1
|
Zhang K, Lv Y, Zhang Y, Bian C, Wu JH, Shi Q. Genomics comparisons provide new insights into the evolution of karyotype and body patterns in Anguilliformes species. Int J Biol Macromol 2025; 308:142504. [PMID: 40139089 DOI: 10.1016/j.ijbiomac.2025.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Anguilliformes species not only possess distinctive appearance (such as body elongation and absence of pectoral and/or pelvic fins), but also display diversity in chromosome number, supporting them as a suitable model for studying karyotype evolution and related molecular mechanisms of evolutionary body patterns. However, the ancestral chromosomes and evolutionary chromosomal reorganization in various eels have not been reported yet. The most regulatory or related genes of their distinctive appearance are still unknown. Here, we predicted an eel-based ancestral chromosome karyotype for the first time, and revealed multiple chromosomal fusion and fission events that reduced the ancestral chromosome number from haploid n = 21 to the commonly extant n = 19 within the Anguilla lineage. Moreover, we carried out a genome-wide comparison of two significant gene families including homeobox (Hox) and T-box (tbx), revealing genomic loss of some Hox genes (such as HoxB9β and HoxD13α) and variation of certain tbx gene (i.e., tbx5) may be responsible for the evolutionary development of pectoral fins. Interestingly, loss of certain secretory calcium-binding phosphoprotein (SCPP) genes was identified in various eel genomes, which possibly contribute to the common reduction of scales. Overall, our current findings provide new insights into evolutionary karyotype and body pattern evolution across diverse Anguilliformes species.
Collapse
Affiliation(s)
- Kai Zhang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China.
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Yuxuan Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
| | - Jin-Hui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510225, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China.
| |
Collapse
|
2
|
Buso P, Diblasi C, Manousi D, Kwak JS, Vera-Ponce de Leon A, Stenløkk K, Barson N, Saitou M. Parallel Selection in Domesticated Atlantic Salmon from Divergent Founders Including on Whole-Genome Duplication-derived Homeologous Regions. Genome Biol Evol 2025; 17:evaf063. [PMID: 40247730 PMCID: PMC12006720 DOI: 10.1093/gbe/evaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
Domestication and artificial selection for desirable traits have driven significant phenotypic changes and left detectable genomic footprints in farmed animals. Since the 1960s, intensive breeding has led to the rapid domestication of Atlantic salmon (Salmo salar), with multiple independent events that make it a valuable model for studying early domestication stages and the parallel evolution of populations of different origins subjected to similar selection pressures. Some aquatic species, including Atlantic salmon, have undergone whole-genome duplication (WGD), raising the possibility that genetic redundancy resulting from WGD has contributed to adaptation in captive environments, as seen in plants. Here, we examined the genomic responses to domestication in Atlantic salmon, focusing on potential signatures of parallel selection, including those associated with WGD. Candidate genomic regions under selection were identified by comparing whole-genome sequences from aquaculture and wild populations across 2 independently domesticated lineages (Western Norway and North America) using a genome-wide scan that combined 3 statistical methods: allele frequencies (FST), site frequency (Tajima's D), and haplotype differentiation (XP-EHH). These analyses revealed shared selective sweeps on identical SNPs in major histocompatibility complex (MHC) genes across aquaculture populations. This suggests that a combination of long-term balancing selection and recent human-induced selection has shaped MHC gene evolution in domesticated salmon. Additionally, we observed selective sweeps on a small number of gene pairs in homeologous regions originating from WGD, offering insights into how historical genome duplication events may intersect with recent selection pressures in aquaculture species.
Collapse
Affiliation(s)
- Pauline Buso
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Célian Diblasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Domniki Manousi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de Leon
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Kristina Stenløkk
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Nicola Barson
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Marie Saitou
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Dunn T, Sethuraman A. Accurate Inference of the Polyploid Continuum Using Forward-Time Simulations. Mol Biol Evol 2024; 41:msae241. [PMID: 39549274 DOI: 10.1093/molbev/msae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.
Collapse
Affiliation(s)
- Tamsen Dunn
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
4
|
Kwak JS, León-Tapia MÁ, Diblasi C, Manousi D, Grønvold L, Sandvik GK, Saitou M. Functional and regulatory diversification of Period genes responsible for circadian rhythm in vertebrates. G3 (BETHESDA, MD.) 2024; 14:jkae162. [PMID: 39028850 PMCID: PMC11457068 DOI: 10.1093/g3journal/jkae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - M Ángel León-Tapia
- Colección Nacional de Mamíferos, Pabellón Nacional de la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celian Diblasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Domniki Manousi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Guro Katrine Sandvik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Marie Saitou
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
5
|
Miftari MH, Riste TB, Walther BT. Leukolectins support lifelong innate immunity in lower vertebrates, and reveal dichotomies of several leukocytic lineages. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109685. [PMID: 38857816 DOI: 10.1016/j.fsi.2024.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Innate immunity is vital for animal homeostasis and survival. First-line immuno-defense for fish larvae involves mucus enriched with leukolectin (LL) secreted by dermal lectocytes. Later during the critical transition from yolk-nutrition to feeding, additional larval immuno-protection in zebrafish (zF) is provided by macrophages containing LL (lectophages). This work investigated new LL-expression in embryos and in blood, structures of fish leukocytic LL and LL-genes, and LL-presence in chicken leukocytes. In zF-embryos, lectophages appear ∼10 hpf, while later, cells co-expressing myeloperoxidase- and LL-mRNA were detected (∼19 hpf). Furthermore, protein-extracts of Atlantic salmon (Ssal) leukocytes contained LL-proteins, compartmentalized in the cytosol. Cloning and sequencing revealed 94 % nt-sequence identity between variants of Ssal-leukolectins. Highly conserved LLs allowed production of epitope-specific anti-LL IgGs. Immuno-fluorescence-analysis demonstrated that most Ssal-bloodcells were LL-negative, but both some large cells with protrusions and some small, rounded cells did express LL. Immunoperoxidase-staining method confirmed LL-expression in some Ssal-leukocytes, identified as macrophages, PMN-leukocytes, thrombocytes and dendritic cells. However, closer examination revealed a dichotomy of these cell-categories into either LL-positive, or LL-negative variants. In situ hybridization demonstrated profuse LL-expression in Ssal head kidney interstitial tissue, while LL-transcripts were absent in large kidney tubules. Both hematopoietic (non-pigmented) marrow cells and melano-macrophages expressed LL-mRNA, implying that leukolectins provide lifelong innate immuno-protection. PCR-amplification using Ssal-leukocytic DNA as template, and direct sequencing yielded a leukocytic ll-gene. Some cells in salmon, cod, halibut, oikopleura and zebrafish embryos express LL-proteins and/or LL-mRNA, and LL-mRNA is detected in salmon, cod and chicken leukocytes. However, current genomes for these species lack recognizable LL-loci except the Ssal_v3.1 Genome-assembly. The data demonstrate an unexpected dichotomy of some leukocyte lineages into LL-positive or LL-negative cell-variants. Such dichotomies suggest exploring differential impacts from the duplicated leukocyte-lineages in health and disease.
Collapse
Affiliation(s)
- Mirushe H Miftari
- Department of Molecular Biology, University of Bergen, N-5020, Bergen, Norway
| | - Tonje B Riste
- Department of Molecular Biology, University of Bergen, N-5020, Bergen, Norway
| | - Bernt T Walther
- Department of Molecular Biology, University of Bergen, N-5020, Bergen, Norway.
| |
Collapse
|
6
|
Secci-Petretto G, Weiss S, Gomes-Dos-Santos A, Persat H, Machado AM, Vasconcelos I, Castro LFC, Froufe E. A multi-tissue de novo transcriptome assembly and relative gene expression of the vulnerable freshwater salmonid Thymallus ligericus. Genetica 2024; 152:71-81. [PMID: 38888686 PMCID: PMC11199216 DOI: 10.1007/s10709-024-00210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Freshwater ecosystems are among the most endangered ecosystems worldwide. While numerous taxa are on the verge of extinction as a result of global changes and direct or indirect anthropogenic activity, genomic and transcriptomic resources represent a key tool for comprehending species' adaptability and serve as the foundation for conservation initiatives. The Loire grayling, Thymallus ligericus, is a freshwater European salmonid endemic to the upper Loire River basin. The species is comprised of fragmented populations that are dispersed over a small area and it has been identified as a vulnerable species. Here, we provide a multi-tissue de novo transcriptome assembly of T. ligericus. The completeness and integrity of the transcriptome were assessed before and after redundancy removal with lineage-specific libraries from Eukaryota, Metazoa, Vertebrata, and Actinopterygii. Relative gene expression was assessed for each of the analyzed tissues, using the de novo assembled transcriptome and a genome-based analysis using the available T. thymallus genome as a reference. The final assembly, with a contig N50 of 1221 and Benchmarking Universal Single-Copy Orthologs (BUSCO) scores above 94%, is made accessible along with structural and functional annotations and relative gene expression of the five tissues (NCBI SRA and FigShare databases). This is the first transcriptomic resource for this species, which provides a foundation for future research on this and other salmonid species that are increasingly exposed to environmental stressors.
Collapse
Affiliation(s)
- Giulia Secci-Petretto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Porto, Portugal
| | - Steven Weiss
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - André Gomes-Dos-Santos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Henri Persat
- Société Française d'Ichthyologie, Muséum National d'Histoire Naturelle Paris, France, 57 Rue Cuvier CP26, 75005, Paris, France
| | - André M Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Porto, Portugal
| | - Inês Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Porto, Portugal
| | - Elsa Froufe
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
7
|
Richman JA, Davis LR, Phelps MP. Gene Function is a Driver of Activin Signaling Pathway Evolution Following Whole-Genome Duplication in Rainbow Trout (Oncorhynchus mykiss). Genome Biol Evol 2024; 16:evae096. [PMID: 38701021 PMCID: PMC11110936 DOI: 10.1093/gbe/evae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The genomes of plant and animal species are influenced by ancestral whole-genome duplication (WGD) events, which have profound impacts on the regulation and function of gene networks. To gain insight into the consequences of WGD events, we characterized the sequence conservation and expression patterns of ohnologs in the highly duplicated activin receptor signaling pathway in rainbow trout (RBT). The RBT activin receptor signaling pathway is defined by tissue-specific expression of inhibitors and ligands and broad expression of receptors and Co-Smad signaling molecules. Signaling pathway ligands exhibited shared expression, while inhibitors and Smad signaling molecules primarily express a single dominant ohnolog. Our findings suggest that gene function influences ohnolog evolution following duplication of the activin signaling pathway in RBT.
Collapse
Affiliation(s)
- Jasmine A Richman
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Leah R Davis
- College of the Environment, University of Washington, Seattle, WA, USA
| | - Michael P Phelps
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Yu D, Ren Y, Uesaka M, Beavan AJS, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng G, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol 2024; 8:519-535. [PMID: 38216617 DOI: 10.1038/s41559-023-02299-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Collapse
Affiliation(s)
- Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Alan J S Beavan
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Joseph N Keating
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily M Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Richard P Dearden
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma Randle
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - James F Fleming
- Keio University Institute for Advanced Biosciences, Tsuruoka, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Cristiano Bertolucci
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jordi Paps
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.
- Department of Animal Biology, Faculty of Science, University of Málaga (UMA), Málaga, Spain.
- Edificio de Bioinnovación, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
9
|
Marlétaz F, Timoshevskaya N, Timoshevskiy VA, Parey E, Simakov O, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith JJ, Rokhsar DS. The hagfish genome and the evolution of vertebrates. Nature 2024; 627:811-820. [PMID: 38262590 PMCID: PMC10972751 DOI: 10.1038/s41586-024-07070-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | | | | | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
10
|
Sun J, Ruiz Daniels R, Balic A, Andresen AMS, Bjørgen H, Dobie R, Henderson NC, Koppang EO, Martin SAM, Fosse JH, Taylor RS, Macqueen DJ. Cell atlas of the Atlantic salmon spleen reveals immune cell heterogeneity and cell-specific responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109358. [PMID: 38176627 DOI: 10.1016/j.fsi.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt + subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt + B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system.
Collapse
Affiliation(s)
- Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| |
Collapse
|
11
|
Zadesenets KS, Ershov NI, Bondar NP, Rubtsov NB. Unraveling the Unusual Subgenomic Organization in the Neopolyploid Free-Living Flatworm Macrostomum lignano. Mol Biol Evol 2023; 40:msad250. [PMID: 37979163 PMCID: PMC10733133 DOI: 10.1093/molbev/msad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
Whole genome duplication (WGD) is an evolutionary event resulting in a redundancy of genetic material. Different mechanisms of WGD, allo- or autopolyploidization, lead to distinct evolutionary trajectories of newly formed polyploids. Genome studies on such species are important for understanding the early stages of genome evolution. However, assembling neopolyploid is a challenging task due to the presence of 2 homologous (or homeologous) chromosome sets and therefore the existence of the extended paralogous regions in its genome. Post-WGD evolution of polyploids includes cytogenetic diploidization leading to the formation of species, whose polyploid origin might be hidden by disomic inheritance. Earlier we uncovered the hidden polyploid origin of the free-living flatworms of the genus Macrostomum (Macrostomum lignano, M. janickei, and M. mirumnovem). Cytogenetic diploidization in these species is accompanied by intensive chromosomal rearrangements including chromosomes fusions. In this study, we unravel the M. lignano genome organization through generation and sequencing of 2 sublines of the commonly used inbred line of M. lignano (called DV1) differing only in a copy number of the largest chromosome (MLI1). Using nontrivial assembly free comparative analysis of their genomes, we deciphered DNA sequences belonging to MLI1 and validated them by sequencing the pool of microdissected MLI1. Here we presented the uncommon mechanism of genome rediplodization of M. lignano, which consists of (i) presence of 3 subgenomes, which emerged via formation of large fused chromosomes and its variants, and (ii) sustaining their heterozygosity through inter- and intrachromosomal rearrangements.
Collapse
Affiliation(s)
- Kira S Zadesenets
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Nikita I Ershov
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Natalia P Bondar
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolai B Rubtsov
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Dallaire X, Bouchard R, Hénault P, Ulmo-Diaz G, Normandeau E, Mérot C, Bernatchez L, Moore JS. Widespread Deviant Patterns of Heterozygosity in Whole-Genome Sequencing Due to Autopolyploidy, Repeated Elements, and Duplication. Genome Biol Evol 2023; 15:evad229. [PMID: 38085037 PMCID: PMC10752349 DOI: 10.1093/gbe/evad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Most population genomic tools rely on accurate single nucleotide polymorphism (SNP) calling and filtering to meet their underlying assumptions. However, genomic complexity, resulting from structural variants, paralogous sequences, and repetitive elements, presents significant challenges in assembling contiguous reference genomes. Consequently, short-read resequencing studies can encounter mismapping issues, leading to SNPs that deviate from Mendelian expected patterns of heterozygosity and allelic ratio. In this study, we employed the ngsParalog software to identify such deviant SNPs in whole-genome sequencing (WGS) data with low (1.5×) to intermediate (4.8×) coverage for four species: Arctic Char (Salvelinus alpinus), Lake Whitefish (Coregonus clupeaformis), Atlantic Salmon (Salmo salar), and the American Eel (Anguilla rostrata). The analyses revealed that deviant SNPs accounted for 22% to 62% of all SNPs in salmonid datasets and approximately 11% in the American Eel dataset. These deviant SNPs were particularly concentrated within repetitive elements and genomic regions that had recently undergone rediploidization in salmonids. Additionally, narrow peaks of elevated coverage were ubiquitous along all four reference genomes, encompassed most deviant SNPs, and could be partially associated with transposons and tandem repeats. Including these deviant SNPs in genomic analyses led to highly distorted site frequency spectra, underestimated pairwise FST values, and overestimated nucleotide diversity. Considering the widespread occurrence of deviant SNPs arising from a variety of sources, their important impact in estimating population parameters, and the availability of effective tools to identify them, we propose that excluding deviant SNPs from WGS datasets is required to improve genomic inferences for a wide range of taxa and sequencing depths.
Collapse
Affiliation(s)
- Xavier Dallaire
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Centre d'Études Nordiques, Université Laval, Québec, Canada
| | - Raphael Bouchard
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Philippe Hénault
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Gabriela Ulmo-Diaz
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Eric Normandeau
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
- Plateforme de bio-informatique de l’IBIS, Université Laval, Québec, Canada
| | - Claire Mérot
- CNRS, UMR 6553 ECOBIO, Université de Rennes, Rennes, France
| | - Louis Bernatchez
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Jean-Sébastien Moore
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Centre d'Études Nordiques, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| |
Collapse
|
13
|
Clark TC, Naseer S, Gundappa MK, Laurent A, Perquis A, Collet B, Macqueen DJ, Martin SAM, Boudinot P. Conserved and divergent arms of the antiviral response in the duplicated genomes of salmonid fishes. Genomics 2023; 115:110663. [PMID: 37286012 DOI: 10.1016/j.ygeno.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Antiviral innate immunity is orchestrated by the interferon system, which appeared in ancestors of jawed vertebrates. Interferon upregulation induces hundreds of interferon-stimulated-genes (ISGs) with effector or regulatory functions. Here we investigated the evolutionary diversification of ISG responses through comparison of two salmonid fishes, accounting for the impact of sequential whole genome duplications ancestral to teleosts and salmonids. We analysed the transcriptomic response of the IFN pathway in the head kidney of rainbow trout and Atlantic salmon, which separated 25-30 Mya. We identified a large set of ISGs conserved in both species and cross-referenced them with zebrafish and human ISGs. In contrast, around one-third of salmonid ISG lacked orthologs in human, mouse, chicken or frog, and often between rainbow trout and Atlantic salmon, revealing a fast-evolving, lineage-specific arm of the antiviral response. This study also provides a key resource for in-depth functional analysis of ISGs in salmonids of commercial significance.
Collapse
Affiliation(s)
- Thomas C Clark
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France; Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Shahmir Naseer
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France.
| |
Collapse
|
14
|
Redmond AK, Casey D, Gundappa MK, Macqueen DJ, McLysaght A. Independent rediploidization masks shared whole genome duplication in the sturgeon-paddlefish ancestor. Nat Commun 2023; 14:2879. [PMID: 37208359 DOI: 10.1038/s41467-023-38714-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
Whole genome duplication (WGD) is a dramatic evolutionary event generating many new genes and which may play a role in survival through mass extinctions. Paddlefish and sturgeon are sister lineages that both show genomic evidence for ancient WGD. Until now this has been interpreted as two independent WGD events due to a preponderance of duplicate genes with independent histories. Here we show that although there is indeed a plurality of apparently independent gene duplications, these derive from a shared genome duplication event occurring well over 200 million years ago, likely close to the Permian-Triassic mass extinction period. This was followed by a prolonged process of reversion to stable diploid inheritance (rediploidization), that may have promoted survival during the Triassic-Jurassic mass extinction. We show that the sharing of this WGD is masked by the fact that paddlefish and sturgeon lineage divergence occurred before rediploidization had proceeded even half-way. Thus, for most genes the resolution to diploidy was lineage-specific. Because genes are only truly duplicated once diploid inheritance is established, the paddlefish and sturgeon genomes are thus a mosaic of shared and non-shared gene duplications resulting from a shared genome duplication event.
Collapse
Affiliation(s)
- Anthony K Redmond
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Dearbhaile Casey
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Marlétaz F, Timoshevskaya N, Timoshevskiy V, Simakov O, Parey E, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith J, Rokhsar DS. The hagfish genome and the evolution of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537254. [PMID: 37131617 PMCID: PMC10153176 DOI: 10.1101/2023.04.17.537254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Present address: UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
- Deceased
| | - Jeramiah Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
16
|
Dimos B, Phelps M. A homology guide for Pacific salmon genus Oncorhynchus resolves patterns of ohnolog retention, resolution and local adaptation following the salmonid-specific whole-genome duplication event. Ecol Evol 2023; 13:e9994. [PMID: 37091557 PMCID: PMC10119027 DOI: 10.1002/ece3.9994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Salmonid fishes have emerged as a tractable model to study whole-genome duplications (WGDs) as this group has undergone four rounds of WGDs. While most of the salmonid genome has returned to a diploid state, a significant proportion of genes are maintained as duplicates and are referred to as ohnologs. The fact that much of the modern salmonid gene repertoire is comprised of ohnologs, while other genes have returned to their singleton state creates complications for genetic studies by obscuring homology relationships. The difficulty this creates is particularly prominent in Pacific salmonids belonging to genus Oncorhynchus who are the focus of intense genetics-based conservation and management efforts owing to the important ecological and cultural roles these fish play. To address this gap, we generated a homology guide for six species of Oncorhynchus with available genomes and used this guide to describe patterns of ohnolog retention and resolution. Overall, we find that ohnologs comprise approximately half of each species modern gene repertoires, which are functionally enriched for genes involved in DNA binding, while the less numerous singleton genes are heavily enriched in dosage-sensitive processes such as mitochondrial metabolism. Additionally, by reanalyzing published expression data from locally adapted strains of O. mykiss, we show that numerous ohnologs exhibit adaptive expression profiles; however, ohnologs are not more likely to display adaptive signatures than either paralogs or singletons. Finally, we demonstrate the utility of our homology guide by investigating the evolutionary relationship among genes highlighted as playing a role in salmonid life-history traits or gene editing targets.
Collapse
Affiliation(s)
- Bradford Dimos
- Department of Animal SciencesWashington State UniversityPullmanWashingtonUSA
| | - Michael Phelps
- Department of Animal SciencesWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
17
|
Cheng F, Dennis AB, Osuoha JI, Canitz J, Kirschbaum F, Tiedemann R. A new genome assembly of an African weakly electric fish (Campylomormyrus compressirostris, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha. BMC Genomics 2023; 24:129. [PMID: 36941548 PMCID: PMC10029256 DOI: 10.1186/s12864-023-09196-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Teleost fishes comprise more than half of the vertebrate species. Within teleosts, most phylogenies consider the split between Osteoglossomorpha and Euteleosteomorpha/Otomorpha as basal, preceded only by the derivation of the most primitive group of teleosts, the Elopomorpha. While Osteoglossomorpha are generally species poor, the taxon contains the African weakly electric fish (Mormyroidei), which have radiated into numerous species. Within the mormyrids, the genus Campylomormyrus is mostly endemic to the Congo Basin. Campylomormyrus serves as a model to understand mechanisms of adaptive radiation and ecological speciation, especially with regard to its highly diverse species-specific electric organ discharges (EOD). Currently, there are few well-annotated genomes available for electric fish in general and mormyrids in particular. Our study aims at producing a high-quality genome assembly and to use this to examine genome evolution in relation to other teleosts. This will facilitate further understanding of the evolution of the osteoglossomorpha fish in general and of electric fish in particular. RESULTS A high-quality weakly electric fish (C. compressirostris) genome was produced from a single individual with a genome size of 862 Mb, consisting of 1,497 contigs with an N50 of 1,399 kb and a GC-content of 43.69%. Gene predictions identified 34,492 protein-coding genes, which is a higher number than in the two other available Osteoglossomorpha genomes of Paramormyrops kingsleyae and Scleropages formosus. A Computational Analysis of gene Family Evolution (CAFE5) comparing 33 teleost fish genomes suggests an overall faster gene family turnover rate in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha. Moreover, the ratios of expanded/contracted gene family numbers in Osteoglossomorpha are significantly higher than in the other two taxa, except for species that had undergone an additional genome duplication (Cyprinus carpio and Oncorhynchus mykiss). As potassium channel proteins are hypothesized to play a key role in EOD diversity among species, we put a special focus on them, and manually curated 16 Kv1 genes. We identified a tandem duplication in the KCNA7a gene in the genome of C. compressirostris. CONCLUSIONS We present the fourth genome of an electric fish and the third well-annotated genome for Osteoglossomorpha, enabling us to compare gene family evolution among major teleost lineages. Osteoglossomorpha appear to exhibit rapid gene family evolution, with more gene family expansions than contractions. The curated Kv1 gene family showed seven gene clusters, which is more than in other analyzed fish genomes outside Osteoglossomorpha. The KCNA7a, encoding for a potassium channel central for EOD production and modulation, is tandemly duplicated which may related to the diverse EOD observed among Campylomormyrus species.
Collapse
Affiliation(s)
- Feng Cheng
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alice B Dennis
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Laboratory of Adaptive Evolution and Genomics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth & Environnment, University of Namur, Namur, Belgium
| | - Josephine Ijeoma Osuoha
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Julia Canitz
- Senckenberg German Entomological Institute, Müncheberg, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
18
|
Secci-Petretto G, Englmaier GK, Weiss SJ, Antonov A, Persat H, Denys GPJ, Schenekar T, Romanov VI, Taylor EB, Froufe E. Evaluating a species phylogeny using ddRAD SNPs: Cyto-nuclear discordance and introgression in the salmonid genus Thymallus (Salmonidae). Mol Phylogenet Evol 2023; 178:107654. [PMID: 36336233 DOI: 10.1016/j.ympev.2022.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hybridization and introgression are very common among freshwater fishes due to the dynamic nature of hydrological landscapes. Cyclic patterns of allopatry and secondary contact provide numerous opportunities for interspecific gene flow, which can lead to discordant paths of evolution for mitochondrial and nuclear genomes. Here, we used double digest restriction-site associated DNA sequencing (ddRADseq) to obtain a genome-wide single nucleotide polymorphism (SNP) dataset comprehensive for allThymallus (Salmonidae)species to infer phylogenetic relationships and evaluate potential recent and historical gene flow among species. The newly obtained nuclear phylogeny was largely concordant with a previously published mitogenome-based topology but revealed a few cyto-nuclear discordances. These incongruencies primarily involved the placement of internal nodes rather than the resolution of species, except for one European species where anthropogenic stock transfers are thought to be responsible for the observed pattern. The analysis of four contact zones where multiple species are found revealed a few cases of mitochondrial capture and limited signals of nuclear introgression. Interestingly, the mechanisms restricting interspecific gene flow might be distinct; while in zones of secondary contact, small-scale physical habitat separation appeared as a limiting factor, biologically based reinforcement mechanisms are presumed to be operative in areas where species presumably evolved in sympatry. Signals of historical introgression were largely congruent with the routes of species dispersal previously inferred from mitogenome data. Overall, the ddRADseq dataset provided a robust phylogenetic reconstruction of the genus Thymallus including new insights into historical hybridization and introgression, opening up new questions concerning their evolutionary history.
Collapse
Affiliation(s)
- Giulia Secci-Petretto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Portugal
| | - Gernot K Englmaier
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria
| | - Steven J Weiss
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria.
| | - Alexander Antonov
- Institute of Water and Ecological Problems, Far East Branch, Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680063 Russia
| | - Henri Persat
- Société Française d'Ichthyologie, Muséum National d'Histoire Naturelle Paris, France, 57 rue Cuvier CP26, 75005 Paris, France
| | - Gael P J Denys
- Unité Patrimoine Naturel - Centre d'expertise et de données (2006 OFB - CNRS - MNHN), Muséum national d'Histoire naturelle, 36 rue Geoffroy Saint-Hilaire CP 41, 75005 Paris, France; Biologie des organismes et écosystèmes aquatiques (BOREA 8067), MNHN, CNRS, IRD, SU, UCN, UA, 57 rue Cuvier CP26, 75005 Paris, France
| | - Tamara Schenekar
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Eric B Taylor
- Department of Zoology, Biodiversity Research Centre and Beaty Biodiversity Museum, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z, Canada
| | - Elsa Froufe
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
19
|
Parey E, Louis A, Montfort J, Guiguen Y, Crollius HR, Berthelot C. An atlas of fish genome evolution reveals delayed rediploidization following the teleost whole-genome duplication. Genome Res 2022; 32:1685-1697. [PMID: 35961774 PMCID: PMC9528989 DOI: 10.1101/gr.276953.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Teleost fishes are ancient tetraploids descended from an ancestral whole-genome duplication that may have contributed to the impressive diversification of this clade. Whole-genome duplications can occur via self-doubling (autopolyploidy) or via hybridization between different species (allopolyploidy). The mode of tetraploidization conditions evolutionary processes by which duplicated genomes return to diploid meiotic pairing, and subsequent genetic divergence of duplicated genes (cytological and genetic rediploidization). How teleosts became tetraploid remains unresolved, leaving a fundamental gap in the interpretation of their functional evolution. As a result of the whole-genome duplication, identifying orthologous and paralogous genomic regions across teleosts is challenging, hindering genome-wide investigations into their polyploid history. Here, we combine tailored gene phylogeny methodology together with a state-of-the-art ancestral karyotype reconstruction to establish the first high-resolution comparative atlas of paleopolyploid regions across 74 teleost genomes. We then leverage this atlas to investigate how rediploidization occurred in teleosts at the genome-wide level. We uncover that some duplicated regions maintained tetraploidy for more than 60 million years, with three chromosome pairs diverging genetically only after the separation of major teleost families. This evidence suggests that the teleost ancestor was an autopolyploid. Further, we find evidence for biased gene retention along several duplicated chromosomes, contradicting current paradigms that asymmetrical evolution is specific to allopolyploids. Altogether, our results offer novel insights into genome evolutionary dynamics following ancient polyploidizations in vertebrates.
Collapse
Affiliation(s)
- Elise Parey
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- INRAE, LPGP, 35000, Rennes, France
| | - Alexandra Louis
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | | | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
20
|
Taylor RS, Ruiz Daniels R, Dobie R, Naseer S, Clark TC, Henderson NC, Boudinot P, Martin SA, Macqueen DJ. Single cell transcriptomics of Atlantic salmon ( Salmo salar L.) liver reveals cellular heterogeneity and immunological responses to challenge by Aeromonas salmonicida. Front Immunol 2022; 13:984799. [PMID: 36091005 PMCID: PMC9450062 DOI: 10.3389/fimmu.2022.984799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nuclei isolated from the liver of Atlantic salmon (Salmo salar L.) contrasting control fish with those challenged with a pathogenic strain of Aeromonas salmonicida, a problematic bacterial pathogen in global aquaculture. We identified the major liver cell types and their sub-populations, revealing poor conservation of many hepatic cell marker genes utilized in mammals, while identifying novel heterogeneity within the hepatocyte, lymphoid, and myeloid lineages. This included polyploid hepatocytes, multiple T cell populations including γδ T cells, and candidate populations of monocytes/macrophages and dendritic cells. A dominant hepatocyte population radically remodeled its transcriptome following infection to activate the acute phase response and other defense functions, while repressing routine functions such as metabolism. These defense-specialized hepatocytes showed strong activation of genes controlling protein synthesis and secretion, presumably to support the release of acute phase proteins into circulation. The infection response further involved up-regulation of numerous genes in an immune-cell specific manner, reflecting functions in pathogen recognition and killing, antigen presentation, phagocytosis, regulation of inflammation, B cell differentiation and T cell activation. Overall, this study greatly enhances our understanding of the multifaceted role played by liver immune and non-immune cells in host defense and metabolic remodeling following infection and provides many novel cell-specific marker genes to empower future studies of this organ in fishes.
Collapse
Affiliation(s)
- Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Shahmir Naseer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thomas C. Clark
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Samuel A.M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
McElroy KE, Bankers L, Soper D, Hehman G, Boore JL, Logsdon JM, Neiman M. Patterns of gene expression in ovaries of sexual vs. asexual lineages of a freshwater snail. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Why sexual reproduction is so common when asexual reproduction should be much more efficient and less costly remains an open question in evolutionary biology. Comparisons between otherwise similar sexual and asexual taxa allow us to characterize the genetic architecture underlying asexuality, which can, in turn, illuminate how this reproductive mode transition occurred and the mechanisms by which it is maintained or disrupted. Here, we used transcriptome sequencing to compare patterns of ovarian gene expression between actively reproducing obligately sexual and obligately asexual females from multiple lineages of Potamopyrgus antipodarum, a freshwater New Zealand snail characterized by frequent separate transitions to asexuality and coexistence of otherwise similar sexual and asexual lineages. We also used these sequence data to evaluate whether population history accounts for variation in patterns of gene expression. We found that source population was a major source of gene expression variation, and likely more influential than reproductive mode. This outcome for these common garden-raised snails is strikingly similar to earlier results from field-collected snails. While we did not identify a likely set of candidate genes from expression profiles that could plausibly explain how transitions to asexuality occurred, we identified around 1,000 genes with evidence of differential expression between sexual and asexual reproductive modes, and 21 genes that appear to exhibit consistent expression differences between sexuals and asexuals across genetic backgrounds. This second smaller set of genes provides a good starting point for further exploration regarding a potential role in the transition to asexual reproduction. These results mark the first effort to characterize the causes of asexuality in P. antipodarum, demonstrate the apparently high heritability of gene expression patterns in this species, and hint that for P. antipodarum, transitions to asexuality might not necessarily be strongly associated with broad changes in gene expression.
Collapse
|
22
|
Storer JM, Hubley R, Rosen J, Smit AFA. Methodologies for the De novo Discovery of Transposable Element Families. Genes (Basel) 2022; 13:709. [PMID: 35456515 PMCID: PMC9025800 DOI: 10.3390/genes13040709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery and characterization of transposable element (TE) families are crucial tasks in the process of genome annotation. Careful curation of TE libraries for each organism is necessary as each has been exposed to a unique and often complex set of TE families. De novo methods have been developed; however, a fully automated and accurate approach to the development of complete libraries remains elusive. In this review, we cover established methods and recent developments in de novo TE analysis. We also present various methodologies used to assess these tools and discuss opportunities for further advancement of the field.
Collapse
Affiliation(s)
| | | | | | - Arian F. A. Smit
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.M.S.); (R.H.); (J.R.)
| |
Collapse
|