1
|
Dai W, Nian X, Zhou Z, Du A, Liu Q, Jia S, Lu Y, Li D, Lu X, Zhu Y, Huang Q, Lu J, Xiao Y, Zheng L, Lei W, Sheng N, Zang X, Hou Y, Qiu Z, Xu R, Xu S, Zhang X, Zhang L. A neuronal Slit1-dependent program rescues oligodendrocyte differentiation and myelination under chronic hypoxic conditions. Cell Rep 2025; 44:115467. [PMID: 40117292 DOI: 10.1016/j.celrep.2025.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Oligodendrocyte maturation arrest in hypoxia-induced white matter injury (WMI) results in long-term neurofunctional disabilities of preterm infants. Although neurons are closely linked to myelination regulation, how neurons respond to the above process remains elusive. Here, we identify a compensatory role of neuronal Slit1-dependent signaling in protecting against hypoxia-induced hypomyelination and ameliorating motor and cognitive disabilities. Conditional ablation of Slit1 in neurons exacerbates hypoxia-induced hypomyelination but is negligible for developmental myelination. Secreted Slit1 from hypoxic neurons directly targets oligodendrocyte, acting through Robo2-srGAP1-RhoA signaling. Pharmacological inhibition of RhoA restores myelination and promotes neurofunctional recovery in adolescent mice. Notably, natural selection analysis and functional validation indicate an adaptive variant with higher Slit1 gene expression in the Tibetan population, which has low oxygen availability. Collectively, these findings show a neuronal Slit1-dependent program of OL differentiation and suggest that targeting the Slit1-Robo2 signaling axis may have therapeutic potential for treatment of preterm infants with hypoxic WMI.
Collapse
Affiliation(s)
- Wenxiu Dai
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ximing Nian
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhihao Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ailian Du
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Shufang Jia
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Daopeng Li
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyun Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanqin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiuying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaquan Lu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunshan Xiao
- Department of Obstetrics and Gynecology, Women and Children's Hospital Affiliated to Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Liangkai Zheng
- Department of Pathology, Women and Children's Hospital Affiliated to Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wanying Lei
- Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiujuan Zang
- Department of Nephrology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanqiang Hou
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zilong Qiu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueqin Zhang
- Department of Obstetrics and Gynecology, Women and Children's Hospital Affiliated to Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Liang Zhang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Zhou X, Bao Q, Cui Y, Li X, Yang C, Yang Y, Gao Y, Chen D, Huang J. Life destiny of erythrocyte in high altitude erythrocytosis: mechanisms underlying the progression from physiological (moderate) to pathological (excessive) high-altitude erythrocytosis. Front Genet 2025; 16:1528935. [PMID: 40242475 PMCID: PMC12000012 DOI: 10.3389/fgene.2025.1528935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
High-altitude polycythemia (HAPC) represents a pathological escalation of the physiological erythrocytosis induced by chronic hypoxia exposure. While moderate erythroid expansion enhances oxygen delivery, HAPC manifests as hematologic disorder characterized by hemoglobin thresholds (≥21 g/dL males; ≥19 g/dL females) and multi-organ complications including microcirculatory thrombosis, right ventricular hypertrophy, and uric acid dysmetabolism. This review critically evaluates the continuum between adaptive and maladaptive polycythemia through multiscale analysis of erythrocyte biology. We integrate genomic predisposition patterns, bone marrow erythroid kinetic studies, and peripheral erythrocyte pathophenotypes revealed by multi-omics profiling (iron-redox proteome, hypoxia-metabolome crosstalk). Current diagnostic limitations are highlighted, particularly the oversimplification of hemoglobin cutoffs that neglect transitional dynamics in erythrocyte turnover. By reconstructing the erythroid life cycle-from hypoxia-sensitive progenitor commitment to senescent cell clearance-we propose a phase transition model where cumulative epigenetic-metabolic derangements overcome homeostatic buffers, triggering pathological erythroid amplification. These insights reframe HAPC as a systems biology failure of erythroid adaptation, informing predictive biomarkers and targeted interventions to preserve hematological homeostasis in hypoxic environments.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yuqi Gao
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
- College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
3
|
Chen H, Xu S. Population genomics advances in frontier ethnic minorities in China. SCIENCE CHINA. LIFE SCIENCES 2025; 68:961-973. [PMID: 39643831 DOI: 10.1007/s11427-024-2659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024]
Abstract
China, with its large geographic span, possesses rich genetic diversity across vast frontier regions in addition to the Han Chinese majority. Importantly, demographic events and various natural and cultural environments in Chinese frontier regions have shaped the genomic diversity of ethnic minorities via local adaptations. Thus, insights into the genetic diversity and adaptive evolution of these under-represented ethnic groups are crucial for understanding evolutionary scenarios and biomedical implications in East Asian populations. Here, we focus on ethnic minorities in Chinese frontier regions and review research advances regarding genomic diversity, genetic structure, population history, genetic admixture, and local adaptation. We first provide an overview of the extensive genetic diversity across populations in different Chinese frontier regions. Next, we summarize research progress regarding genetic ancestry, demographic history, the adaptive process, and the archaic identification of multiple ethnic minorities in different Chinese frontier regions. Finally, we discuss the gaps and opportunities in genomic studies of Chinese populations and the need for a more comprehensive understanding of genomic diversity and the evolution of populations of East Asian ancestry in the post-genomic era.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
段 世, 郑 谦, 石 冰, 冯 帆. [Distribution of ABO and Rh Blood Groups in Tibetan and Han Populations With Cleft Lip and Palate in a Tertiary Hospital in Western China]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:932-938. [PMID: 39170012 PMCID: PMC11334283 DOI: 10.12182/20240760101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 08/23/2024]
Abstract
Objective Congenital cleft lip and palate is a common birth defect that seriously affects the lives of the afflicted children and their families. Previously, no research has been done to investigate the pathogenic characteristics of cleft lip and palate among ethnic minorities, for example, Tibetans, a minority ethnic group with a large population in China. This study aims to investigate the relationship between the occurrence of cleft lip and palate in Tibetans and Han Chinese in western China and the distribution of ABO blood groups and Rh blood groups to provide a theoretical basis for the precise prevention and treatment of cleft lip and palate. Methods In this study, statistics on Tibetan patients with cleft lip and palate, some Han patients with cleft lip and palate, and normal controls from western China were retrospectively collected. All participants were patients from West China Stomatology Hospital, Sichuan University. All patients with cleft lip and palate received treatment at the hospital between January 2016 and September 2023. The normal controls were outpatients or inpatients who did not have cleft lip and palate, and who received treatment at the hospital between January 2020 and October 2023. Information on the A, B, O, and AB blood groups and Rh positive and negative blood groups of the patients was collected and compared with that of the normal controls. The incidence of different phenotypes, including cleft lip alone, cleft palate alone, and cleft lip with cleft palate, in patients of blood groups A, B, O and AB were statistically analyzed by Chi-square test. Results A total of 1227 Tibetan patients with cleft lip and palate, 4064 Han patients with cleft lip and palate, and 5360 normal controls were included in the study. Among all the patients with cleft lip and palate, 1863 had cleft lip alone, 1425 had cleft palate alone, and 2003 had cleft lip with cleft palate. The ABO blood group distribution of Tibetan patients with cleft lip and palate was characterized as O>B>A>AB, with Rh positive blood group accounting for 100%, blood type O accounting for 41.15%, and blood type B accounting for 30.64%. The blood group distribution of the Han patients with cleft lip and palate was characterized as O>A>B>AB, with Rh positive blood group accounting for 99.58%, blood type O accounting for 35.78%, and type A accounting for 30.54%. There was a significant difference in ABO blood groups between Tibetan and Han patients with cleft lip and palate (P<0.005), but no significant difference in Rh blood groups. The ABO blood group distribution of the Tibetan patients with cleft lip and palate showed an obvious difference from that of the control group, while those of the Han patients with cleft lip and cleft palate and the control group did not show obvious differences. In the analysis of the subtypes, it was found that the blood group distribution in the subtypes of cleft lip alone, cleft palate alone, and cleft lip with cleft palate in the Tibetan population was O>B>A>AB, while that in the Han Chinese population was O>A>B>AB. There were differences in blood group distribution between Tibetans and Hans of the subtypes of cleft lip alone and cleft lip with cleft palate (P<0.001), but there was no difference in blood group distribution in the population of cleft palate-only subtype. The proportion of blood type O in Tibetan patients with cleft lip and palate was significantly higher than that in the Han patients with cleft lip and palate. The blood group distribution of Tibetan patients with cleft lip and palate in Sichuan Province, Xizang Autonomous Region, and Qinghai Province was always O>B>A>AB. Tibetan patients from Shiqu County and Baiyu County, Ganzi Tibetan Autonomous Prefecture and Chaya County, Qamdo City were predominantly of blood type B, and those from other regions were mainly of blood type O. Conclusion There were significant differences in the phenotype composition and ABO blood group distribution between the Tibetan and Han populations with cleft lip and palate in western China. The distribution of blood group O in the population with cleft lip and palate was higher than that in the normal population, and the same trend was observed for different phenotypes. However, differences between Tibetan and Han populations in ABO blood group distribution were only found in the phenotypes of cleft lip only and cleft lip with palate. Tibetans with blood type O are more prone to cleft lip deformity than Han people, and the effect in the phenotype of cleft lip with palate is less pronounced than that in the phenotype of cleft lip only.
Collapse
Affiliation(s)
- 世均 段
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 谦 郑
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 冰 石
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 帆 冯
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Upadhyay M, Pogorevc N, Medugorac I. scalepopgen: Bioinformatic Workflow Resources Implemented in Nextflow for Comprehensive Population Genomic Analyses. Mol Biol Evol 2024; 41:msae057. [PMID: 38507648 PMCID: PMC10994858 DOI: 10.1093/molbev/msae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Population genomic analyses such as inference of population structure and identifying signatures of selection usually involve the application of a plethora of tools. The installation of tools and their dependencies, data transformation, or series of data preprocessing in a particular order sometimes makes the analyses challenging. While the usage of container-based technologies has significantly resolved the problems associated with the installation of tools and their dependencies, population genomic analyses requiring multistep pipelines or complex data transformation can greatly be facilitated by the application of workflow management systems such as Nextflow and Snakemake. Here, we present scalepopgen, a collection of fully automated workflows that can carry out widely used population genomic analyses on the biallelic single nucleotide polymorphism data stored in either variant calling format files or the plink-generated binary files. scalepopgen is developed in Nextflow and can be run locally or on high-performance computing systems using either Conda, Singularity, or Docker. The automated workflow includes procedures such as (i) filtering of individuals and genotypes; (ii) principal component analysis, admixture with identifying optimal K-values; (iii) running TreeMix analysis with or without bootstrapping and migration edges, followed by identification of an optimal number of migration edges; (iv) implementing single-population and pair-wise population comparison-based procedures to identify genomic signatures of selection. The pipeline uses various open-source tools; additionally, several Python and R scripts are also provided to collect and visualize the results. The tool is freely available at https://github.com/Popgen48/scalepopgen.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Neža Pogorevc
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| |
Collapse
|