1
|
de Jager D, Möller M, Hoal E, van Helden P, Glanzmann B, Harper C, Bloomer P. A Highly Divergent Mitochondrial Genome in Extant Cape Buffalo From Addo Elephant National Park, South Africa. Ecol Evol 2025; 15:e70640. [PMID: 39790726 PMCID: PMC11717484 DOI: 10.1002/ece3.70640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
The reduced cost of next-generation sequencing (NGS) has allowed researchers to generate nuclear and mitochondrial genome data to gain deeper insights into the phylogeography, evolutionary history and biology of non-model species. While the Cape buffalo (Syncerus caffer caffer) has been well-studied across its range with traditional genetic markers over the last 25 years, researchers are building on this knowledge by generating whole genome, population-level data sets to improve understanding of the genetic composition and evolutionary history of the species. Using publicly available NGS data, we assembled 40 Cape buffalo mitochondrial genomes (mitogenomes) from four protected areas in South Africa, expanding the geographical range and almost doubling the number of mitogenomes available for this species. Coverage of the mitogenomes ranged from 154 to 1036X. Haplotype and nucleotide diversity for Kruger National Park (n = 15) and Mokala National Park (n = 5) were similar to diversity levels in southern and eastern Africa. Hluhluwe-iMfolozi Park (n = 15) had low levels of genetic diversity, with only four haplotypes detected, reflecting its past bottleneck. Addo Elephant National Park (n = 5) had the highest nucleotide diversity of all populations across Africa, which was unexpected, as it is known to have low nuclear diversity. This diversity was driven by a highly divergent mitogenome from one sample, which was subsequently identified in another sample via Sanger sequencing of the cytochrome b gene. Using a fossil-calibrated phylogenetic analysis, we estimated that this lineage diverged from all other Cape buffalo lineages approximately 2.51 million years ago. We discuss several potential sources of this mitogenome but propose that it most likely originated through introgressive hybridisation with an extinct buffalo species, either S. acoelotus or S. antiquus. We conclude by discussing the conservation consequences of this finding for the Addo Elephant National Park population, proposing careful genetic management to prevent inbreeding depression while maintaining this highly unique diversity.
Collapse
Affiliation(s)
- Deon de Jager
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
- Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Marlo Möller
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
- Centre for Bioinformatics and Computational BiologyStellenbosch UniversityStellenboschSouth Africa
| | - Eileen Hoal
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Paul van Helden
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Brigitte Glanzmann
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Cindy Harper
- Veterinary Genetics Laboratory, Faculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
2
|
Hempel E, Faith JT, Preick M, de Jager D, Barish S, Hartmann S, Grau JH, Moodley Y, Gedman G, Pirovich KM, Bibi F, Kalthoff DC, Bocklandt S, Lamm B, Dalén L, Westbury MV, Hofreiter M. Colonial-driven extinction of the blue antelope despite genomic adaptation to low population size. Curr Biol 2024; 34:2020-2029.e6. [PMID: 38614080 DOI: 10.1016/j.cub.2024.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Low genomic diversity is generally indicative of small population size and is considered detrimental by decreasing long-term adaptability.1,2,3,4,5,6 Moreover, small population size may promote gene flow with congeners and outbreeding depression.7,8,9,10,11,12,13 Here, we examine the connection between habitat availability, effective population size (Ne), and extinction by generating a 40× nuclear genome from the extinct blue antelope (Hippotragus leucophaeus). Historically endemic to the relatively small Cape Floristic Region in southernmost Africa,14,15 populations were thought to have expanded and contracted across glacial-interglacial cycles, tracking suitable habitat.16,17,18 However, we found long-term low Ne, unaffected by glacial cycles, suggesting persistence with low genomic diversity for many millennia prior to extinction in ∼AD 1800. A lack of inbreeding, alongside high levels of genetic purging, suggests adaptation to this long-term low Ne and that human impacts during the colonial era (e.g., hunting and landscape transformation), rather than longer-term ecological processes, were central to its extinction. Phylogenomic analyses uncovered gene flow between roan (H. equinus) and blue antelope, as well as between roan and sable antelope (H. niger), approximately at the time of divergence of blue and sable antelope (∼1.9 Ma). Finally, we identified the LYST and ASIP genes as candidates for the eponymous bluish pelt color of the blue antelope. Our results revise numerous aspects of our understanding of the interplay between genomic diversity and evolutionary history and provide the resources for uncovering the genetic basis of this extinct species' unique traits.
Collapse
Affiliation(s)
- Elisabeth Hempel
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany.
| | - J Tyler Faith
- Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108, USA; Department of Anthropology, University of Utah, 260 South Central Campus Drive, Salt Lake City, UT 84112, USA; Origins Centre, University of the Witwatersrand, 2000 Johannesburg, Republic of South Africa
| | - Michaela Preick
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Deon de Jager
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | | | - Stefanie Hartmann
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - José H Grau
- Center for Species Survival, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA; Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
| | | | | | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Daniela C Kalthoff
- Swedish Museum of Natural History, Department of Zoology, Box 50007, 10405 Stockholm, Sweden
| | | | - Ben Lamm
- Colossal Biosciences, Dallas, TX 75247, USA
| | - Love Dalén
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, Box 50007, 10405 Stockholm, Sweden; Centre for Palaeogenetics, Svante Arrhenius väg 20c, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | - Michael V Westbury
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Kessler C, Shafer ABA. Genomic Analyses Capture the Human-Induced Demographic Collapse and Recovery in a Wide-Ranging Cervid. Mol Biol Evol 2024; 41:msae038. [PMID: 38378172 PMCID: PMC10917209 DOI: 10.1093/molbev/msae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
The glacial cycles of the Quaternary heavily impacted species through successions of population contractions and expansions. Similarly, populations have been intensely shaped by human pressures such as unregulated hunting and land use changes. White-tailed and mule deer survived in different refugia through the Last Glacial Maximum, and their populations were severely reduced after the European colonization. Here, we analyzed 73 resequenced deer genomes from across their North American range to understand the consequences of climatic and anthropogenic pressures on deer demographic and adaptive history. We found strong signals of climate-induced vicariance and demographic decline; notably, multiple sequentially Markovian coalescent recovers a severe decline in mainland white-tailed deer effective population size (Ne) at the end of the Last Glacial Maximum. We found robust evidence for colonial overharvest in the form of a recent and dramatic drop in Ne in all analyzed populations. Historical census size and restocking data show a clear parallel to historical Ne estimates, and temporal Ne/Nc ratio shows patterns of conservation concern for mule deer. Signatures of selection highlight genes related to temperature, including a cold receptor previously highlighted in woolly mammoth. We also detected immune genes that we surmise reflect the changing land use patterns in North America. Our study provides a detailed picture of anthropogenic and climatic-induced decline in deer diversity and clues to understanding the conservation concerns of mule deer and the successful demographic recovery of white-tailed deer.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
4
|
Dalén L, Heintzman PD, Kapp JD, Shapiro B. Deep-time paleogenomics and the limits of DNA survival. Science 2023; 382:48-53. [PMID: 37797036 PMCID: PMC10586222 DOI: 10.1126/science.adh7943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Although most ancient DNA studies have focused on the last 50,000 years, paleogenomic approaches can now reach into the early Pleistocene, an epoch of repeated environmental changes that shaped present-day biodiversity. Emerging deep-time genomic transects, including from DNA preserved in sediments, will enable inference of adaptive evolution, discovery of unrecognized species, and exploration of how glaciations, volcanism, and paleomagnetic reversals shaped demography and community composition. In this Review, we explore the state-of-the-art in paleogenomics and discuss key challenges, including technical limitations, evolutionary divergence and associated biases, and the need for more precise dating of remains and sediments. We conclude that with improvements in laboratory and computational methods, the emerging field of deep-time paleogenomics will expand the range of questions addressable using ancient DNA.
Collapse
Affiliation(s)
- Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE- 10405 Stockholm, Sweden
| | - Peter D. Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Joshua D. Kapp
- Department of Biomolecular Engineering, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| |
Collapse
|
5
|
Utzeri VJ, Cilli E, Fontani F, Zoboli D, Orsini M, Ribani A, Latorre A, Lissovsky AA, Pillola GL, Bovo S, Gruppioni G, Luiselli D, Fontanesi L. Ancient DNA re-opens the question of the phylogenetic position of the Sardinian pika Prolagus sardus (Wagner, 1829), an extinct lagomorph. Sci Rep 2023; 13:13635. [PMID: 37604894 PMCID: PMC10442435 DOI: 10.1038/s41598-023-40746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.
Collapse
Affiliation(s)
- Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy.
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Daniel Zoboli
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042, Monserrato, Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'università 10, 35120, Legnaro, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Adriana Latorre
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Andrey A Lissovsky
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Gian Luigi Pillola
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042, Monserrato, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giorgio Gruppioni
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
6
|
Museomics Provides Insights into Conservation and Education: The Instance of an African Lion Specimen from the Museum of Zoology “Pietro Doderlein”. DIVERSITY 2023. [DOI: 10.3390/d15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Innovative technological approaches are crucial to enhance naturalistic museum collections and develop information repositories of relevant interest to science, such as threatened animal taxa. In this context, museomics is an emerging discipline that provides a novel approach to the enhancement and exploitation of these collections. In the present study, the discovery of a neglected lion skeleton in the Museum of Zoology “Pietro Doderlein” of the University of Palermo (Italy) offered the opportunity to undertake a multidisciplinary project. The aims of the study consisted of the following: (i) adding useful information for museographic strategies, (ii) obtaining a new genetic data repository from a vulnerable species, (iii) strengthening public awareness of wildlife conservation, and (iv) sharing new learning material. The remains of the lion were examined with a preliminary osteological survey, then they were restored by means of 3D printing of missing skeletal fragments. Phylogenetic analyses based on cytochrome b sequence clearly indicate that the specimen belongs to the Central Africa mitochondrial clade. At the end of the study, the complete and restored skeleton was exhibited, along with all of the information and data available from this project. This study shows a useful approach for the restoration and enhancement of a museum specimen, with important opportunities for preserving biodiversity and driving specific conservation policies, but also for providing Life Science learning material.
Collapse
|