1
|
Casane D, Baldwin MW, Salzburger W, Policarpo M. [Massive gene losses: the case of chemoreceptors in aquatic tetrapods]. Med Sci (Paris) 2025; 41:47-52. [PMID: 39887098 DOI: 10.1051/medsci/2024193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The existence of multigene families is the result of gene duplication. In vertebrates, the genes coding for the chemoreceptors involved in olfaction often form large families, sometimes comprising several thousand genes. In this case, it is assumed that a large number of genes is essential to discriminate between a large number of odorant molecules, and that the ability to identify a large number of odors may be necessary for different purposes, such as finding food and sexual partners, and avoiding predators. However, it has been found that in some species the number of these genes is very small, resulting from the secondary loss of many genes. This massive loss of genes is not always clearly associated with a change in the biology of the species or its environment, but in some cases, it is associated with drastic changes, such as the return to aquatic life in tetrapods.
Collapse
Affiliation(s)
- Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, génomes, comportement et écologie, Gif-sur-Yvette, France - Université Paris-Cité, UFR Sciences du Vivant, Paris, France
| | - Maude W Baldwin
- Evolution of Sensory and Physiological Systems, Max Planck Institute for Biological Intelligence, Martinsried, Allemagne
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Bâle, Suisse
| | - Maxime Policarpo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Bâle, Suisse
| |
Collapse
|
2
|
Leclercq J, Torres-Paz J, Policarpo M, Agnès F, Rétaux S. Evolution of the regulation of developmental gene expression in blind Mexican cavefish. Development 2024; 151:dev202610. [PMID: 39007346 DOI: 10.1242/dev.202610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.
Collapse
Affiliation(s)
- Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Maxime Policarpo
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - François Agnès
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
3
|
Li W, Song J, Tu H, Jiang S, Pan B, Li J, Zhao Y, Chen L, Xu Q. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation. Mol Ecol Resour 2024; 24:e13989. [PMID: 38946220 DOI: 10.1111/1755-0998.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jie Song
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huaming Tu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiazhen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yongpeng Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Di Rosa V, Frigato E, Negrini P, Cristiano W, López-Olmeda JF, Rétaux S, Sánchez-Vázquez FJ, Foulkes NS, Bertolucci C. Sporadic feeding regulates robust food entrainable circadian clocks in blind cavefish. iScience 2024; 27:110171. [PMID: 38974965 PMCID: PMC11225386 DOI: 10.1016/j.isci.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
The circadian clock represents a key timing system entrained by various periodic signals that ensure synchronization with the environment. Many investigations have pointed to the existence of two distinct circadian oscillators: one regulated by the light-dark cycle and the other set by feeding time. Blind cavefish have evolved under extreme conditions where they completely lack light exposure and experience food deprivation. Here, we have investigated feeding regulated clocks in two cavefish species, the Somalian cavefish Phreatichthys andruzzii and the Mexican cavefish Astyanax mexicanus, in comparison with the surface-dwelling zebrafish Danio rerio. Our results reveal that feeding represents an extremely strong synchronizer for circadian locomotor rhythmicity in subterranean cavefish. Indeed, we showed that consuming just one meal every 4 days is sufficient to entrain circadian rhythmicity in both cavefish species, but not in zebrafish. These profound adaptations to an extreme environment provide insight into the connections between feeding and circadian clocks.
Collapse
Affiliation(s)
- Viviana Di Rosa
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Negrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Walter Cristiano
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Ecosystems and Health Unit, Environment and Health Department, Italian National Institute of Health, 00161 Rome, Italy
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
De Preter CC, Heinricher MM. The 'in's and out's' of descending pain modulation from the rostral ventromedial medulla. Trends Neurosci 2024; 47:447-460. [PMID: 38749825 PMCID: PMC11168876 DOI: 10.1016/j.tins.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024]
Abstract
The descending-pain modulating circuit controls the experience of pain by modulating transmission of sensory signals through the dorsal horn. This circuit's key output node, the rostral ventromedial medulla (RVM), integrates 'top-down' and 'bottom-up' inputs that regulate functionally defined RVM cell types, 'OFF-cells' and 'ON-cells', which respectively suppress or facilitate pain-related sensory processing. While recent advances have sought molecular definition of RVM cell types, conflicting behavioral findings highlight challenges involved in aligning functional and molecularly defined types. This review summarizes current understanding, derived primarily from rodent studies but with corroborating evidence from human imaging, of the role of RVM populations in pain modulation and persistent pain states and explores recent advances outlining inputs to, and outputs from, RVM pain-modulating neurons.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Drabeck DH, Wiese J, Gilbertson E, Arroyave J, Stiassny MLJ, Alter SE, Borowsky R, Hendrickson DA, Arcila D, McGaugh SE. Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments. Proc Biol Sci 2024; 291:20232847. [PMID: 38864338 DOI: 10.1098/rspb.2023.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.
Collapse
Affiliation(s)
- Danielle H Drabeck
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| | - Jonathan Wiese
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| | - Erin Gilbertson
- Department of Epidemiology and Biostatistics, University of San Francisco, University of California, San Francisco, CA, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY 10024, USA
| | - S Elizabeth Alter
- Biology and Chemistry Department, California State University Monterey Bay, Chapman Academic Science Center, Seaside, CA, USA
| | - Richard Borowsky
- Department of Biology, New York University, Washington Square, New York, NY 10003, USA
| | - Dean A Hendrickson
- Biodiversity Center, Texas Natural History Collections, University of Texas at Austin, Austin, TX 78758, USA
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| |
Collapse
|
7
|
Cadena CD, Pabón L, DoNascimiento C, Abueg L, Tilley T, O-Toole B, Absolon D, Sims Y, Formenti G, Fedrigo O, Jarvis ED, Torres M. A reference genome for the Andean cavefish Trichomycterus rosablanca (Siluriformes, Trichomycteridae): Building genomic resources to study evolution in cave environments. J Hered 2024; 115:311-316. [PMID: 38513109 DOI: 10.1093/jhered/esae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Animals living in caves are of broad relevance to evolutionary biologists interested in understanding the mechanisms underpinning convergent evolution. In the Eastern Andes of Colombia, populations from at least two distinct clades of Trichomycterus catfishes (Siluriformes) independently colonized cave environments and converged in phenotype by losing their eyes and pigmentation. We are pursuing several research questions using genomics to understand the evolutionary forces and molecular mechanisms responsible for repeated morphological changes in this system. As a foundation for such studies, here we describe a diploid, chromosome-scale, long-read reference genome for Trichomycterus rosablanca, a blind, depigmented species endemic to the karstic system of the department of Santander. The nuclear genome comprises 1 Gb in 27 chromosomes, with a 40.0× HiFi long-read genome coverage having an N50 scaffold of 40.4 Mb and N50 contig of 13.1 Mb, with 96.9% (Eukaryota) and 95.4% (Actinopterygii) universal single-copy orthologs (BUSCO). This assembly provides the first reference genome for the speciose genus Trichomycterus, serving as a key resource for research on the genomics of phenotypic evolution.
Collapse
Affiliation(s)
| | - Laura Pabón
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | | | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | - Brian O-Toole
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | - Dominic Absolon
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | - Ying Sims
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, United States
| | | |
Collapse
|
8
|
Policarpo M, Legendre L, Germon I, Lafargeas P, Espinasa L, Rétaux S, Casane D. The nature and distribution of putative non-functional alleles suggest only two independent events at the origins of Astyanax mexicanus cavefish populations. BMC Ecol Evol 2024; 24:41. [PMID: 38556874 PMCID: PMC10983663 DOI: 10.1186/s12862-024-02226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Several studies suggested that cavefish populations of Astyanax mexicanus settled during the Late Pleistocene. This implies that the cavefish's most conspicuous phenotypic changes, blindness and depigmentation, and more cryptic characters important for cave life, evolved rapidly. RESULTS Using the published genomes of 47 Astyanax cavefish from la Cueva de El Pachón, El Sótano de la Tinaja, La Cueva Chica and El Sótano de Molino, we searched for putative loss-of-function mutations in previously defined sets of genes, i.e., vision, circadian clock and pigmentation genes. Putative non-functional alleles for four vision genes were identified. Then, we searched genome-wide for putative non-functional alleles in these four cave populations. Among 512 genes with segregating putative non-functional alleles in cavefish that are absent in surface fish, we found an enrichment in visual perception genes. Among cavefish populations, different levels of shared putative non-functional alleles were found. Using a subset of 12 genes for which putative loss-of-function mutations were found, we extend the analysis of shared pseudogenes to 11 cave populations. Using a subset of six genes for which putative loss-of-function mutations were found in the El Sótano del Toro population, where extensive hybridization with surface fish occurs, we found a correlation between the level of eye regression and the amount of putative non-functional alleles. CONCLUSIONS We confirm that very few putative non-functional alleles are present in a large set of vision genes, in accordance with the recent origin of Astyanax mexicanus cavefish. Furthermore, the genome-wide analysis indicates an enrichment of putative loss-of-function alleles in genes with vision-related GO-terms, suggesting that visual perception may be the function chiefly impacted by gene losses related to the shift from a surface to a cave environment. The geographic distribution of putative loss-of-function alleles newly suggests that cave populations from Sierra de Guatemala and Sierra de El Abra share a common origin, albeit followed by independent evolution for a long period. It also supports that populations from the Micos area have an independent origin. In El Sótano del Toro, the troglomorphic phenotype is maintained despite massive introgression of the surface genome.
Collapse
Affiliation(s)
- Maxime Policarpo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
- Present Address: Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Laurent Legendre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
| | - Isabelle Germon
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
| | - Philippe Lafargeas
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
| | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, NY, USA
| | - Sylvie Rétaux
- Institut de Neuroscience Paris-Saclay, Université Paris-Saclay and CNRS, 91400, Saclay, France.
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France.
- Université Paris Cité, UFR Sciences du Vivant, 75013, Paris, France.
| |
Collapse
|
9
|
Bastide H, Legout H, Dogbo N, Ogereau D, Prediger C, Carcaud J, Filée J, Garnery L, Gilbert C, Marion-Poll F, Requier F, Sandoz JC, Yassin A. The genome of the blind bee louse fly reveals deep convergences with its social host and illuminates Drosophila origins. Curr Biol 2024; 34:1122-1132.e5. [PMID: 38309271 DOI: 10.1016/j.cub.2024.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/22/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Social insects' nests harbor intruders known as inquilines,1 which are usually related to their hosts.2,3 However, distant non-social inquilines may also show convergences with their hosts,4,5 although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.6,7 Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid8,9 and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.
Collapse
Affiliation(s)
- Héloïse Bastide
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France.
| | - Hélène Legout
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Noé Dogbo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - David Ogereau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Carolina Prediger
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Julie Carcaud
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jonathan Filée
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lionel Garnery
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France; Université Paris-Saclay, AgroParisTech, 91123 Palaiseau Cedex, France
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Amir Yassin
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Eastment RV, Wong BBM, McGee MD. Convergent genomic signatures associated with vertebrate viviparity. BMC Biol 2024; 22:34. [PMID: 38331819 PMCID: PMC10854053 DOI: 10.1186/s12915-024-01837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Viviparity-live birth-is a complex and innovative mode of reproduction that has evolved repeatedly across the vertebrate Tree of Life. Viviparous species exhibit remarkable levels of reproductive diversity, both in the amount of care provided by the parent during gestation, and the ways in which that care is delivered. The genetic basis of viviparity has garnered increasing interest over recent years; however, such studies are often undertaken on small evolutionary timelines, and thus are not able to address changes occurring on a broader scale. Using whole genome data, we investigated the molecular basis of this innovation across the diversity of vertebrates to answer a long held question in evolutionary biology: is the evolution of convergent traits driven by convergent genomic changes? RESULTS We reveal convergent changes in protein family sizes, protein-coding regions, introns, and untranslated regions (UTRs) in a number of distantly related viviparous lineages. Specifically, we identify 15 protein families showing evidence of contraction or expansion associated with viviparity. We additionally identify elevated substitution rates in both coding and noncoding sequences in several viviparous lineages. However, we did not find any convergent changes-be it at the nucleotide or protein level-common to all viviparous lineages. CONCLUSIONS Our results highlight the value of macroevolutionary comparative genomics in determining the genomic basis of complex evolutionary transitions. While we identify a number of convergent genomic changes that may be associated with the evolution of viviparity in vertebrates, there does not appear to be a convergent molecular signature shared by all viviparous vertebrates. Ultimately, our findings indicate that a complex trait such as viviparity likely evolves with changes occurring in multiple different pathways.
Collapse
Affiliation(s)
- Rhiannon V Eastment
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| |
Collapse
|
11
|
Saclier N, Duchemin L, Konecny-Dupré L, Grison P, Eme D, Martin C, Callou C, Lefébure T, François C, Issartel C, Lewis JJ, Stoch F, Sket B, Gottstein S, Delić T, Zagmajster M, Grabowski M, Weber D, Reboleira ASPS, Palatov D, Paragamian K, Knight LRFD, Michel G, Lefebvre F, Hosseini MJM, Camacho AI, De Bikuña BG, Taleb A, Belaidi N, Tuekam Kayo RP, Galassi DMP, Moldovan OT, Douady CJ, Malard F. A collaborative backbone resource for comparative studies of subterranean evolution: The World Asellidae database. Mol Ecol Resour 2024; 24:e13882. [PMID: 37864541 DOI: 10.1111/1755-0998.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/09/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Transition to novel environments, such as groundwater colonization by surface organisms, provides an excellent research ground to study phenotypic evolution. However, interspecific comparative studies on evolution to groundwater life are few because of the challenge in assembling large ecological and molecular resources for species-rich taxa comprised of surface and subterranean species. Here, we make available to the scientific community an operational set of working tools and resources for the Asellidae, a family of freshwater isopods containing hundreds of surface and subterranean species. First, we release the World Asellidae database (WAD) and its web application, a sustainable and FAIR solution to producing and sharing data and biological material. WAD provides access to thousands of species occurrences, specimens, DNA extracts and DNA sequences with rich metadata ensuring full scientific traceability. Second, we perform a large-scale dated phylogenetic reconstruction of Asellidae to support phylogenetic comparative analyses. Of 424 terminal branches, we identify 34 pairs of surface and subterranean species representing independent replicates of the transition from surface water to groundwater. Third, we exemplify the usefulness of WAD for documenting phenotypic shifts associated with colonization of subterranean habitats. We provide the first phylogenetically controlled evidence that body size of males decreases relative to that of females upon groundwater colonization, suggesting competition for rare receptive females selects for smaller, more agile males in groundwater. By making these tools and resources widely accessible, we open up new opportunities for exploring how phenotypic traits evolve in response to changes in selective pressures and trade-offs during groundwater colonization.
Collapse
Affiliation(s)
- Nathanaelle Saclier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Louis Duchemin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Lara Konecny-Dupré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Philippe Grison
- BBEES, Unité Bases de données sur la Biodiversité, Ecologie, Environnement et Sociétés, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - David Eme
- INRAE, UR-RiverLY, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne, France
| | - Chloé Martin
- BBEES, Unité Bases de données sur la Biodiversité, Ecologie, Environnement et Sociétés, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Cécile Callou
- BBEES, Unité Bases de données sur la Biodiversité, Ecologie, Environnement et Sociétés, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Tristan Lefébure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Clémentine François
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Colin Issartel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Julian J Lewis
- Virginia Museum of Natural History, Martinsville, Virginia, USA
- Lewis and Associates, Cave, Karst and Groundwater Biological Consulting, Borden, Indiana, USA
| | - Fabio Stoch
- Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Boris Sket
- Department of Biology, SubBio Lab, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sanja Gottstein
- Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Teo Delić
- Department of Biology, SubBio Lab, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Zagmajster
- Department of Biology, SubBio Lab, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michal Grabowski
- Department of Invertebrate Zoology & Hydrobiology, Faculty of Biology & Environmental Protection, University of Lodz, Lodz, Poland
| | - Dieter Weber
- Musée National d'Histoire Naturelle de Luxembourg, Luxembourg City, Luxembourg
- Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany
| | - Ana Sofia P S Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry Palatov
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | | | | | - Georges Michel
- CWEPSS, Commission Wallonne d'Etude et de Protection des Sites Souterrains, Bruxelles, Belgium
| | | | - Mohammad-Javad Malek Hosseini
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts (ZRC-SAZU), Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology (NIB), Ljubljana, Slovenia
| | - Ana I Camacho
- Museo Nacional de Ciencias Naturales (CSIC). Dpto. Biodiversidad y Biología Evolutiva, Madrid, Spain
| | - Begoña Gartzia De Bikuña
- Anbiotek, Investigación científica y técnica del medio ambiente, Erandio, Bizkaia, Spain
- Anbiolab, BIC Bizkaia Astondo bidea, Derio, Spain
| | - Amina Taleb
- Laboratoire d'Écologie et Gestion des Ecosystèmes Naturels, University of Tlemcen, Tlemcen, Algeria
| | - Nouria Belaidi
- Laboratoire d'Écologie et Gestion des Ecosystèmes Naturels, University of Tlemcen, Tlemcen, Algeria
| | - Raoul P Tuekam Kayo
- Faculty of Science, Department of Zoology, University of Bamenda, Bambili, Cameroon
| | | | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Florian Malard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
12
|
Xu W, Zhu C, Gao X, Wu B, Xu H, Hu M, Zeng H, Gan X, Feng C, Zheng J, Bo J, He LS, Qiu Q, Wang W, He S, Wang K. Chromosome-level genome assembly of hadal snailfish reveals mechanisms of deep-sea adaptation in vertebrates. eLife 2023; 12:RP87198. [PMID: 38134226 PMCID: PMC10746142 DOI: 10.7554/elife.87198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
As the deepest vertebrate in the ocean, the hadal snailfish (Pseudoliparis swirei), which lives at a depth of 6,000-8,000 m, is a representative case for studying adaptation to extreme environments. Despite some preliminary studies on this species in recent years, including their loss of pigmentation, visual and skeletal calcification genes, and the role of trimethylamine N-oxide in adaptation to high-hydrostatic pressure, it is still unknown how they evolved and why they are among the few vertebrate species that have successfully adapted to the deep-sea environment. Using genomic data from different trenches, we found that the hadal snailfish may have entered and fully adapted to such extreme environments only in the last few million years. Meanwhile, phylogenetic relationships show that they spread into different trenches in the Pacific Ocean within a million years. Comparative genomic analysis has also revealed that the genes associated with perception, circadian rhythms, and metabolism have been extensively modified in the hadal snailfish to adapt to its unique environment. More importantly, the tandem duplication of a gene encoding ferritin significantly increased their tolerance to reactive oxygen species, which may be one of the important factors in their adaptation to high-hydrostatic pressure.
Collapse
Affiliation(s)
- Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Xueli Gao
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Han Xu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
| | - Mingliang Hu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Honghui Zeng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Xiaoni Gan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Jiangmin Zheng
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Jing Bo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Shunping He
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
13
|
Drabeck DH, Wiese J, Gilbertson E, Arroyave J, Arcila D, Alter SE, Borowsky R, Hendrickson D, Stiassny M, McGaugh SE. Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571336. [PMID: 38168154 PMCID: PMC10760033 DOI: 10.1101/2023.12.12.571336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family are phospholipases essential for the degradation of organelles in the lens of the eye. They translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny, and selection of plaat1 across bony fishes and tetrapods. We show that plaat1 (likely ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual acuity and blind mammals and fish. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light-environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.
Collapse
Affiliation(s)
- Danielle H Drabeck
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Jonathan Wiese
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Erin Gilbertson
- University of San Francisco, Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Dahiana Arcila
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - S Elizabeth Alter
- California State University Monterey Bay, Biology and Chemistry Department, Chapman Academic Science Center, Seaside, CA
| | - Richard Borowsky
- Department of Biology, New York University, Washington Square, New York, NY, 10003, USA
| | - Dean Hendrickson
- Biodiversity Center, Texas Natural History Collections, University of Texas at Austin, Austin, TX 78758, United States
| | - Melanie Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY 10024, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| |
Collapse
|
14
|
Alunni A, Pierre C, Torres-Paz J, Clairet N, Langlumé A, Pavie M, Escoffier-Pirouelle T, Leblanc M, Blin M, Rétaux S. An Astyanax mexicanus mao knockout line uncovers the developmental roles of monoamine homeostasis in fish brain. Dev Growth Differ 2023; 65:517-533. [PMID: 37843474 DOI: 10.1111/dgd.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Monoaminergic systems are conserved in vertebrates, yet they present variations in neuroanatomy, genetic components and functions across species. MonoAmine Oxidase, or MAO, is the enzyme responsible for monoamine degradation. While mammals possess two genes, MAO-A and MAO-B, fish possess one single mao gene. To study the function of MAO and monoamine homeostasis on fish brain development and physiology, here we have generated a mao knockout line in Astyanax mexicanus (surface fish), by CRISPR/Cas9 technology. Homozygote mao knockout larvae died at 13 days post-fertilization. Through a time-course analysis, we report that hypothalamic serotonergic neurons undergo fine and dynamic regulation of serotonin level upon loss of mao function, in contrast to those in the raphe, which showed continuously increased serotonin levels - as expected. Dopaminergic neurons were not affected by mao loss-of-function. At behavioral level, knockout fry showed a transient decrease in locomotion that followed the variations in the hypothalamus serotonin neuronal levels. Finally, we discovered a drastic effect of mao knockout on brain progenitors proliferation in the telencephalon and hypothalamus, including a reduction in the number of proliferative cells and an increase of the cell cycle length. Altogether, our results show that MAO has multiple and varied effects on Astyanax mexicanus brain development. Mostly, they bring novel support to the idea that serotonergic neurons in the hypothalamus and raphe of the fish brain are different in nature and identity, and they unravel a link between monoaminergic homeostasis and brain growth.
Collapse
Affiliation(s)
- Alessandro Alunni
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Constance Pierre
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Natacha Clairet
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Auriane Langlumé
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Marie Pavie
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | | | - Michael Leblanc
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Maryline Blin
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
15
|
Ceron-Noriega A, Schoonenberg VAC, Butter F, Levin M. AlexandrusPS: A User-Friendly Pipeline for the Automated Detection of Orthologous Gene Clusters and Subsequent Positive Selection Analysis. Genome Biol Evol 2023; 15:evad187. [PMID: 37831426 PMCID: PMC10612477 DOI: 10.1093/gbe/evad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
The detection of adaptive selection in a system approach considering all protein-coding genes allows for the identification of mechanisms and pathways that enabled adaptation to different environments. Currently, available programs for the estimation of positive selection signals can be divided into two groups. They are either easy to apply but can analyze only one gene family at a time, restricting system analysis; or they can handle larger cohorts of gene families, but require considerable prerequisite data such as orthology associations, codon alignments, phylogenetic trees, and proper configuration files. All these steps require extensive computational expertise, restricting this endeavor to specialists. Here, we introduce AlexandrusPS, a high-throughput pipeline that overcomes technical challenges when conducting transcriptome-wide positive selection analyses on large sets of nucleotide and protein sequences. The pipeline streamlines 1) the execution of an accurate orthology prediction as a precondition for positive selection analysis, 2) preparing and organizing configuration files for CodeML, 3) performing positive selection analysis using CodeML, and 4) generating an output that is easy to interpret, including all maximum likelihood and log-likelihood test results. The only input needed from the user is the CDS and peptide FASTA files of proteins of interest. The pipeline is provided in a Docker image, requiring no program or module installation, enabling the application of the pipeline in any computing environment. AlexandrusPS and its documentation are available via GitHub (https://github.com/alejocn5/AlexandrusPS).
Collapse
Affiliation(s)
- Alejandro Ceron-Noriega
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Department of Human Genetics, Mainz, Germany
| | - Vivien A C Schoonenberg
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz, Germany
- Present address: Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
- Present address: Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Michal Levin
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz, Germany
| |
Collapse
|
16
|
Hyacinthe C, Attia J, Schutz E, Lego L, Casane D, Rétaux S. Acoustic signatures in Mexican cavefish populations inhabiting different caves. PLoS One 2023; 18:e0289574. [PMID: 37535576 PMCID: PMC10399770 DOI: 10.1371/journal.pone.0289574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Complex patterns of acoustic communication exist throughout the animal kingdom, including underwater. The river-dwelling and the Pachón cave-adapted morphotypes of the fish Astyanax mexicanus are soniferous and share a repertoire of sounds. Their function and significance is mostly unknown. Here, we explored whether and how sounds produced by blind cavefishes inhabiting different Mexican caves may vary. We compared "Clicks" and "Serial Clicks" produced by cavefish in six different caves distributed in three mountain ranges in Mexico. We also sampled laboratory-bred cavefish lines originating from four of these caves. Sounds were extracted and analyzed using both a manual method and a machine learning-based automation tool developed in-house. Multi-parametric analyses suggest wild cave-specific acoustic signatures, or "accents". An acoustic code also existed in laboratory cavefish lines, suggesting a genetic basis for the evolution of this trait. The variations in acoustic parameters between caves of origin did not seem related to fish phenotypes, phylogeography or ecological conditions. We propose that the evolution of such acoustic signatures would progressively lead to the differentiation of local accents that may prevent interbreeding and thus contribute to speciation.
Collapse
Affiliation(s)
- Carole Hyacinthe
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91400, Saclay, France
- Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States of America
| | - Joël Attia
- Equipe de Neuro-Ethologie Sensorielle, CRNL, CNRS and Université de St Etienne, Saint-Étienne, France
| | - Elisa Schutz
- Equipe de Neuro-Ethologie Sensorielle, CRNL, CNRS and Université de St Etienne, Saint-Étienne, France
| | - Lény Lego
- Equipe de Neuro-Ethologie Sensorielle, CRNL, CNRS and Université de St Etienne, Saint-Étienne, France
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190, Gif-sur-Yvette, France
- Université Paris Cité, UFR Sciences du Vivant, 75013, Paris, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91400, Saclay, France
| |
Collapse
|
17
|
Legendre L, Rode J, Germon I, Pavie M, Quiviger C, Policarpo M, Leclercq J, Père S, Fumey J, Hyacinthe C, Ornelas-García P, Espinasa L, Rétaux S, Casane D. Genetic identification and reiterated captures suggest that the Astyanax mexicanus El Pachón cavefish population is closed and declining. Zool Res 2023; 44:701-711. [PMID: 37313847 PMCID: PMC10415772 DOI: 10.24272/j.issn.2095-8137.2022.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
The sizes of Astyanax mexicanus blind cavefish populations of North-East Mexico are demographic parameters of great importance for investigating a variety of ecological, evolutionary, and conservation issues. However, few estimates have been obtained. For these mobile animals living in an environment difficult to explore as a whole, methods based on capture-mark-recapture are appropriate, but their feasibility and interpretation of results depend on several assumptions that must be carefully examined. Here, we provide evidence that minimally invasive genetic identification from captures at different time intervals (three days and three years) can give insights into cavefish population size dynamics as well as other important demographic parameters of interest. We also provide tools to calibrate sampling and genotyping efforts necessary to reach a given level of precision. Our results suggest that the El Pachón cave population is currently very small, of an order of magnitude of a few hundreds of individuals, and is distributed in a relatively isolated area. The probable decline in population size in the El Pachón cave since the last census in 1971 raises serious conservation issues.
Collapse
Affiliation(s)
- Laurent Legendre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Julie Rode
- Objectif Sciences International NGO, OSI-Panthera Program, Geneva 99140, Switzerland
| | - Isabelle Germon
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Marie Pavie
- Institut de Neuroscience Paris-Saclay, Université Paris-Saclay and CNRS, Saclay 91400, France
| | - Carla Quiviger
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Maxime Policarpo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Julien Leclercq
- Institut de Neuroscience Paris-Saclay, Université Paris-Saclay and CNRS, Saclay 91400, France
| | - Stéphane Père
- Institut de Neuroscience Paris-Saclay, Université Paris-Saclay and CNRS, Saclay 91400, France
| | - Julien Fumey
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Microbial Paleogenomics Unit, Paris 75015, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris 75015, France
| | - Carole Hyacinthe
- Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston MA 02115, USA
| | - Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, México DF CP 04510, México
| | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, New York 12601, USA
| | - Sylvie Rétaux
- Institut de Neuroscience Paris-Saclay, Université Paris-Saclay and CNRS, Saclay 91400, France. E-mail:
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
- Université Paris Cité, UFR Sciences du Vivant, Paris 75013, France. E-mail:
| |
Collapse
|
18
|
Garduño-Sánchez MAA, De Jesus-Bonilla V, Perea S, Miranda-Gamboa R, Herrera-García A, De la Maza Benignos M, Ornelas-García CP. Mitochondrial phylogeography and molecular evolution of the rhodopsin visual pigment in troglobitic populations of Astyanax mexicanus (De Filippi, 1853). Zool Res 2023; 44:761-775. [PMID: 37464933 PMCID: PMC10415764 DOI: 10.24272/j.issn.2095-8137.2022.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Cave-adapted animals provide a unique opportunity to study the evolutionary mechanisms underlying phenotypic, metabolic, behavioral, and genetic evolution in response to cave environments. The Mexican tetra ( Astyanax mexicanus) is considered a unique model system as it shows both surface and cave-dwelling morphs. To date, at least 33 different cave populations have been identified, with phylogenetic studies suggesting an origin from at least two independent surface lineages, thereby providing a unique opportunity to study parallel evolution. In the present study, we carried out the most exhaustive phylogeographic study of A. mexicanus to date, including cave and surface localities, using two mitochondrial markers (cytochrome b (cyt b) and cytochrome c oxidase subunit I ( COI)) and nuclear rhodopsin visual pigment ( rho). Additionally, we inferred the molecular evolution of rho within the two contrasting environments (cave and surface) and across three geographic regions (Sierra de El Abra, Sierra de Guatemala, and Micos). In total, 267 individuals were sequenced for the two mitochondrial fragments and 268 individuals were sequenced for the rho visual pigment from 22 cave and 46 surface populations. Phylogeographic results based on the mitochondrial data supported the two-lineage hypothesis, except for the Pachón and Chica caves, whose introgression has been largely documented. The Sierra de El Abra region depicted the largest genetic diversity, followed by the Sierra de Guatemala region. Regarding the phylogeographic patterns of rho, we recovered exclusive haplogroups for the Sierra de El Abra (Haplogroup I) and Sierra de Guatemala regions (Haplogroup IV). Moreover, a 544 bp deletion in the rho gene was observed in the Escondido cave population from Sierra de Guatemala, reducing the protein from seven to three intramembrane domains. This change may produce a loss-of-function (LOF) but requires further investigation. Regarding nonsynonymous ( dN) and synonymous ( dS) substitution rates (omega values ω), our results revealed the prevailing influence of purifying selection upon the rho pigment for both cave and surface populations (ω<1), but relaxation at the El Abra region. Notably, in contrast to the other two regions, we observed an increase in the number of dN mutations for Sierra de El Abra. However, given that a LOF was exclusively identified in the Sierra de Guatemala region, we cannot dismiss the possibility of a pleiotropic effect on the Rho protein.
Collapse
Affiliation(s)
- Marco A A Garduño-Sánchez
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biológicas, Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México
| | - Vladimir De Jesus-Bonilla
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México
- Licenciatura en Ciencias Forenses, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México City, C.P. 04510, México
| | - Silvia Perea
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México
| | - Ramses Miranda-Gamboa
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos C.P. 62580, Mexico
| | - Andrea Herrera-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México
| | - Mauricio De la Maza Benignos
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México. E-mail:
| |
Collapse
|
19
|
Balart-García P, Aristide L, Bradford TM, Beasley-Hall PG, Polak S, Cooper SJB, Fernández R. Parallel and convergent genomic changes underlie independent subterranean colonization across beetles. Nat Commun 2023; 14:3842. [PMID: 37386018 PMCID: PMC10310748 DOI: 10.1038/s41467-023-39603-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Adaptation to life in caves is often accompanied by dramatically convergent changes across distantly related taxa, epitomized by the loss or reduction of eyes and pigmentation. Nevertheless, the genomic underpinnings underlying cave-related phenotypes are largely unexplored from a macroevolutionary perspective. Here we investigate genome-wide gene evolutionary dynamics in three distantly related beetle tribes with at least six instances of independent colonization of subterranean habitats, inhabiting both aquatic and terrestrial underground systems. Our results indicate that remarkable gene repertoire changes mainly driven by gene family expansions occurred prior to underground colonization in the three tribes, suggesting that genomic exaptation may have facilitated a strict subterranean lifestyle parallelly across beetle lineages. The three tribes experienced both parallel and convergent changes in the evolutionary dynamics of their gene repertoires. These findings pave the way towards a deeper understanding of the evolution of the genomic toolkit in hypogean fauna.
Collapse
Affiliation(s)
- Pau Balart-García
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Leandro Aristide
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Tessa M Bradford
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Perry G Beasley-Hall
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Slavko Polak
- Notranjska Museum Postojna, Kolodvorska c. 3, 6230, Postojna, Slovenia
| | - Steven J B Cooper
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Rosa Fernández
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
20
|
Niida T, Terashima Y, Aonuma H, Koshikawa S. Photoreceptor genes in a trechine beetle, Trechiama kuznetsovi, living in the upper hypogean zone. ZOOLOGICAL LETTERS 2023; 9:9. [PMID: 37173794 PMCID: PMC10176714 DOI: 10.1186/s40851-023-00208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
To address how organisms adapt to a new environment, subterranean organisms whose ancestors colonized subterranean habitats from surface habitats have been studied. Photoreception abilities have been shown to have degenerated in organisms living in caves and calcrete aquifers. Meanwhile, the organisms living in a shallow subterranean environment, which are inferred to reflect an intermediate stage in an evolutionary pathway to colonization of a deeper subterranean environment, have not been studied well. In the present study, we examined the photoreception ability in a trechine beetle, Trechiama kuznetsovi, which inhabits the upper hypogean zone and has a vestigial compound eye. By de novo assembly of genome and transcript sequences, we were able to identify photoreceptor genes and phototransduction genes. Specifically, we focused on opsin genes, where one long wavelength opsin gene and one ultraviolet opsin gene were identified. The encoded amino acid sequences had neither a premature stop codon nor a frameshift mutation, and appeared to be subject to purifying selection. Subsequently, we examined the internal structure of the compound eye and nerve tissue in the adult head, and found potential photoreceptor cells in the compound eye and nerve bundle connected to the brain. The present findings suggest that T. kuznetsovi has retained the ability of photoreception. This species represents a transitional stage of vision, in which the compound eye regresses, but it may retain the ability of photoreception using the vestigial eye.
Collapse
Affiliation(s)
- Takuma Niida
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.
| | - Yuto Terashima
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Hitoshi Aonuma
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
21
|
Graham AM, Jamison JM, Bustos M, Cournoyer C, Michaels A, Presnell JS, Richter R, Crocker DE, Fustukjian A, Hunter ME, Rea LD, Marsillach J, Furlong CE, Meyer WK, Clark NL. Reduction of Paraoxonase Expression Followed by Inactivation across Independent Semiaquatic Mammals Suggests Stepwise Path to Pseudogenization. Mol Biol Evol 2023; 40:msad104. [PMID: 37146172 PMCID: PMC10202596 DOI: 10.1093/molbev/msad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Convergent adaptation to the same environment by multiple lineages frequently involves rapid evolutionary change at the same genes, implicating these genes as important for environmental adaptation. Such adaptive molecular changes may yield either change or loss of protein function; loss of function can eliminate newly deleterious proteins or reduce energy necessary for protein production. We previously found a striking case of recurrent pseudogenization of the Paraoxonase 1 (Pon1) gene among aquatic mammal lineages-Pon1 became a pseudogene with genetic lesions, such as stop codons and frameshifts, at least four times independently in aquatic and semiaquatic mammals. Here, we assess the landscape and pace of pseudogenization by studying Pon1 sequences, expression levels, and enzymatic activity across four aquatic and semiaquatic mammal lineages: pinnipeds, cetaceans, otters, and beavers. We observe in beavers and pinnipeds an unexpected reduction in expression of Pon3, a paralog with similar expression patterns but different substrate preferences. Ultimately, in all lineages with aquatic/semiaquatic members, we find that preceding any coding-level pseudogenization events in Pon1, there is a drastic decrease in expression, followed by relaxed selection, thus allowing accumulation of disrupting mutations. The recurrent loss of Pon1 function in aquatic/semiaquatic lineages is consistent with a benefit to Pon1 functional loss in aquatic environments. Accordingly, we examine diving and dietary traits across pinniped species as potential driving forces of Pon1 functional loss. We find that loss is best associated with diving activity and likely results from changes in selective pressures associated with hypoxia and hypoxia-induced inflammation.
Collapse
Affiliation(s)
- Allie M Graham
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Jerrica M Jamison
- Department of Biological Sciences, University of Toronto—Scarborough, Scarborough, Ontario, Canada
| | - Marisol Bustos
- Department of Biomedical Engineering, University of Texas—San Antonio, San Antonio, TX
| | | | - Alexa Michaels
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA
- The Jackson Laboratory, Bar Harbor, ME
| | - Jason S Presnell
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Rebecca Richter
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL
| | - Lorrie D Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska—Fairbanks, Fairbanks, AK
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA
| | - Clement E Furlong
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| |
Collapse
|
22
|
Zhao Q, Shao F, Li Y, Yi SV, Peng Z. Novel genome sequence of Chinese cavefish (Triplophysa rosa) reveals pervasive relaxation of natural selection in cavefish genomes. Mol Ecol 2022; 31:5831-5845. [PMID: 36125323 PMCID: PMC9828065 DOI: 10.1111/mec.16700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
All cavefishes, living exclusively in caves across the globe, exhibit similar phenotypic traits, including the characteristic loss of eyes. To understand whether such phenotypic convergence shares similar genomic bases, here we investigated genome-wide evolutionary signatures of cavefish phenotypes by comparing whole-genome sequences of three pairs of cavefishes and their surface fish relatives. Notably, we newly sequenced and generated a whole-genome assembly of the Chinese cavefish Triplophysa rosa. Our comparative analyses revealed several shared features of cavefish genome evolution. Cavefishes had lower mutation rates than their surface fish relatives. In contrast, the ratio of nonsynonymous to synonymous substitutions (ω) was significantly elevated in cavefishes compared to in surface fishes, consistent with the relaxation of purifying selection. In addition, cavefish genomes had an increased mutational load, including mutations that alter protein hydrophobicity profiles, which were considered harmful. Interestingly, however, we found no overlap in positively selected genes among different cavefish lineages, indicating that the phenotypic convergence in cavefishes was not caused by positive selection of the same sets of genes. Analyses of previously identified candidate genes associated with cave phenotypes supported this conclusion. Genes belonging to the lipid metabolism functional ontology were under relaxed purifying selection in all cavefish genomes, which may be associated with the nutrient-poor habitat of cavefishes. Our work reveals previously uncharacterized patterns of cavefish genome evolution and provides comparative insights into the evolution of cave-associated phenotypic traits.
Collapse
Affiliation(s)
- Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Southwest University School of Life SciencesChongqingChina,Department of Laboratory Animal Science, College of Basic Medical SciencesArmy Medical University (Third Military Medical University)ChongqingChina
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Southwest University School of Life SciencesChongqingChina
| | - Yanping Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Southwest University School of Life SciencesChongqingChina,Key Laboratory of Sichuan Province for Fish Conservation and Utilization in the Upper Reaches of the Yangtze RiverNeijiang Normal University College of Life SciencesNeijiangChina
| | - Soojin V. Yi
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Southwest University School of Life SciencesChongqingChina,Academy of Plateau Science and SustainabilityQinghai Normal UniversityXiningChina
| |
Collapse
|
23
|
Tian R, Guo H, Jin Z, Zhang F, Zhao J, Seim I. Molecular evolution of vision-related genes may contribute to marsupial photic niche adaptations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vision plays an essential role in the life of many animals. While most mammals are night-active (nocturnal), many have adapted to novel light environments. This includes diurnal (day-active) and crepuscular (twilight-active) species. Here, we used integrative approaches to investigate the molecular evolution of 112 vision-related genes across 19 genomes representing most marsupial orders. We found that four genes (GUCA1B, GUCY2F, RGR, and SWS2) involved in retinal phototransduction likely became functionally redundant in the ancestor of marsupials, a group of largely obligate nocturnal mammals. We also show evidence of rapid evolution and positive selection of bright-light vision genes in the common ancestor of Macropus (kangaroos, wallaroos, and wallabies). Macropus-specific amino acid substitutions in opsin genes (LWS and SWS1), in particular, may be an adaptation for crepuscular vision in this genus via opsin spectral sensitivity tuning. Our study set the stage for functional genetics studies and provides a stepping stone to future research efforts that fully capture the visual repertoire of marsupials.
Collapse
|
24
|
Rétaux S. [The toolbox of developmental evolution or how Mexican cave fishes lost their eyes]. Biol Aujourdhui 2022; 216:49-53. [PMID: 35876521 DOI: 10.1051/jbio/2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The fish Astyanax mexicanus comes in two very different forms: a "normal" river morph, and a blind, depigmented cave morph, living in the total and permanent darkness of Mexican caves. This species is on the way to becoming a model of choice in evolutionary and comparative biology, both for the study of the evolution of behavior, physiology or morphology, and for molecular genetics or population genetics. Here, I present the advancement of knowledge in the field of the developmental evolution of the eye of the cave morph. By rewinding back in time its development from the eye of the larva to the retinal field at the end of gastrulation, the cave-dwelling Astyanax embryo reveals mechanisms and processes likely to contribute to evolutionary variations between species, but also to pathological variations in the morphogenesis of the optic region.
Collapse
|
25
|
Langille BL, Tierney SM, Bertozzi T, Beasley-Hall PG, Bradford TM, Fagan-Jeffries EP, Hyde J, Leijs R, Richardson M, Saint KM, Stringer DN, Villastrigo A, Humphreys WF, Austin AD, Cooper SJB. Parallel decay of vision genes in subterranean water beetles. Mol Phylogenet Evol 2022; 173:107522. [PMID: 35595008 DOI: 10.1016/j.ympev.2022.107522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.
Collapse
Affiliation(s)
- Barbara L Langille
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia.
| | - Simon M Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Perry G Beasley-Hall
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Tessa M Bradford
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Erinn P Fagan-Jeffries
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Josephine Hyde
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Western Australia Department of Biodiversity Conservation and Attractions, Kensington, WA 6151, Australia
| | - Remko Leijs
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Matthew Richardson
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Kathleen M Saint
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Danielle N Stringer
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Adrián Villastrigo
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia; Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta, 37-49, 08003, Spain
| | - William F Humphreys
- Western Australian Museum, Locked Bag 40, Welshpool DC, WA 6986, Australia; School of Animal Biology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
26
|
Forni G, Ruggieri AA, Piccinini G, Luchetti A. BASE: A novel workflow to integrate nonubiquitous genes in comparative genomics analyses for selection. Ecol Evol 2021; 11:13029-13035. [PMID: 34646450 PMCID: PMC8495783 DOI: 10.1002/ece3.7959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022] Open
Abstract
Inferring the selective forces that orthologous genes underwent across different lineages can help us understand the evolutionary processes that have shaped their extant diversity and the phenotypes they underlie. The most widespread metric to estimate the selection regimes of coding genes-across sites and phylogenies-is the ratio of nonsynonymous to synonymous substitutions (dN/dS, also known as ω). Nowadays, modern sequencing technologies and the large amount of already available sequence data allow the retrieval of thousands of orthologous genes across large numbers of species. Nonetheless, the tools available to explore selection regimes are not designed to automatically process all genes, and their practical usage is often restricted to the single-copy ones which are found across all species considered (i.e., ubiquitous genes). This approach limits the scale of the analysis to a fraction of single-copy genes, which can be as low as an order of magnitude in respect to those which are not consistently found in all species considered (i.e., nonubiquitous genes). Here, we present a workflow named BASE that-leveraging the CodeML framework-eases the inference and interpretation of gene selection regimes in the context of comparative genomics. Although a number of bioinformatics tools have already been developed to facilitate this kind of analyses, BASE is the first to be specifically designed to allow the integration of nonubiquitous genes in a straightforward and reproducible manner. The workflow-along with all relevant documentation-is available at github.com/for-giobbe/BASE.
Collapse
Affiliation(s)
- Giobbe Forni
- BiGeA Department University of Bologna Bologna Italy
| | | | | | | |
Collapse
|
27
|
Tigano A, Jacobs A, Wilder AP, Nand A, Zhan Y, Dekker J, Therkildsen NO. Chromosome-Level Assembly of the Atlantic Silverside Genome Reveals Extreme Levels of Sequence Diversity and Structural Genetic Variation. Genome Biol Evol 2021; 13:evab098. [PMID: 33964136 PMCID: PMC8214408 DOI: 10.1093/gbe/evab098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)-an established ecological model for studying the phenotypic effects of natural and artificial selection-and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32-1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Arne Jacobs
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
| | - Aryn P Wilder
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Conservation Genetics, San Diego Zoo Global, Escondido, California, USA
| | - Ankita Nand
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ye Zhan
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | |
Collapse
|
28
|
Policarpo M, Bemis KE, Tyler JC, Metcalfe CJ, Laurenti P, Sandoz JC, Rétaux S, Casane D. Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape. Mol Biol Evol 2021; 38:3742-3753. [PMID: 33950257 PMCID: PMC8661438 DOI: 10.1093/molbev/msab145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. Richness of the olfactory repertoire depends on the diversity of receptors coded by homologous genes classified into four families: OR, TAAR, VR1, and VR2. Herein, we focus on the OR gene repertoire. While independent large contractions of the OR gene repertoire associated with ecological transitions have been found in mammals, little is known about the diversity of the OR gene repertoire and its evolution in teleost fishes, a group that includes more than 34,000 living species. We analyzed genomes of 163 species representing diversity in this large group. We found a large range of variation in the number of functional OR genes, from 15 in the Broad-nose Pipefish Syngnathus typhle and the Ocean Sunfish Mola mola, to 429 in the Zig-zag Eel Mastacembelus armatus. The number of OR genes was higher in species when a multilamellar olfactory rosette was present. Moreover, the number of lamellae was correlated with the richness of the OR gene repertoire. While a slow and balanced birth-and-death process generally drives the evolution of the OR gene repertoire, we inferred several episodes of high rates of gene loss, sometimes followed by large gains in the number of OR genes. These gains coincide with morphological changes of the olfactory organ and suggest a strong functional association between changes in the morphology and the evolution of the OR gene repertoire.
Collapse
Affiliation(s)
- Maxime Policarpo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Katherine E Bemis
- NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A
| | - James C Tyler
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A
| | | | - Patrick Laurenti
- Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Jean-Christophe Sandoz
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.,Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France
| |
Collapse
|
29
|
Diversity of Olfactory Responses and Skills in Astyanax Mexicanus Cavefish Populations Inhabiting different Caves. DIVERSITY 2020. [DOI: 10.3390/d12100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animals in many phyla are adapted to and thrive in the constant darkness of subterranean environments. To do so, cave animals have presumably evolved mechano- and chemosensory compensations to the loss of vision, as is the case for the blind characiform cavefish, Astyanax mexicanus. Here, we systematically assessed the olfactory capacities of cavefish and surface fish of this species in the lab as well as in the wild, in five different caves in northeastern Mexico, using an olfactory setup specially developed to test and record olfactory responses during fieldwork. Overall cavefish showed lower (i.e., better) olfactory detection thresholds than surface fish. However, wild adult cavefish from the Pachón, Sabinos, Tinaja, Chica and Subterráneo caves showed highly variable responses to the three different odorant molecules they were exposed to. Pachón and Subterráneo cavefish showed the highest olfactory capacities, and Chica cavefish showed no response to the odors presented. We discuss these data with regard to the environmental conditions in which these different cavefish populations live. Our experiments in natural settings document the diversity of cave environments inhabited by a single species of cavefish, A. mexicanus, and highlight the complexity of the plastic and genetic mechanisms that underlie cave adaptation.
Collapse
|