1
|
Emelianova K, Hawranek A, Eriksson MC, Wolfe TM, Paun O. Ecological divergence of sibling allopolyploid marsh orchids is associated with species specific plasticity and distinct fungal communities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70001. [PMID: 39968573 PMCID: PMC11836771 DOI: 10.1111/tpj.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Phenotypic plasticity, the dynamic adjustment of traits to environmental variations, is crucial for enabling species to exploit broader niches and withstand suboptimal conditions. This adaptability is particularly relevant for newly formed allopolyploids, which possess redundant gene copies and must become established in diverse environments distinct from their parents and other relatives. By evaluating gene expression and root mycobiome among two ecologically divergent sibling allopolyploid marsh orchids (Dactylorhiza majalis and D. traunsteineri) in reciprocal transplants at localities where both species are native, we aimed to understand the drivers of species persistence in the face of interspecific gene flow. Despite consistent abiotic differences characterising the alternative environments at each locality, the majority of gene expression differences between the allopolyploids appears to be plastic. Ecologically relevant processes, such as photosynthesis and transmembrane transport, include some genes that are differentially expressed between the two orchids regardless of the environment, while others change their activity plastically in one species or the other. This suggests that although plasticity helps define the specific ecological range of each sibling allopolyploid, it also mediates gene flow between them, thereby preventing differentiation. Extending our investigations to the root mycobiome, we uncover more diverse fungal communities for either species when grown in the environment with nutrient-poor soils, indicating that both abiotic and biotic factors drive the distribution of sibling marsh orchids. Altogether, our results indicate that plasticity can simultaneously promote diversification and homogenisation of lineages, influencing the establishment and persistence of recurrently formed allopolyploid species.
Collapse
Affiliation(s)
- Katie Emelianova
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Anna‐Sophie Hawranek
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Mimmi C. Eriksson
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), BOKUPeter‐Jordan‐Straße 82/IViennaA‐1190Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| |
Collapse
|
2
|
Russo A, Alessandrini M, El Baidouri M, Frei D, Galise TR, Gaidusch L, Oertel HF, Garcia Morales SE, Potente G, Tian Q, Smetanin D, Bertrand JAM, Onstein RE, Panaud O, Frey JE, Cozzolino S, Wicker T, Xu S, Grossniklaus U, Schlüter PM. Genome of the early spider-orchid Ophrys sphegodes provides insights into sexual deception and pollinator adaptation. Nat Commun 2024; 15:6308. [PMID: 39060266 PMCID: PMC11282089 DOI: 10.1038/s41467-024-50622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| | - Mattia Alessandrini
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Moaine El Baidouri
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Daniel Frei
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Lara Gaidusch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Hannah F Oertel
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sara E Garcia Morales
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Qin Tian
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dmitry Smetanin
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Joris A M Bertrand
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Renske E Onstein
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Leipzig, Germany
| | - Olivier Panaud
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Jürg E Frey
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, Mainz, Germany
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
3
|
Rurik I, Melichárková A, Gbúrová Štubová E, Kučera J, Kochjarová J, Paun O, Vďačný P, Slovák M. Homoplastic versus xenoplastic evolution: exploring the emergence of key intrinsic and extrinsic traits in the montane genus Soldanella (Primulaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:753-765. [PMID: 38217489 DOI: 10.1111/tpj.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Specific ecological conditions in the high mountain environment exert a selective pressure that often leads to convergent trait evolution. Reticulations induced by incomplete lineage sorting and introgression can lead to discordant trait patterns among gene and species trees (hemiplasy/xenoplasy), providing a false illusion that the traits under study are homoplastic. Using phylogenetic species networks, we explored the effect of gene exchange on trait evolution in Soldanella, a genus profoundly influenced by historical introgression. At least three features evolved independently multiple times: the single-flowered dwarf phenotype, dysploid cytotype, and ecological generalism. The present analyses also indicated that the recurring occurrence of stoloniferous growth might have been prompted by an introgression event between an ancestral lineage and a still extant species, although its emergence via convergent evolution cannot be completely ruled out. Phylogenetic regression suggested that the independent evolution of larger genomes in snowbells is most likely a result of the interplay between hybridization events of dysploid and euploid taxa and hostile environments at the range margins of the genus. The emergence of key intrinsic and extrinsic traits in snowbells has been significantly impacted not only by convergent evolution but also by historical and recent introgression events.
Collapse
Affiliation(s)
- Ivan Rurik
- Department of Zoology, Comenius University Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Andrea Melichárková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
| | - Eliška Gbúrová Štubová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
- Slovak National Museum, Natural History Museum, Vajanského nábrežie 2, 810 06, Bratislava, Slovak Republic
| | - Jaromír Kučera
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
| | - Judita Kochjarová
- Department of Phytology, Faculty of Forestry, Technical University Zvolen, Masarykova 24, 960 53, Zvolen, Slovak Republic
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Peter Vďačný
- Department of Zoology, Comenius University Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
- Department of Botany, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| |
Collapse
|
4
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Wolfe TM, Balao F, Trucchi E, Bachmann G, Gu W, Baar J, Hedrén M, Weckwerth W, Leitch AR, Paun O. Recurrent allopolyploidizations diversify ecophysiological traits in marsh orchids (Dactylorhiza majalis s.l.). Mol Ecol 2023; 32:4777-4790. [PMID: 37452724 PMCID: PMC10947288 DOI: 10.1111/mec.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups.
Collapse
Affiliation(s)
- Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Francisco Balao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biologia Vegetal y EcologiaUniversity of SevilleSevillaSpain
| | - Emiliano Trucchi
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Marche Polytechnic UniversityAnconaItaly
| | - Gert Bachmann
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS)University of ViennaViennaAustria
| | - Wenjia Gu
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS)University of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|