1
|
Ohyama N, Matsunami M, Imamura M, Yoshida A, Javed A, Liu X, Kimura R, Matsuda K, Terao C, Maeda S. A variant in HMMR/HMMR-AS1 is associated with serum alanine aminotransferase levels in the Ryukyu population. Sci Rep 2025; 15:6494. [PMID: 39987337 PMCID: PMC11846991 DOI: 10.1038/s41598-025-90195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
The Ryukyu archipelago is located southwest of the Japanese islands, and people originally from this region, the Ryukyu population, have a unique genetic background distinct from that of other populations, including people from mainland Japan. However, few genetic studies have focused on the Ryukyu population. In this study, we performed genome-wide association studies (GWAS) on the serum levels of alanine aminotransferase (ALT, n = 15,224), aspartate aminotransferase (AST, n = 15,203), and gamma-glutamyl transferase (GGT, n = 14,496) in the Ryukyu population. We found 13 loci with a genome-wide significant association (P < 5 × 10-8), three for ALT, four for AST, and six for GGT, including one novel locus associated with ALT: rs117595134-A in HMMR/HMMR-AS1, ß = - 0.131, standard error = 0.024, P = 4.90 × 10-8. Rs117595134-A is common in the Japanese population but is not observed in other ethnic populations in the 1000 genomes database. Additionally, 77 of 80 loci derived from Korean GWAS and 541 of 716 loci from European GWAS showed the same directions of effect (P = 1.41 × 10-19, P = 2.50 × 10-44, binomial test), indicating that most of susceptibility loci are shared between the Ryukyu population and other ethnic populations.
Collapse
Affiliation(s)
- Noriko Ohyama
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Department of Cardiovascular Surgery, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru, Japan
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan.
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan.
| | - Akihiro Yoshida
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Department of Obstetrics and Gynecology, Okinawa Hokubu Hospital, Nago, Japan
| | - Azeem Javed
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
| |
Collapse
|
2
|
Matsunami M, Imamura M, Ashikari A, Liu X, Tomizuka K, Hikino K, Miwa K, Kadekawa K, Suda T, Matsuda K, Miyazato M, Terao C, Maeda S. Genome-wide association studies for pelvic organ prolapse in the Japanese population. Commun Biol 2024; 7:1188. [PMID: 39349682 PMCID: PMC11443051 DOI: 10.1038/s42003-024-06875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Pelvic organ prolapse (POP) affects approximately 40% of elderly women, characterized by the descent of the pelvic organs into the vaginal cavity. Here we present the results of a genome-wide association study (GWAS) for susceptibility to POP comprising 771 cases and 76,625 controls in the Japanese population. We identified a significant association of WT1 locus with POP in the Japanese population; rs10742277; odds ratio (OR) = 1.48, 95% confidence interval (CI), 1.29-1.68, P = 6.72 × 10-9. Subsequent cross-ancestry GWAS meta-analysis combining the Japanese data and previously reported European data, including 28,857 cases and 622,916 controls, identified FGFR2 locus as a novel susceptibility locus to POP (rs7072877; OR = 1.06, 95% CI, 1.04-1.08, P = 4.11 × 10-8). We also observed consistent directions of the effects for 21 out of 24 European GWAS derived loci (binomial test P = 2.8 × 10-4), indicating that most of susceptibility loci for POP are shared across the Japanese and European populations.
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Asuka Ashikari
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kosei Miwa
- Urogyne Center, Japanese Red Cross Gifu Hospital, Gifu, Japan
| | | | - Tetsuji Suda
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Miyazato
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan.
| |
Collapse
|
3
|
Kai H, Takada N, Thomson V, Suzuki H. Region-Specific Genetic Diversity of Black Rats ( Rattus rattus Complex) in Southeast and East Asia Shaped by Rapid Population Expansion Events. Zoolog Sci 2024; 41:290-301. [PMID: 38809868 DOI: 10.2108/zs230065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Among the six mitochondrial DNA lineages of the black rat (Rattus rattus Complex; RrC), lineages II and IV are widespread in Southeast and East Asia. This study explored their demographic history using 17 new sequences from the Miyako Islands in the Ryukyu archipelago, together with 178 publicly available cytochrome b sequences. We defined six and two haplotype groups showing rapid population expansion signals in Lineages II and IV, respectively. The six haplotype groups of Lineage II were represented by haplotypes from 1) Myanmar/Bangladesh/Northeast India, 2) Laos, 3) Thailand, 4) Indonesia/Philippines, 5) Vietnam/southern China, and 6) the Ryukyu archipelago. These expansion times were estimated using time-dependent evolutionary rates to be 115,300 years ago (ya), 128,500 ya, 9600 ya, 10,600 ya, 7200 ya, and 1400 ya, respectively, although all had large confidence intervals. The two groups of Lineage IV were recovered from the mainland and islands of Southeast Asia with predicted expansion times of 197,000 ya and 5800 ya, respectively. These results suggest that climatic fluctuations during the last 200,000 years of the Quaternary, affected the population dynamics in subtropical areas at different times. Furthermore, the results of the younger rapid expansion events of RrC suggest the possibility of agricultural advancement and dispersal of Neolithic farmers to different areas within the mainland and islands of Southeast Asia during the Holocene. A subset of rats from the Miyako Islands were found to have the same lineage IV haplotypes as those in Southeast Asia, suggesting a recent introduction of these new lineages.
Collapse
Affiliation(s)
- Hajime Kai
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nobuhiro Takada
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Vicki Thomson
- Centre for Conservation Ecology and Genomics, University of Canberra, Bruce, ACT 2617, Australia
| | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan,
| |
Collapse
|
4
|
Liu X, Koyama S, Tomizuka K, Takata S, Ishikawa Y, Ito S, Kosugi S, Suzuki K, Hikino K, Koido M, Koike Y, Horikoshi M, Gakuhari T, Ikegawa S, Matsuda K, Momozawa Y, Ito K, Kamatani Y, Terao C. Decoding triancestral origins, archaic introgression, and natural selection in the Japanese population by whole-genome sequencing. SCIENCE ADVANCES 2024; 10:eadi8419. [PMID: 38630824 PMCID: PMC11023554 DOI: 10.1126/sciadv.adi8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
We generated Japanese Encyclopedia of Whole-Genome/Exome Sequencing Library (JEWEL), a high-depth whole-genome sequencing dataset comprising 3256 individuals from across Japan. Analysis of JEWEL revealed genetic characteristics of the Japanese population that were not discernible using microarray data. First, rare variant-based analysis revealed an unprecedented fine-scale genetic structure. Together with population genetics analysis, the present-day Japanese can be decomposed into three ancestral components. Second, we identified unreported loss-of-function (LoF) variants and observed that for specific genes, LoF variants appeared to be restricted to a more limited set of transcripts than would be expected by chance, with PTPRD as a notable example. Third, we identified 44 archaic segments linked to complex traits, including a Denisovan-derived segment at NKX6-1 associated with type 2 diabetes. Most of these segments are specific to East Asians. Fourth, we identified candidate genetic loci under recent natural selection. Overall, our work provided insights into genetic characteristics of the Japanese population.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sadaaki Takata
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuji Ito
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kunihiko Suzuki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
| | - Kochi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
5
|
Kawai Y, Watanabe Y, Omae Y, Miyahara R, Khor SS, Noiri E, Kitajima K, Shimanuki H, Gatanaga H, Hata K, Hattori K, Iida A, Ishibashi-Ueda H, Kaname T, Kanto T, Matsumura R, Miyo K, Noguchi M, Ozaki K, Sugiyama M, Takahashi A, Tokuda H, Tomita T, Umezawa A, Watanabe H, Yoshida S, Goto YI, Maruoka Y, Matsubara Y, Niida S, Mizokami M, Tokunaga K. Exploring the genetic diversity of the Japanese population: Insights from a large-scale whole genome sequencing analysis. PLoS Genet 2023; 19:e1010625. [PMID: 38060463 PMCID: PMC10703243 DOI: 10.1371/journal.pgen.1010625] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
The Japanese archipelago is a terminal location for human migration, and the contemporary Japanese people represent a unique population whose genomic diversity has been shaped by multiple migrations from Eurasia. We analyzed the genomic characteristics that define the genetic makeup of the modern Japanese population from a population genetics perspective from the genomic data of 9,287 samples obtained by high-coverage whole-genome sequencing (WGS) by the National Center Biobank Network. The dataset comprised populations from the Ryukyu Islands and other parts of the Japanese archipelago (Hondo). The Hondo population underwent two episodes of population decline during the Jomon period, corresponding to the Late Neolithic, and the Edo period, corresponding to the Early Modern era, while the Ryukyu population experienced a population decline during the shell midden period of the Late Neolithic in this region. Haplotype analysis suggested increased allele frequencies for genes related to alcohol and fatty acid metabolism, which were reported as loci that had experienced positive natural selection. Two genes related to alcohol metabolism were found to be 12,500 years out of phase with the time when they began to increase in the allele frequency; this finding indicates that the genomic diversity of Japanese people has been shaped by events closely related to agriculture and food production.
Collapse
Affiliation(s)
- Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Watanabe
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| | - Reiko Miyahara
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eisei Noiri
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| | - Koji Kitajima
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
- Department of Data Science Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Shimanuki
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
- Department of Data Science Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Tatsuya Kanto
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Ryo Matsumura
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kengo Miyo
- Center for Medical Informatics Intelligence, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Michio Noguchi
- NCVC Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ayako Takahashi
- NCVC Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Haruhiko Tokuda
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tsutomu Tomita
- NCVC Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, Research Institute, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Watanabe
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Innovation Center for Translational Research, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sumiko Yoshida
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yu-ichi Goto
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yutaka Maruoka
- Department of Oral and Maxillofacial Surgery, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
6
|
Koganebuchi K, Matsunami M, Imamura M, Kawai Y, Hitomi Y, Tokunaga K, Maeda S, Ishida H, Kimura R. Demographic history of Ryukyu islanders at the southern part of the Japanese Archipelago inferred from whole-genome resequencing data. J Hum Genet 2023; 68:759-767. [PMID: 37468573 PMCID: PMC10597838 DOI: 10.1038/s10038-023-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023]
Abstract
The Ryukyu Islands are located in the southernmost part of the Japanese Archipelago and consist of several island groups. Each island group has its own history and culture, which differ from those of mainland Japan. People of the Ryukyu Islands are genetically subdivided; however, their detailed demographic history remains unclear. We report the results of a whole-genome sequencing analysis of a total of 50 Ryukyu islanders, focusing on genetic differentiation between Miyako and Okinawa islanders. We confirmed that Miyako and Okinawa islanders cluster differently in principal component analysis and ADMIXTURE analysis and that there is a population structure among Miyako islanders. The present study supports the hypothesis that population differentiation is primarily caused by genetic drift rather than by differences in the rate of migration from surrounding regions, such as the Japanese main islands or Taiwan. In addition, the genetic cline observed among Miyako and Okinawa islanders can be explained by recurrent migration beyond the bounds of these islands. Our analysis also suggested that the presence of multiple subpopulations during the Neolithic Ryukyu Jomon period is not crucial to explain the modern Ryukyu populations. However, the assumption of multiple subpopulations during the time of admixture with mainland Japanese is necessary to explain the modern Ryukyu populations. Our findings add insights that could help clarify the complex history of populations in the Ryukyu Islands.
Collapse
Affiliation(s)
- Kae Koganebuchi
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, 142-8501, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Mt. Olive Hospital, Naha, 903-0804, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
| |
Collapse
|
7
|
Liu X, Matsunami M, Horikoshi M, Ito S, Ishikawa Y, Suzuki K, Momozawa Y, Niida S, Kimura R, Ozaki K, Maeda S, Imamura M, Terao C. Natural Selection Signatures in the Hondo and Ryukyu Japanese Subpopulations. Mol Biol Evol 2023; 40:msad231. [PMID: 37903429 PMCID: PMC10615566 DOI: 10.1093/molbev/msad231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Natural selection signatures across Japanese subpopulations are under-explored. Here we conducted genome-wide selection scans with 622,926 single nucleotide polymorphisms for 20,366 Japanese individuals, who were recruited from the main-islands of Japanese Archipelago (Hondo) and the Ryukyu Archipelago (Ryukyu), representing two major Japanese subpopulations. The integrated haplotype score (iHS) analysis identified several signals in one or both subpopulations. We found a novel candidate locus at IKZF2, especially in Ryukyu. Significant signals were observed in the major histocompatibility complex region in both subpopulations. The lead variants differed and demonstrated substantial allele frequency differences between Hondo and Ryukyu. The lead variant in Hondo tags HLA-A*33:03-C*14:03-B*44:03-DRB1*13:02-DQB1*06:04-DPB1*04:01, a haplotype specific to Japanese and Korean. While in Ryukyu, the lead variant tags DRB1*15:01-DQB1*06:02, which had been recognized as a genetic risk factor for narcolepsy. In contrast, it is reported to confer protective effects against type 1 diabetes and human T lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. The FastSMC analysis identified 8 loci potentially affected by selection within the past 20-150 generations, including 2 novel candidate loci. The analysis also showed differences in selection patterns of ALDH2 between Hondo and Ryukyu, a gene recognized to be specifically targeted by selection in East Asian. In summary, our study provided insights into the selection signatures within the Japanese and nominated potential sources of selection pressure.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuji Ito
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kunihiko Suzuki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
8
|
Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Kasai K, Bradley DG, Gakuhari T, Nakagome S. Genomic insights into a tripartite ancestry in the Southern Ryukyu Islands. EVOLUTIONARY HUMAN SCIENCES 2023; 5:e23. [PMID: 37587935 PMCID: PMC10426068 DOI: 10.1017/ehs.2023.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023] Open
Abstract
A tripartite structure for the genetic origin of Japanese populations states that present-day populations are descended from three main ancestors: (1) the indigenous Jomon hunter-gatherers; (2) a Northeast Asian component that arrived during the agrarian Yayoi period; and (3) a major influx of East Asian ancestry in the imperial Kofun period. However, the genetic heterogeneity observed in different regions of the Japanese archipelago highlights the need to assess the applicability and suitability of this model. Here, we analyse historic genomes from the southern Ryukyu Islands, which have unique cultural and historical backgrounds compared with other parts of Japan. Our analysis supports the tripartite structure as the best fit in this region, with significantly higher estimated proportions of Jomon ancestry than mainland Japanese. Unlike the main islands, where each continental ancestor was directly brought by immigrants from the continent, those who already possessed the tripartite ancestor migrated to the southern Ryukyu Islands and admixed with the prehistoric people around the eleventh century AD, coinciding with the emergence of the Gusuku period. These results reaffirm the tripartite model in the southernmost extremes of the Japanese archipelago and show variability in how the structure emerged in diverse geographic regions.
Collapse
Affiliation(s)
- Niall P. Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Gilbert E, Zurel H, MacMillan ME, Demiriz S, Mirhendi S, Merrigan M, O'Reilly S, Molloy AM, Brody LC, Bodmer W, Leach RA, Scott REM, Mugford G, Randhawa R, Stephens JC, Symington AL, Cavalleri GL, Phillips MS. The Newfoundland and Labrador mosaic founder population descends from an Irish and British diaspora from 300 years ago. Commun Biol 2023; 6:469. [PMID: 37117635 PMCID: PMC10147672 DOI: 10.1038/s42003-023-04844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/28/2023] [Indexed: 04/30/2023] Open
Abstract
The founder population of Newfoundland and Labrador (NL) is a unique genetic resource, in part due to its geographic and cultural isolation, where historical records describe a migration of European settlers, primarily from Ireland and England, to NL in the 18th and 19th centuries. Whilst its historical isolation, and increased prevalence of certain monogenic disorders are well appreciated, details of the fine-scale genetic structure and ancestry of the population are lacking. Understanding the genetic origins and background of functional, disease causing, genetic variants would aid genetic mapping efforts in the Province. Here, we leverage dense genome-wide SNP data on 1,807 NL individuals to reveal fine-scale genetic structure in NL that is clustered around coastal communities and correlated with Christian denomination. We show that the majority of NL European ancestry can be traced back to the south-east and south-west of Ireland and England, respectively. We date a substantial population size bottleneck approximately 10-15 generations ago in NL, associated with increased haplotype sharing and autozygosity. Our results reveal insights into the population history of NL and demonstrate evidence of a population conducive to further genetic studies and biomarker discovery.
Collapse
Affiliation(s)
- Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Heather Zurel
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | - Sedat Demiriz
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Sadra Mirhendi
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | | | - Anne M Molloy
- School of Medicine, Trinity College, Dublin, Ireland
| | - Lawrence C Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Walter Bodmer
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Richard A Leach
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Roderick E M Scott
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Gerald Mugford
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Ranjit Randhawa
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | - Alison L Symington
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael S Phillips
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
10
|
Goto S, Kataoka K, Isa M, Nakamori K, Yoshida M, Murayama S, Arasaki A, Ishida H, Kimura R. Factors associated with bone thickness: Comparison of the cranium and humerus. PLoS One 2023; 18:e0283636. [PMID: 36989318 PMCID: PMC10057751 DOI: 10.1371/journal.pone.0283636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Cortical bone thickness is important for the mechanical function of bone. Ontogeny, aging, sex, body size, hormone levels, diet, behavior, and genetics potentially cause variations in postcranial cortical robusticity. However, the factors associated with cranial cortical robusticity remain poorly understood. Few studies have examined cortical robusticity in both cranial and postcranial bones jointly. In the present study, we used computed tomography (CT) images to measure cortical bone thicknesses in the cranial vault and humeral diaphysis. This study clearly showed that females have a greater cranial vault thickness and greater age-related increase in cranial vault thickness than males. We found an age-related increase in the full thickness of the temporal cranial vault and the width of the humeral diaphysis, as well as an age-related decrease in the cortical thickness of the frontal cranial vault and the cortical thickness of the humeral diaphysis, suggesting that the mechanisms of bone modeling in cranial and long bones are similar. A positive correlation between cortical indices in the cranial vault and humeral diaphysis also suggested that common factors affect cortical robusticity. We also examined the association of polymorphisms in the WNT16 and TNFSF11 genes with bone thickness. However, no significant associations were observed. The present study provides fundamental knowledge about similarities and differences in the mechanisms of bone modeling between cranial and postcranial bones.
Collapse
Affiliation(s)
- Shimpei Goto
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
- Department of Oral and Maxillofacial Surgery, University of the Ryukyus Hospital, Nishihara, Nakagami, Okinawa, Japan
| | - Keiichi Kataoka
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
- Department of Oral and Maxillofacial Surgery, University of the Ryukyus Hospital, Nishihara, Nakagami, Okinawa, Japan
| | - Mutsumi Isa
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Kenji Nakamori
- Department of Oral and Maxillofacial Surgery, Regional Independent Administrative Corporation Naha City Hospital, Naha, Okinawa, Japan
| | - Makoto Yoshida
- Department of Dentistry and Oral Surgery, Doujin Hospital, Urasoe, Okinawa, Japan
| | - Sadayuki Murayama
- Department of Radiology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Surgery, University of the Ryukyus Hospital, Nishihara, Nakagami, Okinawa, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| |
Collapse
|
11
|
Chen H, Lin R, Lu Y, Zhang R, Gao Y, He Y, Xu S. Tracing Bai-Yue Ancestry in Aboriginal Li People on Hainan Island. Mol Biol Evol 2022; 39:6731089. [PMID: 36173765 PMCID: PMC9585476 DOI: 10.1093/molbev/msac210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the most prevalent aboriginal group on Hainan Island located between South China and the mainland of Southeast Asia, the Li people are believed to preserve some unique genetic information due to their isolated circumstances, although this has been largely uninvestigated. We performed the first whole-genome sequencing of 55 Hainan Li (HNL) individuals with high coverage (∼30-50×) to gain insight into their genetic history and potential adaptations. We identified the ancestry enriched in HNL (∼85%) is well preserved in present-day Tai-Kadai speakers residing in South China and North Vietnam, that is, Bai-Yue populations. A lack of admixture signature due to the geographical restriction exacerbated the bottleneck in the present-day HNL. The genetic divergence among Bai-Yue populations began ∼4,000-3,000 years ago when the proto-HNL underwent migration and the settling of Hainan Island. Finally, we identified signatures of positive selection in the HNL, some outstanding examples included FADS1 and FADS2 related to a diet rich in polyunsaturated fatty acids. In addition, we observed that malaria-driven selection had occurred in the HNL, with population-specific variants of malaria-related genes (e.g., CR1) present. Interestingly, HNL harbors a high prevalence of malaria leveraged gene variants related to hematopoietic function (e.g., CD3G) that may explain the high incidence of blood disorders such as B-cell lymphomas in the present-day HNL. The results have advanced our understanding of the genetic history of the Bai-Yue populations and have provided new insights into the adaptive scenarios of the Li people.
Collapse
Affiliation(s)
| | | | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | | | | |
Collapse
|
12
|
Cultural transmission of traditional songs in the Ryukyu Archipelago. PLoS One 2022; 17:e0270354. [PMID: 35749479 PMCID: PMC9231793 DOI: 10.1371/journal.pone.0270354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Geographic patterns of cultural variations are affected by how cultural traits are transmitted within and between populations. It has been argued that cultural traits are transmitted in different manners depending on their characteristics; for example, words for basic concepts are less liable to horizontal transmission between populations (i.e., borrowing) than other words. Here we examine the geographic variation of traditional songs in the Ryukyu Archipelago, southwestern islands of Japan, to explore cultural evolution of music with a focus on different social contexts in which songs are sung. Published scores of 1,342 traditional songs are coded using the CantoCore song classification scheme and distances between the songs are calculated from the codings. Neighbor-Net graphs of regions/islands are generated on the basis of the musical distances, and delta scores are obtained to examine the treelikeness of the networks. We also perform analysis of molecular variance (AMOVA) to evaluate the extent of musical diversification among regions/islands. Our results suggest that horizontal transmission between populations has played a greater role in the formation of musical diversity than that of linguistic diversity in the Ryukyu Archipelago and that the social context in which songs are sung has an effect on how they are transmitted within and between populations. In addition, we compare the observed patterns of song diversity among regions/islands with those of lexical and mitochondrial-DNA (mtDNA) diversity, showing that the variation of songs sung in the "work" context are associated with the linguistic variation, whereas no association is found between the musical and genetic variation.
Collapse
|
13
|
Nishikawa Y, Ishida T. Genetic lineage of the Amami islanders inferred from classical genetic markers. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|