1
|
Wolf M, de Jong MJ, Janke A. Ocean-Wide Conservation Genomics of Blue Whales Suggest New Northern Hemisphere Subspecies. Mol Ecol 2025; 34:e17619. [PMID: 39688592 DOI: 10.1111/mec.17619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes. Population genomic analyses revealed distinctly differentiated clusters and limited genetic exchange among all three populations, indicating a high degree of isolation between the Northern Hemisphere populations. Nevertheless, the genomic and mitogenomic distances between all blue whale populations, including the Western Australian pygmy blue whale, are low when compared to other inter-subspecies distances in cetaceans. Given that the Western Australian pygmy blue whale is an already recognised subspecies and further supported by previously reported acoustic differences, a proposal is made to treat the two Northern Hemisphere populations as separate subspecies, namely Balaenoptera musculus musculus (North Atlantic blue whale) and Balaenoptera musculus sulfureus (North Pacific blue whale). Furthermore, a first molecular viability assessment of all three populations not only found a generally high genomic diversity among blue whales but also a lack of alleles at low frequency, non-neutral evolution and increased effects of inbreeding. This suggests a substantial anthropogenic impact on the genotypes of blue whales and calls for careful monitoring in future conservation plans.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Evolution and Biodiversity (IEB), University of Muenster, Muenster, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Menno J de Jong
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Genty G, Sandoval-Castillo J, Beheregaray LB, Möller LM. Into the Blue: Exploring genetic mechanisms behind the evolution of baleen whales. Gene 2024; 929:148822. [PMID: 39103058 DOI: 10.1016/j.gene.2024.148822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Marine ecosystems are ideal for studying evolutionary adaptations involved in lineage diversification due to few physical barriers and reduced opportunities for strict allopatry compared to terrestrial ecosystems. Cetaceans (whales, dolphins, and porpoises) are a diverse group of mammals that successfully adapted to various habitats within the aquatic environment around 50 million years ago. While the overall adaptive transition from terrestrial to fully aquatic species is relatively well understood, the radiation of modern whales is still unclear. Here high-quality genomes derived from previously published data were used to identify genomic regions that potentially underpinned the diversification of baleen whales (Balaenopteridae). A robust molecular phylogeny was reconstructed based on 10,159 single copy and complete genes for eight mysticetes, seven odontocetes and two cetacean outgroups. Analysis of positive selection across 3,150 genes revealed that balaenopterids have undergone numerous idiosyncratic and convergent genomic variations that may explain their diversification. Genes associated with aging, survival and homeostasis were enriched in all species. Additionally, positive selection on genes involved in the immune system were disclosed for the two largest species, blue and fin whales. Such genes can potentially be ascribed to their morphological evolution, allowing them to attain greater length and increased cell number. Further evidence is presented about gene regions that might have contributed to the extensive anatomical changes shown by cetaceans, including adaptation to distinct environments and diets. This study contributes to our understanding of the genomic basis of diversification in baleen whales and the molecular changes linked to their adaptive radiation, thereby enhancing our understanding of cetacean evolution.
Collapse
Affiliation(s)
- Gabrielle Genty
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Luciana M Möller
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
3
|
Furni F, Secchi ER, Speller C, DenDanto D, Ramp C, Larsen F, Mizroch S, Robbins J, Sears R, Urbán R J, Bérubé M, Palsbøll PJ. Phylogenomics and Pervasive Genome-Wide Phylogenetic Discordance Among Fin Whales (Balaenoptera physalus). Syst Biol 2024; 73:873-885. [PMID: 39158356 PMCID: PMC11637684 DOI: 10.1093/sysbio/syae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
Phylogenomics has the power to uncover complex phylogenetic scenarios across the genome. In most cases, no single topology is reflected across the entire genome as the phylogenetic signal differs among genomic regions due to processes, such as introgression and incomplete lineage sorting. Baleen whales are among the largest vertebrates on Earth with a high dispersal potential in a relatively unrestricted habitat, the oceans. The fin whale (Balaenoptera physalus) is one of the most enigmatic baleen whale species, currently divided into four subspecies. It has been a matter of debate whether phylogeographic patterns explain taxonomic variation in fin whales. Here we present a chromosome-level whole genome analysis of the phylogenetic relationships among fin whales from multiple ocean basins. First, we estimated concatenated and consensus phylogenies for both the mitochondrial and nuclear genomes. The consensus phylogenies based upon the autosomal genome uncovered monophyletic clades associated with each ocean basin, aligning with the current understanding of subspecies division. Nevertheless, discordances were detected in the phylogenies based on the Y chromosome, mitochondrial genome, autosomal genome and X chromosome. Furthermore, we detected signs of introgression and pervasive phylogenetic discordance across the autosomal genome. This complex phylogenetic scenario could be explained by a puzzle of introgressive events, not yet documented in fin whales. Similarly, incomplete lineage sorting and low phylogenetic signal could lead to such phylogenetic discordances. Our study reinforces the pitfalls of relying on concatenated or single locus phylogenies to determine taxonomic relationships below the species level by illustrating the underlying nuances that some phylogenetic approaches may fail to capture. We emphasize the significance of accurate taxonomic delineation in fin whales by exploring crucial information revealed through genome-wide assessments.
Collapse
Affiliation(s)
- Fabricio Furni
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brasil
| | - Camilla Speller
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | | | - Christian Ramp
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
- Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Finn Larsen
- National Institute of Aquatic Resources, Kongens Lyngby, Denmark
| | - Sally Mizroch
- National Marine Mammal Laboratory, US National Marine Fisheries Service, Seattle, WA, USA
| | | | - Richard Sears
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
| | - Jorge Urbán R
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | - Martine Bérubé
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Center for Coastal Studies, Provincetown, MAUSA
| | - Per J Palsbøll
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Center for Coastal Studies, Provincetown, MAUSA
| |
Collapse
|
4
|
de Greef E, Müller C, Thorstensen MJ, Ferguson SH, Watt CA, Marcoux M, Petersen SD, Garroway CJ. Unraveling the Genetic Legacy of Commercial Whaling and Population Dynamics in Arctic Bowhead Whales and Narwhals. GLOBAL CHANGE BIOLOGY 2024; 30:e17528. [PMID: 39400406 DOI: 10.1111/gcb.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Assessing genetic structure and diversity in wildlife is particularly important in the context of climate change. The Arctic is rapidly warming, and endemic species must adapt quickly or face significant threats to persistence. Bowhead whales (Balaena mysticetus) and narwhals (Monodon monoceros) are two long-lived Arctic species with similar habitat requirements and are often seen together in the Canadian Arctic. Although their ranges overlap extensively, bowhead whales experienced significantly greater commercial whaling mortality than narwhals over several centuries. The similar habitat requirements but different harvest histories of these two species provide an opportunity to examine present-day genetic diversity and the demographic and genetic consequences of commercial whaling. We whole-genome resequenced contemporary Canadian Arctic bowhead whales and narwhals to delineate population structure and reconstruct demographic history. We found higher genetic diversity in bowhead whales compared to narwhals. However, bowhead whale effective population size sharply declined contemporaneously with the intense commercial whaling period. Narwhals, in contrast, exhibited recent growth in effective population size, likely reflecting exposure to limited opportunistic commercial harvest. Bowhead whales will likely continue to experience significant genetic drift in the future, leading to the erosion of genetic diversity. In contrast, narwhals do not seem to be at imminent risk of losing their current levels of genetic variation due to their long-term low effective population size and lack of evidence for a recent decline. This work highlights the importance of considering population trajectories in addition to genetic diversity when assessing the genetics of populations for conservation and management purposes.
Collapse
Affiliation(s)
- Evelien de Greef
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Müller
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steven H Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Cortney A Watt
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Marianne Marcoux
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Stephen D Petersen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Conservation and Research Department, Assiniboine Park Zoo, Winnipeg, Manitoba, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Crossman CA, Fontaine MC, Frasier TR. A comparison of genomic diversity and demographic history of the North Atlantic and Southwest Atlantic southern right whales. Mol Ecol 2024; 33:e17099. [PMID: 37577945 DOI: 10.1111/mec.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Right whales (genus Eubalaena) were among the first, and most extensively pursued, targets of commercial whaling. However, understanding the impacts of this persecution requires knowledge of the demographic histories of these species prior to exploitation. We used deep whole genome sequencing (~40×) of 12 North Atlantic (E. glacialis) and 10 Southwest Atlantic southern (E. australis) right whales to quantify contemporary levels of genetic diversity and infer their demographic histories over time. Using coalescent- and identity-by-descent-based modelling to estimate ancestral effective population sizes from genomic data, we demonstrate that North Atlantic right whales have lived with smaller effective population sizes (Ne) than southern right whales in the Southwest Atlantic since their divergence and describe the decline in both populations around the time of whaling. North Atlantic right whales exhibit reduced genetic diversity and longer runs of homozygosity leading to higher inbreeding coefficients compared to the sampled population of southern right whales. This study represents the first comprehensive assessment of genome-wide diversity of right whales in the western Atlantic and underscores the benefits of high coverage, genome-wide datasets to help resolve long-standing questions about how historical changes in effective population size over different time scales shape contemporary diversity estimates. This knowledge is crucial to improve our understanding of the right whales' history and inform our approaches to address contemporary conservation issues. Understanding and quantifying the cumulative impact of long-term small Ne, low levels of diversity and recent inbreeding on North Atlantic right whale recovery will be important next steps.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier, CNRS 5290, IRD 224), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Timothy R Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Skovrind M, Louis M, Ferguson SH, Glazov DM, Litovka DI, Loseto L, Meschersky IG, Miller MM, Petr M, Postma L, Rozhnov VV, Scott M, Westbury MV, Szpak P, Friesen TM, Lorenzen ED. Elucidating the sustainability of 700 y of Inuvialuit beluga whale hunting in the Mackenzie River Delta, Northwest Territories, Canada. Proc Natl Acad Sci U S A 2024; 121:e2405993121. [PMID: 39136992 PMCID: PMC11348011 DOI: 10.1073/pnas.2405993121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/08/2024] [Indexed: 08/29/2024] Open
Abstract
Beluga whales play a critical role in the subsistence economies and cultural heritage of Indigenous communities across the Arctic, yet the effects of Indigenous hunting on beluga whales remain unknown. Here, we integrate paleogenomics, genetic simulations, and stable δ13C and δ15N isotope analysis to investigate 700 y of beluga subsistence hunting in the Mackenzie Delta area of northwestern Canada. Genetic identification of the zooarchaeological remains, which is based on radiocarbon dating, span three time periods (1290 to 1440 CE; 1450 to 1650 CE; 1800 to 1870 CE), indicates shifts across time in the sex ratio of the harvested belugas. The equal number of females and males harvested in 1450 to 1650 CE versus more males harvested in the two other time periods may reflect changes in hunting practices or temporal shifts in beluga availability. We find temporal shifts and sex-based differences in δ13C of the harvested belugas across time, suggesting historical adaptability in the foraging ecology of the whales. We uncovered distinct mitochondrial diversity unique to the Mackenzie Delta belugas, but found no changes in nuclear genomic diversity nor any substructuring across time. Our findings indicate the genomic stability and continuity of the Mackenzie Delta beluga population across the 700 y surveyed, indicating the impact of Inuvialuit subsistence harvests on the genetic diversity of contemporary beluga individuals has been negligible.
Collapse
Affiliation(s)
- Mikkel Skovrind
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen1350, Denmark
| | - Marie Louis
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen1350, Denmark
- Greenland Institute of Natural Resources, Nuuk3900, Greenland
| | | | - Dmitry M. Glazov
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Science, Moscow119071, Russia
| | - Dennis I. Litovka
- Autonomous nonprofit organisation “Chukotka Arctic Scientific Center”, Anadyr689000, Russia
| | - Lisa Loseto
- Fisheries and Oceans Canada, Winnipeg, MBR3T 2N6, Canada
- Department of Environment and Geography, Centre for Earth Observation Science, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Ilya G. Meschersky
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Science, Moscow119071, Russia
| | - Mariah M. Miller
- Department of Anthropology, Trent University, Peterborough, ONK9L 0G2, Canada
| | - Martin Petr
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen1350, Denmark
| | - Lianne Postma
- Fisheries and Oceans Canada, Winnipeg, MBR3T 2N6, Canada
| | - Viatcheslav V. Rozhnov
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Science, Moscow119071, Russia
| | - Michael Scott
- Department of Anthropology, Trent University, Peterborough, ONK9L 0G2, Canada
| | - Michael V. Westbury
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen1350, Denmark
| | - Paul Szpak
- Department of Anthropology, Trent University, Peterborough, ONK9L 0G2, Canada
| | - T. Max Friesen
- Department of Anthropology, University of Toronto, Toronto, ONM5S 2S2, Canada
| | - Eline D. Lorenzen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen1350, Denmark
| |
Collapse
|
7
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
8
|
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography. Mol Biol Evol 2024; 41:msae036. [PMID: 38376487 PMCID: PMC10919930 DOI: 10.1093/molbev/msae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | | | | | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maylie Gonzales
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cara Argus
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, Bioinformatics Resource Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Scott A Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - Adam M Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Ionkov
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Aimee Lang
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Magnus Wolf
- Institute for Evolution and Biodiversity (IEB), University of Muenster, 48149, Muenster, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
9
|
Andrade D, García-Cegarra AM, Docmac F, Ñacari LA, Harrod C. Multiple stable isotopes (C, N & S) provide evidence for fin whale (Balaenoptera physalus) trophic ecology and movements in the Humboldt Current System of northern Chile. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106178. [PMID: 37776807 DOI: 10.1016/j.marenvres.2023.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Reflecting the intense coastal upwelling and high primary productivity characteristic of the Humboldt Current System (HCS), the northern coast of Chile supports a diverse and productive community of marine consumers, including worldwide important pelagic fisheries resources. Although marine mammals are relatively understudied in the region, recent studies have demonstrated that fin whale (Balaenoptera physalus) is the most frequently encountered whale species, and forages in these waters year-round. However, a current lack of information limits our understanding of whether fin whales actively feed and/or remain resident in these waters or whether whales are observed feeding as they migrate along this part of the Pacific. Here, we use stable isotope ratios of carbon, nitrogen and sulphur of fin whale skin samples collected in early summer 2020 (n = 18) and in late winter 2021 (n = 22) to examine evidence of temporal isotopic shifts that could provide information on potential migratory movements and to estimate likely consumption patterns of putative prey (i.e. zooplankton, krill, pelagic fishes and Pleuroncodes sp.). We also analysed prey items in fin whale faecal plumes (n = 8) collected during the study period. Stable isotope data showed significant differences in the isotopic values of fin whales from summer and winter. On average, summer individuals were depleted in 15N and 34S relative to those sampled during winter. Whales sampled in summer showed greater isotopic variance than winter individuals, with several showing values that were atypical for consumers from the HCS. During winter, fin whales showed far less inter-individual variation in stable isotope values, and all individuals had values indicative of prey consumption in the region. Analysis of both stable isotopes and faeces indicated that fin whales sighted off the Mejillones Peninsula fed primarily on krill (SIA median contribution = 32%; IRI = 65%) and, to a lesser extent, zooplankton (SIA zooplankton = 29%; IRI copepod = 33%). These are the first isotopic-based data regarding the trophic ecology of fin whales in the north of Chile. They provide evidence that fin whales are seasonally resident in the area, including individuals with values that likely originated outside the study area. The information presented here serves as a baseline for future work. It highlights that many aspects of the ecology of fin whales in the Humboldt Current and wider SE Pacific still need to be clarified.
Collapse
Affiliation(s)
- Diego Andrade
- Programa de Magíster en Ecología de Sistemas Acuáticos, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta Chile, Chile; Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Chile
| | - Ana M García-Cegarra
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Chile; Laboratorio de Estudio de Megafauna Marina, CETALAB, Universidad de Antofagasta, Chile.
| | - Felipe Docmac
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Chile; Universidad de Antofagasta Stable Isotope Facility, Instituto Antofagasta, Universidad de Antofagasta, Chile; INVASAL, Concepción, Chile
| | - Luis A Ñacari
- Universidad de Antofagasta Stable Isotope Facility, Instituto Antofagasta, Universidad de Antofagasta, Chile; INVASAL, Concepción, Chile; Laboratorio de Ecología y Evolución de Parásitos, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Chile
| | - Chris Harrod
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Chile; Universidad de Antofagasta Stable Isotope Facility, Instituto Antofagasta, Universidad de Antofagasta, Chile; INVASAL, Concepción, Chile
| |
Collapse
|
10
|
Nigenda-Morales SF, Lin M, Nuñez-Valencia PG, Kyriazis CC, Beichman AC, Robinson JA, Ragsdale AP, Urbán R J, Archer FI, Viloria-Gómora L, Pérez-Álvarez MJ, Poulin E, Lohmueller KE, Moreno-Estrada A, Wayne RK. The genomic footprint of whaling and isolation in fin whale populations. Nat Commun 2023; 14:5465. [PMID: 37699896 PMCID: PMC10497599 DOI: 10.1038/s41467-023-40052-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/10/2023] [Indexed: 09/14/2023] Open
Abstract
Twentieth century industrial whaling pushed several species to the brink of extinction, with fin whales being the most impacted. However, a small, resident population in the Gulf of California was not targeted by whaling. Here, we analyzed 50 whole-genomes from the Eastern North Pacific (ENP) and Gulf of California (GOC) fin whale populations to investigate their demographic history and the genomic effects of natural and human-induced bottlenecks. We show that the two populations diverged ~16,000 years ago, after which the ENP population expanded and then suffered a 99% reduction in effective size during the whaling period. In contrast, the GOC population remained small and isolated, receiving less than one migrant per generation. However, this low level of migration has been crucial for maintaining its viability. Our study exposes the severity of whaling, emphasizes the importance of migration, and demonstrates the use of genome-based analyses and simulations to inform conservation strategies.
Collapse
Affiliation(s)
- Sergio F Nigenda-Morales
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico.
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92096, USA.
| | - Meixi Lin
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Paulina G Nuñez-Valencia
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Jacqueline A Robinson
- Institute for Human Genetics, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Aaron P Ragsdale
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico
- Department of Integrative Biology, University of Wisconsin, Madison, WI, 53706, USA
| | - Jorge Urbán R
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS), La Paz, Baja California Sur, Mexico
| | - Frederick I Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, La Jolla, CA, 92037, USA
| | - Lorena Viloria-Gómora
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS), La Paz, Baja California Sur, Mexico
| | - María José Pérez-Álvarez
- Escuela de Medicina Veterinaria, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad de Chile, Santiago, Chile
| | - Elie Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad de Chile, Santiago, Chile
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Andrés Moreno-Estrada
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico.
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Wolf M, Zapf K, Gupta DK, Hiller M, Árnason Ú, Janke A. The genome of the pygmy right whale illuminates the evolution of rorquals. BMC Biol 2023; 21:79. [PMID: 37041515 PMCID: PMC10091562 DOI: 10.1186/s12915-023-01579-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Baleen whales are a clade of gigantic and highly specialized marine mammals. Their genomes have been used to investigate their complex evolutionary history and to decipher the molecular mechanisms that allowed them to reach these dimensions. However, many unanswered questions remain, especially about the early radiation of rorquals and how cancer resistance interplays with their huge number of cells. The pygmy right whale is the smallest and most elusive among the baleen whales. It reaches only a fraction of the body length compared to its relatives and it is the only living member of an otherwise extinct family. This placement makes the pygmy right whale genome an interesting target to update the complex phylogenetic past of baleen whales, because it splits up an otherwise long branch that leads to the radiation of rorquals. Apart from that, genomic data of this species might help to investigate cancer resistance in large whales, since these mechanisms are not as important for the pygmy right whale as in other giant rorquals and right whales. RESULTS Here, we present a first de novo genome of the species and test its potential in phylogenomics and cancer research. To do so, we constructed a multi-species coalescent tree from fragments of a whole-genome alignment and quantified the amount of introgression in the early evolution of rorquals. Furthermore, a genome-wide comparison of selection rates between large and small-bodied baleen whales revealed a small set of conserved candidate genes with potential connections to cancer resistance. CONCLUSIONS Our results suggest that the evolution of rorquals is best described as a hard polytomy with a rapid radiation and high levels of introgression. The lack of shared positive selected genes between different large-bodied whale species supports a previously proposed convergent evolution of gigantism and hence cancer resistance in baleen whales.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
| | - Konstantin Zapf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
| | - Deepak Kumar Gupta
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
| | - Michael Hiller
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-Von-Laue-Str. 9, Frankfurt Am Main, Germany
| | - Úlfur Árnason
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurosurgery, Skane University Hospital in Lund, Lund, Sweden
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
| |
Collapse
|