hara Y, Kuraku S. Intragenomic mutational heterogeneity: structural and functional insights from gene evolution. Trends Genet 2025:S0168-9525(25)00075-7. [PMID: 40328580 DOI: 10.1016/j.tig.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Variation of mutation rates between species has been documented over decades, but the variation between different regions of a genome has been less often discussed. Recent studies using high-quality sequence data have revealed previously unknown levels of intragenomic heterogeneity of mutation rates and their association with other structural and functional features of DNA sequences. This article reviews accumulating evidence of this intragenomic heterogeneity and speculates its cause and influence on organismal phenotypes.
Collapse
Affiliation(s)
- Yuichiro Hara
- Department of Data Science, Kitasato University School of Frontier Engineering, Sagamihara, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Japan.
| |
Collapse
|
3
|
Bird KA, Ramos AA, Kliebenstein DJ. Phylogenetic and genomic mechanisms shaping glucosinolate innovation. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102705. [PMID: 40157132 DOI: 10.1016/j.pbi.2025.102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Plants have created an immense diversity of specialized metabolites to optimize fitness within a complex environment. Each plant lineage has created novel metabolites often using the classical duplication/neo-functionalization model, but this is constrained by undersampled genera and an absence of high-quality genomes. Phylogenetically resolved genomes, deeper chemical sampling and mechanistic assessment of glucosinolate diversity in the Brassicales is beginning to fill in a deeper understanding of how chemical novelty arises. This is showing that small-scale duplications like tandem or distal events may have more influence on the formation of metabolic novelty. Similarly, this is showing that gene loss is playing a significant role in metabolic diversity across the entire genera. Finally, mechanistic work is showing that the glucosinolate pathway is not a defined endpoint but is being used as a launching pad for the creation of other metabolites. In combination, this work is showing the potential in combining high-quality genomes with balanced phylogenetic sampling to develop improved models on how specialized metabolite gene evolution occurs.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Amanda Agosto Ramos
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA; Plant Biology Graduate Group, University of California, Davis, Davis, CA, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA; Plant Biology Graduate Group, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Blázquez B, Nogales J. Rational Design Assisted by Evolutionary Engineering Allows (De)Construction and Optimization of Complex Phenotypes in Pseudomonas putida KT2440. Microb Biotechnol 2025; 18:e70132. [PMID: 40126873 PMCID: PMC11932161 DOI: 10.1111/1751-7915.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Beyond the rational construction of genetic determinants to encode target functions, complex phenotype engineering requires the contextualisation of their expression within the metabolic and genetic background of the host strain. Furthermore, wherever metabolic complexity is involved, phenotype engineering demands standard, reliable, plug-and-play tools. We introduce GENIO (GENome Integration and fitness Optimization platform for Pseudomonas putida), a framework to optimise genetic circuit performance by means of (i) chromosome-location-based differential gene expression and (ii) subsequent fitness improvement through evolutionary engineering if needed. Using gene expression strength and cell-to-cell variation, we characterised 10 P. putida chromosomal loci (ppLPS) to show that genome context rather than distance to ORI is the main factor driving differential expression performance. We further contextualised ppLPS gene expression against well-known chromosomal integration sites and plasmids displaying different copy numbers. GENIO supports comprehensive exploration of the gene expression space across P. putida's genome while unlocking performance optimization of complex heterologous metabolic pathways through evolutionary engineering. To demonstrate the usability of GENIO, we restored P. putida's aromatic hydrocarbon metabolism by (de)constructing the toluene/m-xylene catabolic pathway coded in the pWW0 plasmid. We also showed that engineering complex phenotypes requires accurate contextualisation of the synthetic pathways involved, a process that benefits from biological robustness.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Systems BiologyCentro Nacional de Biotecnología CSICMadridSpain
- CNB DNA Biofoundry (CNBio), CSICMadridSpain
| | - Juan Nogales
- Department of Systems BiologyCentro Nacional de Biotecnología CSICMadridSpain
- CNB DNA Biofoundry (CNBio), CSICMadridSpain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
5
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
6
|
Jiang B, Xiao C, Liu L. Progressive transcriptomic shifts in evolved yeast strains following gene knockout. iScience 2024; 27:111219. [PMID: 39559754 PMCID: PMC11570485 DOI: 10.1016/j.isci.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Gene knockout disrupts cellular homeostasis, altering gene expression, and phenotypes. We investigated whether cells return to their pre-knockout transcriptomic state through adaptive evolution experiments on hap4Δ and ade1Δ yeast strains. Analysis revealed that genes with higher expression levels and more physical interaction partners in wild-type strains were more likely to be restored, suggesting that genes of significant functional importance have increased resilience to genetic perturbations. However, as the experiment progressed, most initially restored genes became unrestored. Over 60% of differentially expressed genes in knockout strains remained unrestored in evolved strains. Evolved strains exhibited distinct transcriptomic states, diverging from the original strain over time. Ribosome biogenesis components exhibited systematic sequential changes during the evolution. Our findings suggest the knockout strain transcriptomes struggle to return to the original state even after 28 days of culture. Instead, compensatory mechanisms lead to distinct suboptimal states, highlighting the complex transcriptomic dynamics following genetic perturbations.
Collapse
Affiliation(s)
- Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chuyao Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511400, China
- Institute of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Yao B, Guan D, Yang L, Jiang T, Zhao L, Khan MS, Xu SQ. Chromosome-level genome assembly of the cave leech Sinospelaeobdella cavatuses (Hirudinea: Haemadipsidae). Sci Data 2024; 11:1223. [PMID: 39537640 PMCID: PMC11561068 DOI: 10.1038/s41597-024-04007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Leeches are famous for their high medical value and wide environmental adaptability. Among them, cave leeches are a very fascinating and rare group, which is an important component in the study of adaptive evolution of leeches. However, no study has yet reported a reference genome for this group. In this study, we assembled a high-quality chromosome-level genome of the cave terrestrial leech Sinospelaeobdella cavatuses, through Illumina and PacBio sequencing, alongside chromosome conformation capture techniques. The resulting genome spans 153.67 Mb across 9 pseudochromosomes(range: 11.33 to 23.53 Mb), with a mounting rate of up to 95.37% and features an N50 length of 17.15 Mb. This genome is composed of 35.16% repetitive elements and contains 21180 predicted protein-coding genes. Decoding the S. cavatuses genome not only promotes future studies on study of its phylogeny, evolution, and behavior, but also provides valuable resources for in-depth investigation on adaptive evolution of leech.
Collapse
Affiliation(s)
- Binbin Yao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China.
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China.
| | - Lulu Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Tao Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lu Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | | | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
8
|
Cossette ML, Stewart DT, Shafer ABA. Comparative Genomics of the World's Smallest Mammals Reveals Links to Echolocation, Metabolism, and Body Size Plasticity. Genome Biol Evol 2024; 16:evae225. [PMID: 39431406 PMCID: PMC11544316 DOI: 10.1093/gbe/evae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Originating 30 million years ago, shrews (Soricidae) have diversified into around 400 species worldwide. Shrews display a wide array of adaptations, with some species having developed distinctive traits such as echolocation, underwater diving, and venomous saliva. Accordingly, these tiny insectivores are ideal to study the genomic mechanisms of evolution and adaptation. We conducted a comparative genomic analysis of four shrew species and 16 other mammals to identify genomic variations unique to shrews. Using two existing shrew genomes and two de novo assemblies for the maritime (Sorex maritimensis) and smoky (Sorex fumeus) shrews, we identified mutations in conserved regions of the genomes, also known as accelerated regions, gene families that underwent significant expansion, and positively selected genes. Our analyses unveiled shrew-specific genomic variants in genes associated with the nervous, metabolic, and auditory systems, which can be linked to unique traits in shrews. Notably, genes suggested to be under convergent evolution in echolocating mammals exhibited accelerated regions in shrews, and pathways linked to putative body size plasticity were detected. These findings provide insight into the evolutionary mechanisms shaping shrew species, shedding light on their adaptation and divergence over time.
Collapse
Affiliation(s)
- Marie-Laurence Cossette
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aaron B A Shafer
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Forensic Science, Trent University, Peterborough, ON, Canada
| |
Collapse
|
9
|
He H, Gómez-Coronado PA, Zarzycki J, Barthel S, Kahnt J, Claus P, Klein M, Klose M, de Crécy-Lagard V, Schindler D, Paczia N, Glatter T, Erb TJ. Adaptive laboratory evolution recruits the promiscuity of succinate semialdehyde dehydrogenase to repair different metabolic deficiencies. Nat Commun 2024; 15:8898. [PMID: 39406738 PMCID: PMC11480449 DOI: 10.1038/s41467-024-53156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Promiscuous enzymes often serve as the starting point for the evolution of novel functions. Yet, the extent to which the promiscuity of an individual enzyme can be harnessed several times independently for different purposes during evolution is poorly reported. Here, we present a case study illustrating how NAD(P)+-dependent succinate semialdehyde dehydrogenase of Escherichia coli (Sad) is independently recruited through various evolutionary mechanisms for distinct metabolic demands, in particular vitamin biosynthesis and central carbon metabolism. Using adaptive laboratory evolution (ALE), we show that Sad can substitute for the roles of erythrose 4-phosphate dehydrogenase in pyridoxal 5'-phosphate (PLP) biosynthesis and glyceraldehyde 3-phosphate dehydrogenase in glycolysis. To recruit Sad for PLP biosynthesis and glycolysis, ALE employs various mechanisms, including active site mutation, copy number amplification, and (de)regulation of gene expression. Our study traces down these different evolutionary trajectories, reports on the surprising active site plasticity of Sad, identifies regulatory links in amino acid metabolism, and highlights the potential of an ordinary enzyme as innovation reservoir for evolution.
Collapse
Affiliation(s)
- Hai He
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - Paul A Gómez-Coronado
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sebastian Barthel
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Peter Claus
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Klein
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Melanie Klose
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- Genetic Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Schindler
- MaxGENESYS Biofoundry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
10
|
Liu T, Liu Z, Fan J, Yuan Y, Liu H, Xian W, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae. Genome Biol 2024; 25:250. [PMID: 39350172 PMCID: PMC11441212 DOI: 10.1186/s13059-024-03393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-Jiazhuang, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY, USA.
| | - Fang Xie
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| |
Collapse
|
11
|
Helsen J, Reza MH, Carvalho R, Sherlock G, Dey G. Spindle architecture constrains karyotype evolution. Nat Cell Biol 2024; 26:1496-1503. [PMID: 39117795 PMCID: PMC11392806 DOI: 10.1038/s41556-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The eukaryotic cell division machinery must rapidly and reproducibly duplicate and partition the cell's chromosomes in a carefully coordinated process. However, chromosome numbers vary dramatically between genomes, even on short evolutionary timescales. We sought to understand how the mitotic machinery senses and responds to karyotypic changes by using a series of budding yeast strains in which the native chromosomes have been successively fused. Using a combination of cell biological profiling, genetic engineering and experimental evolution, we show that chromosome fusions are well tolerated up until a critical point. Cells with fewer than five centromeres lack the necessary number of kinetochore-microtubule attachments needed to counter outward forces in the metaphase spindle, triggering the spindle assembly checkpoint and prolonging metaphase. Our findings demonstrate that spindle architecture is a constraining factor for karyotype evolution.
Collapse
Affiliation(s)
- Jana Helsen
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ricardo Carvalho
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
12
|
Uribe C, Nery MF, Zavala K, Mardones GA, Riadi G, Opazo JC. Evolution of ion channels in cetaceans: a natural experiment in the tree of life. Sci Rep 2024; 14:17024. [PMID: 39043711 PMCID: PMC11266680 DOI: 10.1038/s41598-024-66082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Cetaceans represent a natural experiment within the tree of life in which a lineage changed from terrestrial to aquatic habitats. This shift involved phenotypic modifications, representing an opportunity to explore the genetic bases of phenotypic diversity. Among the different molecular systems that maintain cellular homeostasis, ion channels are crucial for the proper physiological functioning of all living species. This study aims to explore the evolution of ion channels during the evolutionary history of cetaceans. To do so, we created a bioinformatic pipeline to annotate the repertoire of ion channels in the genome of the species included in our sampling. Our main results show that cetaceans have, on average, fewer protein-coding genes and a higher percentage of annotated ion channels than non-cetacean mammals. Signals of positive selection were detected in ion channels related to the heart, locomotion, visual and neurological phenotypes. Interestingly, we predict that the NaV1.5 ion channel of most toothed whales (odontocetes) is sensitive to tetrodotoxin, similar to NaV1.7, given the presence of tyrosine instead of cysteine, in a specific position of the ion channel. Finally, the gene turnover rate of the cetacean crown group is more than three times faster than that of non-cetacean mammals.
Collapse
Affiliation(s)
- Cristóbal Uribe
- Department of Bioinformatics, Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Mariana F Nery
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Cidade Universitária, Campinas, Brazil
| | - Kattina Zavala
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Gonzalo A Mardones
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Integrative Biology Group, Valdivia, Chile
| | - Gonzalo Riadi
- Department of Bioinformatics, Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, CBSM, University of Talca, Talca, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | - Juan C Opazo
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
- Integrative Biology Group, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
13
|
Gao B, Zhu S. The evolutionary novelty of insect defensins: from bacterial killing to toxin neutralization. Cell Mol Life Sci 2024; 81:230. [PMID: 38780625 PMCID: PMC11116330 DOI: 10.1007/s00018-024-05273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
El Harati R, Fancello F, Multineddu C, Zara G, Zara S. Screening and In Silico Analyses of the Yeast Saccharomyces cerevisiae Σ1278b Bank Mutants Using Citral as a Natural Antimicrobial. Foods 2024; 13:1457. [PMID: 38790757 PMCID: PMC11119076 DOI: 10.3390/foods13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 μL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Severino Zara
- Department di Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (R.E.H.); (F.F.); (C.M.); (G.Z.)
| |
Collapse
|
15
|
Xu S, Shao S, Feng X, Li S, Zhang L, Wu W, Liu M, Tracy ME, Zhong C, Guo Z, Wu CI, Shi S, He Z. Adaptation in Unstable Environments and Global Gene Losses: Small but Stable Gene Networks by the May-Wigner Theory. Mol Biol Evol 2024; 41:msae059. [PMID: 38507653 PMCID: PMC10991078 DOI: 10.1093/molbev/msae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lingjie Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Institute of Wetland Research, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Klim J, Zielenkiewicz U, Kaczanowski S. Loss-of-function mutations are main drivers of adaptations during short-term evolution. Sci Rep 2024; 14:7128. [PMID: 38532077 DOI: 10.1038/s41598-024-57694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
We noticed that during short-term experimental evolution and carcinogenesis, mutations causing gene inactivation (i.e., nonsense mutations or frameshifts) are frequent. Our meta-analysis of 65 experiments using modified dN/dS statistics indicated that nonsense mutations are adaptive in different experimental conditions and we empirically confirmed this prediction. Using yeast S. cerevisiae as a model we show that fixed or highly frequent gene loss-of-function mutations are almost exclusively adaptive in the majority of experiments.
Collapse
Affiliation(s)
- Joanna Klim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
17
|
Speckbacher V, Flatschacher D, Martini-Lösch N, Ulbrich L, Baldin C, Bauer I, Ruzsanyi V, Zeilinger S. The histone deacetylase Hda1 affects oxidative and osmotic stress response as well as mycoparasitic activity and secondary metabolite biosynthesis in Trichoderma atroviride. Microbiol Spectr 2024; 12:e0309723. [PMID: 38334386 PMCID: PMC10913545 DOI: 10.1128/spectrum.03097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The mycoparasitic fungus Trichoderma atroviride is applied in agriculture as a biostimulant and biologic control agent against fungal pathogens that infest crop plants. Secondary metabolites are among the main agents determining the strength and progress of the mycoparasitic attack. However, expression of most secondary metabolism-associated genes requires specific cues, as they are silent under routine laboratory conditions due to their maintenance in an inactive heterochromatin state. Therefore, histone modifications are crucial for the regulation of secondary metabolism. Here, we functionally investigated the role of the class II histone deacetylase encoding gene hda1 of T. atroviride by targeted gene deletion, phenotypic characterization, and multi-omics approaches. Deletion of hda1 did not result in obvious phenotypic alterations but led to an enhanced inhibitory activity of secreted metabolites and reduced mycoparasitic abilities of T. atroviride against the plant-pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The ∆hda1 mutants emitted altered amounts of four volatile organic compounds along their development, produced different metabolite profiles upon growth in liquid culture, and showed a higher susceptibility to oxidative and osmotic stress. Moreover, hda1 deletion affected the expression of several notable gene categories such as polyketide synthases, transcription factors, and genes involved in the HOG MAPK pathway.IMPORTANCEHistone deacetylases play crucial roles in regulating chromatin structure and gene transcription. To date, classical-Zn2+ dependent-fungal histone deacetylases are divided into two classes, of which each comprises orthologues of the two sub-groups Rpd3 and Hos2 and Hda1 and Hos3 of yeast, respectively. However, the role of these chromatin remodelers in mycoparasitic fungi is poorly understood. In this study, we provide evidence that Hda1, the class II histone deacetylases of the mycoparasitic fungus Trichoderma atroviride, regulates its mycoparasitic activity, secondary metabolite biosynthesis, and osmotic and oxidative stress tolerance. The function of Hda1 in regulating bioactive metabolite production and mycoparasitism reveals the importance of chromatin-dependent regulation in the ability of T. atroviride to successfully control fungal plant pathogens.
Collapse
Affiliation(s)
| | | | | | - Laura Ulbrich
- Umweltmonitoring und Forensische Chemie, Hochschule Hamm-Lippstadt, Hamm, Germany
| | - Clara Baldin
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Weghorst F, Torres Marcén M, Faridi G, Lee YCG, Cramer KS. Deep Conservation and Unexpected Evolutionary History of Neighboring lncRNAs MALAT1 and NEAT1. J Mol Evol 2024; 92:30-41. [PMID: 38189925 PMCID: PMC10869381 DOI: 10.1007/s00239-023-10151-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) have begun to receive overdue attention for their regulatory roles in gene expression and other cellular processes. Although most lncRNAs are lowly expressed and tissue-specific, notable exceptions include MALAT1 and its genomic neighbor NEAT1, two highly and ubiquitously expressed oncogenes with roles in transcriptional regulation and RNA splicing. Previous studies have suggested that NEAT1 is found only in mammals, while MALAT1 is present in all gnathostomes (jawed vertebrates) except birds. Here we show that these assertions are incomplete, likely due to the challenges associated with properly identifying these two lncRNAs. Using phylogenetic analysis and structure-aware annotation of publicly available genomic and RNA-seq coverage data, we show that NEAT1 is a common feature of tetrapod genomes except birds and squamates. Conversely, we identify MALAT1 in representative species of all major gnathostome clades, including birds. Our in-depth examination of MALAT1, NEAT1, and their genomic context in a wide range of vertebrate species allows us to reconstruct the series of events that led to the formation of the locus containing these genes in taxa from cartilaginous fish to mammals. This evolutionary history includes the independent loss of NEAT1 in birds and squamates, since NEAT1 is found in the closest living relatives of both clades (crocodilians and tuataras, respectively). These data clarify the origins and relationships of MALAT1 and NEAT1 and highlight an opportunity to study the change and continuity in lncRNA structure and function over deep evolutionary time.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Martí Torres Marcén
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Garrison Faridi
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, USA.
| |
Collapse
|
19
|
Halliday C, de Liz LV, Vaughan S, Sunter JD. Disruption of Leishmania flagellum attachment zone architecture causes flagellum loss. Mol Microbiol 2024; 121:53-68. [PMID: 38010644 PMCID: PMC10953051 DOI: 10.1111/mmi.15199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Leishmania are flagellated eukaryotic parasites that cause leishmaniasis and are closely related to the other kinetoplastid parasites such as Trypanosoma brucei. In all these parasites there is a cell membrane invagination at the base of the flagellum called the flagellar pocket, which is tightly associated with and sculpted by cytoskeletal structures including the flagellum attachment zone (FAZ). The FAZ is a complex interconnected structure linking the flagellum to the cell body and has critical roles in cell morphogenesis, function and pathogenicity. However, this structure varies dramatically in size and organisation between these different parasites, suggesting changes in protein localisation and function. Here, we screened the localisation and function of the Leishmania orthologues of T. brucei FAZ proteins identified in the genome-wide protein tagging project TrypTag. We identified 27 FAZ proteins and our deletion analysis showed that deletion of two FAZ proteins in the flagellum, FAZ27 and FAZ34 resulted in a reduction in cell body size, and flagellum loss in some cells. Furthermore, after null mutant generation, we observed distinct and reproducible changes to cell shape, demonstrating the ability of the parasite to adapt to morphological perturbations resulting from gene deletion. This process of adaptation has important implications for the study of Leishmania mutants.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Laryssa Vanessa de Liz
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Departamento de Microbiologia, Imunologia e ParasitologiaUniversidade Federal de Santa CatarinaFlorianópolisSCBrazil
| | - Sue Vaughan
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Jack D. Sunter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
20
|
Clark JW. Genome evolution in plants and the origins of innovation. THE NEW PHYTOLOGIST 2023; 240:2204-2209. [PMID: 37658677 DOI: 10.1111/nph.19242] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Plant evolution has been characterised by a series of major novelties in their vegetative and reproductive traits that have led to greater complexity. Underpinning this diversification has been the evolution of the genome. When viewed at the scale of the plant kingdom, plant genome evolution has been punctuated by conspicuous instances of gene and whole-genome duplication, horizontal gene transfer and extensive gene loss. The periods of dynamic genome evolution often coincide with the evolution of key traits, demonstrating the coevolution of plant genomes and phenotypes at a macroevolutionary scale. Conventionally, plant complexity and diversity have been considered through the lens of gene duplication and the role of gene loss in plant evolution remains comparatively unexplored. However, in light of reductive evolution across multiple plant lineages, the association between gene loss and plant phenotypic diversity warrants greater attention.
Collapse
Affiliation(s)
- James W Clark
- School of Biological Sciences, University of Bristol, Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
21
|
Helsen J, Sherlock G, Dey G. Experimental evolution for cell biology. Trends Cell Biol 2023; 33:903-912. [PMID: 37188561 PMCID: PMC10592577 DOI: 10.1016/j.tcb.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Evolutionary cell biology explores the origins, principles, and core functions of cellular features and regulatory networks through the lens of evolution. This emerging field relies heavily on comparative experiments and genomic analyses that focus exclusively on extant diversity and historical events, providing limited opportunities for experimental validation. In this opinion article, we explore the potential for experimental laboratory evolution to augment the evolutionary cell biology toolbox, drawing inspiration from recent studies that combine laboratory evolution with cell biological assays. Primarily focusing on approaches for single cells, we provide a generalizable template for adapting experimental evolution protocols to provide fresh insight into long-standing questions in cell biology.
Collapse
Affiliation(s)
- Jana Helsen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
22
|
Shepherd MJ, Pierce AP, Taylor TB. Evolutionary innovation through transcription factor rewiring in microbes is shaped by levels of transcription factor activity, expression, and existing connectivity. PLoS Biol 2023; 21:e3002348. [PMID: 37871011 PMCID: PMC10621929 DOI: 10.1371/journal.pbio.3002348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
The survival of a population during environmental shifts depends on whether the rate of phenotypic adaptation keeps up with the rate of changing conditions. A common way to achieve this is via change to gene regulatory network (GRN) connections-known as rewiring-that facilitate novel interactions and innovation of transcription factors. To understand the success of rapidly adapting organisms, we therefore need to determine the rules that create and constrain opportunities for GRN rewiring. Here, using an experimental microbial model system with the soil bacterium Pseudomonas fluorescens, we reveal a hierarchy among transcription factors that are rewired to rescue lost function, with alternative rewiring pathways only unmasked after the preferred pathway is eliminated. We identify 3 key properties-high activation, high expression, and preexisting low-level affinity for novel target genes-that facilitate transcription factor innovation. Ease of acquiring these properties is constrained by preexisting GRN architecture, which was overcome in our experimental system by both targeted and global network alterations. This work reveals the key properties that determine transcription factor evolvability, and as such, the evolution of GRNs.
Collapse
Affiliation(s)
- Matthew J. Shepherd
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aidan P. Pierce
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
23
|
Chen X, Fang D, Xu Y, Duan K, Yoshida S, Yang S, Sahu SK, Fu H, Guang X, Liu M, Wu C, Liu Y, Mu W, Chen Y, Fan Y, Wang F, Peng S, Shi D, Wang Y, Yu R, Zhang W, Bai Y, Liu ZJ, Yan Q, Liu X, Xu X, Yang H, Wu J, Graham SW, Liu H. Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite-host interactions. NATURE PLANTS 2023; 9:1627-1642. [PMID: 37735254 DOI: 10.1038/s41477-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host-parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host-parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.
Collapse
Affiliation(s)
- Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kunyu Duan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shuai Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hui Fu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chenyu Wu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shufeng Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Dishen Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuqing Bai
- Administrative Office of Wutong Mountain National Park, Shenzhen, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiaoshun Yan
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Liu C, Zhang S, Xue J, Zhang H, Yin J. Evaluation of PEN2-ATP6AP1 axis as an antiparasitic target for metformin based on phylogeny analysis and molecular docking. Mol Biochem Parasitol 2023; 255:111580. [PMID: 37473813 DOI: 10.1016/j.molbiopara.2023.111580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Metformin (Met), the first-line drug used in the treatment for type 2 diabetes mellitus, is effective against a variety of parasites. However, the molecular target of Met at clinical dose against various parasites remains unclear. Recently, low-dose Met (clinical dose) has been reported to directly bind PEN2 (presenilin enhancer protein 2) and initiate the lysosomal glucose-sensing pathway for AMPK activation via ATP6AP1 (V-type proton ATPase subunit S1), rather than perturbing AMP/ATP levels. METHODS To explore the possibility of PEN2-ATP6AP1 axis as a drug target of Met for the treatment of parasitic diseases, we identified and characterized orthologs of PEN2 and ATP6AP1 genes in parasites, by constructing phylogenetic trees, analyzing protein sequences and predicting interactions between Met and parasite PEN2. RESULTS The results showed that PEN2 and ATP6AP1 genes are only found together in a few of parasite species in the cestoda and nematoda groups. Indicated by molecular simulation, Met might function by interacting with PEN2 on V37/W38/E5 (Trichinella spiralis) with similar binding energy, and on F35/S39 (Caenorhabditis elegans) with higher binding energy, comparing to human PEN2. Hence, these results indicated that only the T. spiralis PEN2-ATP6AP1 axis has the potential to be the direct target of low-concentration Met. Together with contribution of host cells including immune cells in vivo, T. spiralis PEN2-ATP6AP1 axis might play roles in reducing parasite load at low-concentration Met. However, the mechanisms of low-concentration Met on other parasitic infections might be mainly achieved by regulating host cells, rather than directly targeting PEN2-ATP6AP1 axis. CONCLUSIONS These findings revealed the potential mechanisms by which Met treats various parasitic diseases, and shed new light on the development of antiparasitic drugs.
Collapse
Affiliation(s)
- Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Shangrui Zhang
- Henan Medical College, No. 8 Shuanghu Avenue, Longhu Town, Xinzheng, Zhengzhou City 451191, Henan Province, China
| | - Jian Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Haobing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China.
| |
Collapse
|
25
|
Marr RA, Moore J, Formby S, Martiniuk JT, Hamilton J, Ralli S, Konwar K, Rajasundaram N, Hahn A, Measday V. Whole genome sequencing of Canadian Saccharomyces cerevisiae strains isolated from spontaneous wine fermentations reveals a new Pacific West Coast Wine clade. G3 (BETHESDA, MD.) 2023; 13:jkad130. [PMID: 37307358 PMCID: PMC10411583 DOI: 10.1093/g3journal/jkad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.
Collapse
Affiliation(s)
- R Alexander Marr
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jackson Moore
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sean Formby
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Jonathan T Martiniuk
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Food Science Graduate Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sneha Ralli
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive East K9625, Burnaby, BC V5A 1S6, Canada
| | - Kishori Konwar
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Nisha Rajasundaram
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Aria Hahn
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Vivien Measday
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
26
|
Martínez AA, Lang GI. Identifying Targets of Selection in Laboratory Evolution Experiments. J Mol Evol 2023; 91:345-355. [PMID: 36810618 PMCID: PMC11197053 DOI: 10.1007/s00239-023-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Adaptive evolution navigates a balance between chance and determinism. The stochastic processes of mutation and drift generate phenotypic variation; however, once mutations reach an appreciable frequency in the population, their fate is governed by the deterministic action of selection, enriching for favorable genotypes and purging the less-favorable ones. The net result is that replicate populations will traverse similar-but not identical-pathways to higher fitness. This parallelism in evolutionary outcomes can be leveraged to identify the genes and pathways under selection. However, distinguishing between beneficial and neutral mutations is challenging because many beneficial mutations will be lost due to drift and clonal interference, and many neutral (and even deleterious) mutations will fix by hitchhiking. Here, we review the best practices that our laboratory uses to identify genetic targets of selection from next-generation sequencing data of evolved yeast populations. The general principles for identifying the mutations driving adaptation will apply more broadly.
Collapse
Affiliation(s)
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
27
|
Weller CA, Andreev I, Chambers MJ, Park M, Bloom JS, Sadhu MJ. Highly complete long-read genomes reveal pangenomic variation underlying yeast phenotypic diversity. Genome Res 2023; 33:729-740. [PMID: 37127330 PMCID: PMC10317115 DOI: 10.1101/gr.277515.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Understanding the genetic causes of trait variation is a primary goal of genetic research. One way that individuals can vary genetically is through variable pangenomic genes: genes that are only present in some individuals in a population. The presence or absence of entire genes could have large effects on trait variation. However, variable pangenomic genes can be missed in standard genotyping workflows, owing to reliance on aligning short-read sequencing to reference genomes. A popular method for studying the genetic basis of trait variation is linkage mapping, which identifies quantitative trait loci (QTLs), regions of the genome that harbor causative genetic variants. Large-scale linkage mapping in the budding yeast Saccharomyces cerevisiae has found thousands of QTLs affecting myriad yeast phenotypes. To enable the resolution of QTLs caused by variable pangenomic genes, we used long-read sequencing to generate highly complete de novo genome assemblies of 16 diverse yeast isolates. With these assemblies, we resolved QTLs for growth on maltose, sucrose, raffinose, and oxidative stress to specific genes that are absent from the reference genome but present in the broader yeast population at appreciable frequency. Copies of genes also duplicate onto chromosomes where they are absent in the reference genome, and we found that these copies generate additional QTLs whose resolution requires pangenome characterization. Our findings show the need for highly complete genome assemblies to identify the genetic basis of trait variation.
Collapse
Affiliation(s)
- Cory A Weller
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ilya Andreev
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael J Chambers
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Morgan Park
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Meru J Sadhu
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
28
|
Luther CH, Brandt P, Vylkova S, Dandekar T, Müller T, Dittrich M. Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans. Front Cell Infect Microbiol 2023; 13:1108235. [PMID: 37082713 PMCID: PMC10111165 DOI: 10.3389/fcimb.2023.1108235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.
Collapse
Affiliation(s)
- Christian H. Luther
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Dandekar
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Tobias Müller
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Marcus Dittrich
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
- University of Würzburg, Institut of Human Genetics, Biocenter/Am Hubland 97074, Würzburg, Germany
- *Correspondence: Marcus Dittrich,
| |
Collapse
|
29
|
Jiménez-Marín B, Rakijas JB, Tyagi A, Pandey A, Hanschen ER, Anderson J, Heffel MG, Platt TG, Olson BJSC. Gene loss during a transition to multicellularity. Sci Rep 2023; 13:5268. [PMID: 37002250 PMCID: PMC10066295 DOI: 10.1038/s41598-023-29742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
Multicellular evolution is a major transition associated with momentous diversification of multiple lineages and increased developmental complexity. The volvocine algae comprise a valuable system for the study of this transition, as they span from unicellular to undifferentiated and differentiated multicellular morphologies despite their genomes being similar, suggesting multicellular evolution requires few genetic changes to undergo dramatic shifts in developmental complexity. Here, the evolutionary dynamics of six volvocine genomes were examined, where a gradual loss of genes was observed in parallel to the co-option of a few key genes. Protein complexes in the six species exhibited novel interactions, suggesting that gene loss could play a role in evolutionary novelty. This finding was supported by gene network modeling, where gene loss outpaces gene gain in generating novel stable network states. These results suggest gene loss, in addition to gene gain and co-option, may be important for the evolution developmental complexity.
Collapse
Affiliation(s)
- Berenice Jiménez-Marín
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Interdepartmental Genetics Graduate Program, Kansas State University, Manhattan, KS, 66506, USA
| | - Jessica B Rakijas
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Antariksh Tyagi
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Aakash Pandey
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Jaden Anderson
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Matthew G Heffel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Interdepartmental Genetics Graduate Program, Kansas State University, Manhattan, KS, 66506, USA
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | |
Collapse
|
30
|
Natalino M, Fumasoni M. Experimental approaches to study evolutionary cell biology using yeasts. Yeast 2023; 40:123-133. [PMID: 36896914 DOI: 10.1002/yea.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The past century has witnessed tremendous advances in understanding how cells function. Nevertheless, how cellular processes have evolved is still poorly understood. Many studies have highlighted surprising molecular diversity in how cells from diverse species execute the same processes, and advances in comparative genomics are likely to reveal much more molecular diversity than was believed possible until recently. Extant cells remain therefore the product of an evolutionary history that we vastly ignore. Evolutionary cell biology has emerged as a discipline aiming to address this knowledge gap by combining evolutionary, molecular, and cellular biology thinking. Recent studies have shown how even essential molecular processes, such as DNA replication, can undergo fast adaptive evolution under certain laboratory conditions. These developments open new lines of research where the evolution of cellular processes can be investigated experimentally. Yeasts naturally find themselves at the forefront of this research line. Not only do they allow the observation of fast evolutionary adaptation, but they also provide numerous genomic, synthetic, and cellular biology tools already developed by a large community. Here we propose that yeasts can serve as an "evolutionary cell lab" to test hypotheses, principles, and ideas in evolutionary cell biology. We discuss various experimental approaches available for this purpose, and how biology at large can benefit from them.
Collapse
|
31
|
Opazo JC, Vandewege MW, Hoffmann FG, Zavala K, Meléndez C, Luchsinger C, Cavieres VA, Vargas-Chacoff L, Morera FJ, Burgos PV, Tapia-Rojas C, Mardones GA. How Many Sirtuin Genes Are Out There? Evolution of Sirtuin Genes in Vertebrates With a Description of a New Family Member. Mol Biol Evol 2023; 40:6993039. [PMID: 36656997 PMCID: PMC9897032 DOI: 10.1093/molbev/msad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.
Collapse
Affiliation(s)
| | - Michael W Vandewege
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Catalina Meléndez
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Luis Vargas-Chacoff
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile,Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Morera
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Applied Biochemistry Laboratory, Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | | |
Collapse
|
32
|
Timilsena PR, Barrett CF, Piñeyro-Nelson A, Wafula EK, Ayyampalayam S, McNeal JR, Yukawa T, Givnish TJ, Graham SW, Pires JC, Davis JI, Ané C, Stevenson DW, Leebens-Mack J, Martínez-Salas E, Álvarez-Buylla ER, dePamphilis CW. Phylotranscriptomic Analyses of Mycoheterotrophic Monocots Show a Continuum of Convergent Evolutionary Changes in Expressed Nuclear Genes From Three Independent Nonphotosynthetic Lineages. Genome Biol Evol 2023; 15:evac183. [PMID: 36582124 PMCID: PMC9887272 DOI: 10.1093/gbe/evac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | | | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Georgia
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 1-1, Amakubo 4, Tsukuba, 305-0005, Japan
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4Canada
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 1485
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 3060
| | - Esteban Martínez-Salas
- Departmento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
33
|
Hu C, Jiao Z, Deng X, Tu X, Lu A, Xie C, Jiang K, Zeng X, Liu ZJ, Huang W, Luo Y. The ecological adaptation of the unparalleled plastome character evolution in slipper orchids. FRONTIERS IN PLANT SCIENCE 2022; 13:1075098. [PMID: 36605947 PMCID: PMC9808092 DOI: 10.3389/fpls.2022.1075098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Plastomes may have undergone adaptive evolution in the process of plant adaptation to diverse environments, whereby species may differ in plastome characters. Cypripedioideae successfully colonized distinct environments and could be an ideal group for studying the interspecific variation and adaptive evolution of plastomes. Comparative study of plastomes, ancestral state reconstruction, phylogenetic-based analysis, ecological niche modelling, and selective pressure analysis were conducted to reveal the evolutionary patterns of plastomes in Cypripedioideae and their relationship with environmental factors. The plastomes of the three evolved genera had reduced plastome size, increased GC content, and compacted gene content compared to the basal group. Variations in plastome size and GC content are proved to have clear relationships with climate regions. Furthermore, ecological niche modelling revealed that temperature and water factors are important climatic factors contributing to the distributional difference which is directly correlated with the climate regions. The temperature-sensitive genes ndh genes, infA, and rpl20 were found to be either lost/pseudogenized or under positive selection in the evolved groups. Unparalleled plastome character variations were discovered in slipper orchids. Our study indicates that variations in plastome characters have adaptive consequences and that temperature and water factors are important climatic factors that affect plastome evolution. This research highlights the expectation that plants can facilitate adaptation to different environmental conditions with the changes in plastome and has added critical insight for understanding the process of plastome evolution in plants.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbin Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyan Deng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xiongde Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aixian Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengzhi Xie
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Kai Jiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xinhua Zeng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weichang Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yibo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
34
|
Harris BJ, Clark JW, Schrempf D, Szöllősi GJ, Donoghue PCJ, Hetherington AM, Williams TA. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nat Ecol Evol 2022; 6:1634-1643. [PMID: 36175544 PMCID: PMC9630106 DOI: 10.1038/s41559-022-01885-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The origin of plants and their colonization of land fundamentally transformed the terrestrial environment. Here we elucidate the basis of this formative episode in Earth history through patterns of lineage, gene and genome evolution. We use new fossil calibrations, a relative clade age calibration (informed by horizontal gene transfer) and new phylogenomic methods for mapping gene family origins. Distinct rooting strategies resolve tracheophytes (vascular plants) and bryophytes (non-vascular plants) as monophyletic sister groups that diverged during the Cambrian, 515-494 million years ago. The embryophyte stem is characterized by a burst of gene innovation, while bryophytes subsequently experienced an equally dramatic episode of reductive genome evolution in which they lost genes associated with the elaboration of vasculature and the stomatal complex. Overall, our analyses reveal that extant tracheophytes and bryophytes are both highly derived from a more complex ancestral land plant. Understanding the origin of land plants requires tracing character evolution across a diversity of modern lineages.
Collapse
Affiliation(s)
- Brogan J Harris
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - James W Clark
- School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE 'Lendület' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
35
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
36
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 2022; 23:11665. [PMID: 36232965 PMCID: PMC9570374 DOI: 10.3390/ijms231911665] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been used for bread making and beer brewing for thousands of years. In addition, its ease of manipulation, well-annotated genome, expansive molecular toolbox, and its strong conservation of basic eukaryotic biology also make it a prime model for eukaryotic cell biology and genetics. In this review, we discuss the characteristics that made yeast such an extensively used model organism and specifically focus on the DNA damage response pathway as a prime example of how research in S. cerevisiae helped elucidate a highly conserved biological process. In addition, we also highlight differences in the DNA damage response of S. cerevisiae and humans and discuss the challenges of using S. cerevisiae as a model system.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
38
|
Mołoń M, Stępień K, Kielar P, Vasileva B, Lozanska B, Staneva D, Ivanov P, Kula-Maximenko M, Molestak E, Tchórzewski M, Miloshev G, Georgieva M. Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing. Cells 2022; 11:cells11172754. [PMID: 36078161 PMCID: PMC9454676 DOI: 10.3390/cells11172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Ageing is accompanied by dramatic changes in chromatin structure organization and genome function. Two essential components of chromatin, the linker histone Hho1p and actin-related protein 4 (Arp4p), have been shown to physically interact in Saccharomyces cerevisiae cells, thus maintaining chromatin dynamics and function, as well as genome stability and cellular morphology. Disrupting this interaction has been proven to influence the stability of the yeast genome and the way cells respond to stress during chronological ageing. It has also been proven that the abrogated interaction between these two chromatin proteins elicited premature ageing phenotypes. Alterations in chromatin compaction have also been associated with replicative ageing, though the main players are not well recognized. Based on this knowledge, here, we examine how the interaction between Hho1p and Arp4p impacts the ageing of mitotically active yeast cells. For this purpose, two sets of strains were used—haploids (WT(n), arp4, hho1Δ and arp4 hho1Δ) and their heterozygous diploid counterparts (WT(2n), ARP4/arp4, HHO1/hho1Δ and ARP4 HHO1/arp4 hho1Δ)—for the performance of extensive morphological and physiological analyses during replicative ageing. These analyses included a comparative examination of the yeast cells’ chromatin structure, proliferative and reproductive potential, and resilience to stress, as well as polysome profiles and chemical composition. The results demonstrated that the haploid chromatin mutants arp4 and arp4 hho1Δ demonstrated a significant reduction in replicative and total lifespan. These findings lead to the conclusion that the importance of a healthy interaction between Arp4p and Hho1p in replicative ageing is significant. This is proof of the concomitant importance of Hho1p and Arp4p in chronological and replicative ageing.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.M.); (M.G.)
| | - Karolina Stępień
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Patrycja Kielar
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Bela Vasileva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Bonka Lozanska
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
- Correspondence: (M.M.); (M.G.)
| |
Collapse
|
39
|
van der Valk T, Dehasque M, Chacón-Duque JC, Oskolkov N, Vartanyan S, Heintzman PD, Pečnerová P, Díez-del-Molino D, Dalén L. Evolutionary consequences of genomic deletions and insertions in the woolly mammoth genome. iScience 2022; 25:104826. [PMID: 35992080 PMCID: PMC9382235 DOI: 10.1016/j.isci.2022.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Woolly mammoths had a set of adaptations that enabled them to thrive in the Arctic environment. Many mammoth-specific single nucleotide polymorphisms (SNPs) responsible for unique mammoth traits have been previously identified from ancient genomes. However, a multitude of other genetic variants likely contributed to woolly mammoth evolution. In this study, we sequenced two woolly mammoth genomes and combined these with previously sequenced mammoth and elephant genomes to conduct a survey of mammoth-specific deletions and indels. We find that deletions are highly enriched in non-coding regions, suggesting selection against structural variants that affect protein sequences. Nonetheless, at least 87 woolly mammoth genes contain deletions or indels that modify the coding sequence, including genes involved in skeletal morphology and hair growth. These results suggest that deletions and indels contributed to the unique phenotypic adaptations of the woolly mammoth, and were potentially critical to surviving in its natural environment. Two new high-quality woolly mammoth genomes have been generated A new method was used to identify deletions and insertions in woolly mammoths At least 87 genes have been affected by deletions or indels in the mammoth lineage Genes involved in skeletal morphology and hair growth are affected by deletions
Collapse
|
40
|
Lok S, Lau TNH, Trost B, Tong AHY, Wintle RF, Engstrom MD, Stacy E, Waits LP, Scrafford M, Scherer SW. Chromosomal-level reference genome assembly of the North American wolverine (Gulo gulo luscus): a resource for conservation genomics. G3 (BETHESDA, MD.) 2022; 12:jkac138. [PMID: 35674384 PMCID: PMC9339297 DOI: 10.1093/g3journal/jkac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
We report a chromosomal-level genome assembly of a male North American wolverine (Gulo gulo luscus) from the Kugluktuk region of Nunavut, Canada. The genome was assembled directly from long-reads, comprising: 758 contigs with a contig N50 of 36.6 Mb; contig L50 of 20; base count of 2.39 Gb; and a near complete representation (99.98%) of the BUSCO 5.2.2 set of 9,226 genes. A presumptive chromosomal-level assembly was generated by scaffolding against two chromosomal-level Mustelidae reference genomes, the ermine and the Eurasian river otter, to derive a final scaffold N50 of 144.0 Mb and a scaffold L50 of 7. We annotated a comprehensive set of genes that have been associated with models of aggressive behavior, a trait which the wolverine is purported to have in the popular literature. To support an integrated, genomics-based wildlife management strategy at a time of environmental disruption from climate change, we annotated the principal genes of the innate immune system to provide a resource to study the wolverine's susceptibility to new infectious and parasitic diseases. As a resource, we annotated genes involved in the modality of infection by the coronaviruses, an important class of viral pathogens of growing concern as shown by the recent spillover infections by severe acute respiratory syndrome coronavirus-2 to naïve wildlife. Tabulation of heterozygous single nucleotide variants in our specimen revealed a heterozygosity level of 0.065%, indicating a relatively diverse genetic pool that would serve as a baseline for the genomics-based conservation of the wolverine, a rare cold-adapted carnivore now under threat.
Collapse
Affiliation(s)
- Si Lok
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Timothy N H Lau
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Amy H Y Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, ON M5S 3E1, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mark D Engstrom
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Elise Stacy
- Environmental Science Program, University of Idaho, Moscow, ID 83844, USA
- Wildlife Conservation Society, Arctic Beringia, Fairbanks, AK 99709, USA
| | - Lisette P Waits
- Department of Fish and Wildlife, University of Idaho, Moscow, ID 83844, USA
| | - Matthew Scrafford
- Wildlife Conservation Society Canada, Thunder Bay, ON P7A 4K9, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
41
|
Kang M, Lim JY, Kim J, Hwang I, Goo E. Influence of genomic structural variations and nutritional conditions on the emergence of quorum sensing-dependent gene regulation defects in Burkholderia glumae. Front Microbiol 2022; 13:950600. [PMID: 35910611 PMCID: PMC9335073 DOI: 10.3389/fmicb.2022.950600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often change their genetic and physiological traits to survive in harsh environments. To determine whether, in various strains of Burkholderia glumae, genomic diversity is associated with the ability to adapt to ever-changing environments, whole genomes of 44 isolates from different hosts and regions were analyzed. Whole-genome phylogenetic analysis of the 44 isolates revealed six clusters and two divisions. While all isolates possessed chromosomes 1 and 2, strains BGR80S and BGR81S had one chromosome resulting from the merging of the two chromosomes. Upon comparison of genomic structures to the prototype BGR1, inversions, deletions, and rearrangements were found within or between chromosomes 1 and/or 2 in the other isolates. When three isolates—BGR80S, BGR15S, and BGR21S, representing clusters III, IV, and VI, respectively—were grown in Luria-Bertani medium, spontaneous null mutations were identified in qsmR encoding a quorum-sensing master regulator. Six days after subculture, qsmR mutants were found at detectable frequencies in BGR15S and BGR21S, and reached approximately 40% at 8 days after subculture. However, the qsmR mutants appeared 2 days after subculture in BGR80S and dominated the population, reaching almost 80%. No qsmR mutant was detected at detectable frequency in BGR1 or BGR13S. The spontaneous qsmR mutants outcompeted their parental strains in the co-culture. Daily addition of glucose or casamino acids to the batch cultures of BGR80S delayed emergence of qsmR mutants and significantly reduced their incidence. These results indicate that spontaneous qsmR mutations are correlated with genomic structures and nutritional conditions.
Collapse
Affiliation(s)
- Minhee Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Jinwoo Kim
- Department of Plant Medicine and Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Eunhye Goo,
| |
Collapse
|
42
|
Gene loss and compensatory evolution promotes the emergence of morphological novelties in budding yeast. Nat Ecol Evol 2022; 6:763-773. [PMID: 35484218 DOI: 10.1038/s41559-022-01730-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Deleterious mutations are generally considered to be irrelevant for morphological evolution. However, they could be compensated by conditionally beneficial mutations, thereby providing access to new adaptive paths. Here we use high-dimensional phenotyping of laboratory-evolved budding yeast lineages to demonstrate that new cellular morphologies emerge exceptionally rapidly as a by-product of gene loss and subsequent compensatory evolution. Unexpectedly, the capacities for invasive growth, multicellular aggregation and biofilm formation also spontaneously evolve in response to gene loss. These multicellular phenotypes can be achieved by diverse mutational routes and without reactivating the canonical regulatory pathways. These ecologically and clinically relevant traits originate as pleiotropic side effects of compensatory evolution and have no obvious utility in the laboratory environment. The extent of morphological diversity in the evolved lineages is comparable to that of natural yeast isolates with diverse genetic backgrounds and lifestyles. Finally, we show that both the initial gene loss and subsequent compensatory mutations contribute to new morphologies, with their synergistic effects underlying specific morphological changes. We conclude that compensatory evolution is a previously unrecognized source of morphological diversity and phenotypic novelties.
Collapse
|
43
|
Evolutionary Adaptation by Repetitive Long-Term Cultivation with Gradual Increase in Temperature for Acquiring Multi-Stress Tolerance and High Ethanol Productivity in Kluyveromyces marxianus DMKU 3-1042. Microorganisms 2022; 10:microorganisms10040798. [PMID: 35456848 PMCID: PMC9032449 DOI: 10.3390/microorganisms10040798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
During ethanol fermentation, yeast cells are exposed to various stresses that have negative effects on cell growth, cell survival, and fermentation ability. This study, therefore, aims to develop Kluyveromyces marxianus-adapted strains that are multi-stress tolerant and to increase ethanol production at high temperatures through a novel evolutionary adaptation procedure. K. marxianus DMKU 3-1042 was subjected to repetitive long-term cultivation with gradual increases in temperature (RLCGT), which exposed cells to various stresses, including high temperatures. In each cultivation step, 1% of the previous culture was inoculated into a medium containing 1% yeast extract, 2% peptone, and 2% glucose, and cultivation was performed under a shaking condition. Four adapted strains showed increased tolerance to ethanol, furfural, hydroxymethylfurfural, and vanillin, and they also showed higher production of ethanol in a medium containing 16% glucose at high temperatures. One showed stronger ethanol tolerance. Others had similar phenotypes, including acetic acid tolerance, though genome analysis revealed that they had different mutations. Based on genome and transcriptome analyses, we discuss possible mechanisms of stress tolerance in adapted strains. All adapted strains gained a useful capacity for ethanol fermentation at high temperatures and improved tolerance to multi-stress. This suggests that RLCGT is a simple and efficient procedure for the development of robust strains.
Collapse
|
44
|
Jongepier E, Séguret A, Labutin A, Feldmeyer B, Gstöttl C, Foitzik S, Heinze J, Bornberg-Bauer E. Convergent Loss of Chemoreceptors across Independent Origins of Slave-Making in Ants. Mol Biol Evol 2022; 39:msab305. [PMID: 34668533 PMCID: PMC8760941 DOI: 10.1093/molbev/msab305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-making ants are social parasites that exploit the work force of closely related ant species for social behaviors such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in insect societies. We investigated the evolutionary fate of these chemoreceptors and found that slave-making ant genomes harbored only half as many gustatory receptors as their hosts', potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows striking patterns of convergence across independent origins of parasitism, in particular in orthologs often implicated in sociality like the 9-exon odorant receptors. These convergent losses represent a rare case of convergent molecular evolution at the level of individual genes. Thus, evolution can operate in a way that is both repeatable and reversible when independent ant lineages lose important social traits during the transition to a parasitic lifestyle.
Collapse
Affiliation(s)
- Evelien Jongepier
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Alice Séguret
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - Anton Labutin
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - Barbara Feldmeyer
- Molecular Ecology Group, Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Claudia Gstöttl
- Institute for Zoology, University of Regensburg, Regensburg, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Jürgen Heinze
- Institute for Zoology, University of Regensburg, Regensburg, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| |
Collapse
|
45
|
Ho EKH, Schaack S. Intraspecific Variation in the Rates of Mutations Causing Structural Variation in Daphnia magna. Genome Biol Evol 2021; 13:6444992. [PMID: 34849778 PMCID: PMC8691059 DOI: 10.1093/gbe/evab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations that cause structural variation are important sources of genetic variation upon which other evolutionary forces can act, however, they are difficult to observe and therefore few direct estimates of their rate and spectrum are available. Understanding mutation rate evolution, however, requires adding to the limited number of species for which direct estimates are available, quantifying levels of intraspecific variation in mutation rates, and assessing whether rate estimates co-vary across types of mutation. Here, we report structural variation-causing mutation rates (svcMRs) for six categories of mutations (short insertions and deletions, long deletions and duplications, and deletions and duplications at copy number variable sites) from nine genotypes of Daphnia magna collected from three populations in Finland, Germany, and Israel using a mutation accumulation approach. Based on whole-genome sequence data and validated using simulations, we find svcMRs are high (two orders of magnitude higher than base substitution mutation rates measured in the same lineages), highly variable among populations, and uncorrelated across categories of mutation. Furthermore, to assess the impact of scvMRs on the genome, we calculated rates while adjusting for the lengths of events and ran simulations to determine if the mutations occur in genic regions more or less frequently than expected by chance. Our results pose a challenge to most prevailing theories aimed at explaining the evolution of the mutation rate, underscoring the importance of obtaining additional mutation rate estimates in more genotypes, for more types of mutation, in more species, in order to improve our future understanding of mutation rates, their variation, and their evolution.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| |
Collapse
|
46
|
Daane JM, William Detrich H. Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective. Annu Rev Anim Biosci 2021; 10:39-62. [PMID: 34748709 DOI: 10.1146/annurev-animal-081221-064325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antarctic notothenioid fishes are the classic example of vertebrate adaptive radiation in a marine environment. Notothenioids diversified from a single common ancestor ∼25 Mya to more than 140 species today, and they represent ∼90% of fish biomass on the continental shelf of Antarctica. As they diversified in the cold Southern Ocean, notothenioids evolved numerous traits, including osteopenia, anemia, cardiomegaly, dyslipidemia, and aglomerular kidneys, that are beneficial or tolerated in their environment but are pathological in humans. Thus, notothenioids are models for understanding adaptive radiations, physiological and biochemical adaptations to extreme environments, and genetic mechanisms of human disease. Since 2014, 16 notothenioid genomes have been published, which enable a first-pass holistic analysis of the notothenioid radiation and the genetic underpinnings of novel notothenioid traits. Here, we review the notothenioid radiation from a genomic perspective and integrate our insights with recent observations from other fish radiations. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
47
|
Fumasoni M, Murray AW. Ploidy and recombination proficiency shape the evolutionary adaptation to constitutive DNA replication stress. PLoS Genet 2021; 17:e1009875. [PMID: 34752451 PMCID: PMC8604288 DOI: 10.1371/journal.pgen.1009875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/19/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules in strains with different genomic features, revealing a common evolutionary response to constitutive DNA replication stress.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
48
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
49
|
Valente R, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Functional or Vestigial? The Genomics of the Pineal Gland in Xenarthra. J Mol Evol 2021; 89:565-575. [PMID: 34342686 DOI: 10.1007/s00239-021-10025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Vestigial organs are historical echoes of past phenotypes. Determining whether a specific organ constitutes a functional or vestigial structure can be a challenging task, given that distinct levels of atrophy may arise between and within lineages. The mammalian pineal gland, an endocrine organ involved in melatonin biorhythmicity, represents a classic example, often yielding contradicting anatomical observations. In Xenarthra (sloths, anteaters, and armadillos), a peculiar mammalian order, the presence of a distinct pineal organ was clearly observed in some species (i.e., Linnaeus's two-toed sloth), but undetected in other closely related species (i.e., brown-throated sloth). In the nine-banded armadillo, contradicting evidence supports either functional or vestigial scenarios. Thus, to untangle the physiological status of the pineal gland in Xenarthra, we used a genomic approach to investigate the evolution of the gene hub responsible for melatonin synthesis and signaling. We show that both synthesis and signaling compartments are eroded and were probably lost independently among Xenarthra orders. Additionally, by expanding our analysis to 157 mammal genomes, we offer a comprehensive view showing that species with very distinctive habitats and lifestyles have convergently evolved a similar phenotype: Cetacea, Pholidota, Dermoptera, Sirenia, and Xenarthra. Our findings suggest that the recurrent inactivation of melatonin genes correlates with pineal atrophy and endorses the use of genomic analyses to ascertain the physiological status of suspected vestigial structures.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE-Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal.,OOM-Oceanic Observatory of Madeira, Funchal, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal. .,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
50
|
Parallel in vivo experimental evolution reveals that increased stress resistance was key for the emergence of persistent tuberculosis bacilli. Nat Microbiol 2021; 6:1082-1093. [PMID: 34294904 DOI: 10.1038/s41564-021-00938-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Pathogenomic evidence suggests that Mycobacterium tuberculosis (MTB) evolved from an environmental ancestor similar to Mycobacterium canettii, a rare human pathogen. Although the adaptations responsible for this transition are poorly characterized, the ability to persist in humans seems to be important. We set out to identify the adaptations contributing to the evolution of persistence in MTB. We performed an experimental evolution of eight M. canettii populations in mice; four populations were derived from the isolate STB-K (phylogenomically furthest from MTB) and four from STB-D (closest to MTB), which were monitored for 15 and 6 cycles, respectively. We selected M. canettii mutants with enhanced persistence in vivo compared with the parental strains, which were phenotypically closer to MTB. Genome sequencing of 140 mutants and complementation analysis revealed that mutations in two loci were responsible for enhanced persistence. Most of the tested mutants were more resistant than their parental strains to nitric oxide, an important effector of immunity. Modern MTB were similarly more resistant to nitric oxide than M. canettii. Our findings demonstrate phenotypic convergence during experimental evolution of M. canettii, which mirrors natural evolution of MTB. Furthermore, they indicate that the ability to withstand host-induced stresses was key for the emergence of persistent MTB.
Collapse
|