1
|
Yan X, Gu C, Xiao W, Zhou Y, Xiang X, Yu Z, He M, Yang Q, Zhao M, He L. Evaluation of immunoregulation and immunoprotective efficacy of Glaesserella parasuis histidine kinase QseC. Microb Pathog 2024; 192:106685. [PMID: 38750774 DOI: 10.1016/j.micpath.2024.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1β, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.
Collapse
MESH Headings
- Animals
- Mice
- Interleukin-4/metabolism
- Interleukin-4/immunology
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Haemophilus Infections/immunology
- Haemophilus Infections/prevention & control
- Haemophilus Infections/microbiology
- Interferon-gamma/metabolism
- Histidine Kinase/genetics
- Histidine Kinase/metabolism
- Histidine Kinase/immunology
- Interleukin-1beta/metabolism
- Interleukin-1beta/genetics
- Immunity, Humoral
- Mice, Inbred BALB C
- Spleen/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Cell Proliferation
- Female
- Adjuvants, Immunologic
- Haemophilus parasuis/immunology
- Haemophilus parasuis/genetics
- Cytokines/metabolism
- Bacterial Vaccines/immunology
- Bacterial Vaccines/genetics
- Disease Models, Animal
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Lymphocytes/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
Collapse
Affiliation(s)
- Xuefeng Yan
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Yuhong Zhou
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyi Xiang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Manli He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
3
|
de la Fuente I, Manzano-Morales S, Sanz D, Prieto A, Barriuso J. Quorum sensing in bacteria: in silico protein analysis, ecophysiology, and reconstruction of their evolutionary history. BMC Genomics 2024; 25:441. [PMID: 38702600 PMCID: PMC11069264 DOI: 10.1186/s12864-024-10355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is a sophisticated cell-to-cell signalling mechanism that allows the coordination of important processes in microbial populations. The AI-1 and AI-2 autoinducer systems are among the best characterized bacterial QS systems at the genetic level. RESULTS In this study, we present data derived from in silico screening of QS proteins from bacterial genomes available in public databases. Sequence analyses allowed identifying candidate sequences of known QS systems that were used to build phylogenetic trees. Eight categories were established according to the number of genes from the two major QS systems present in each genome, revealing a correlation with specific taxa, lifestyles or metabolic traits. Many species had incomplete QS systems, encoding the receptor protein but not the biosynthesis of the quorum sensing molecule (QSMs). Reconstruction of the evolutionary history of the LuxR family and prediction of the 3D structure of the ancestral protein suggested their monomeric configuration in the absence of the signal molecule and the presence of a cavity for its binding. CONCLUSIONS Here we correlate the taxonomic affiliation and lifestyle of bacteria from different genera with the QS systems encoded in their genomes. Moreover, we present the first ancestral reconstruction of the LuxR QS receptors, providing further insight in their evolutionary history.
Collapse
Affiliation(s)
- Iñigo de la Fuente
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Saioa Manzano-Morales
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - David Sanz
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
4
|
Moreno-Gámez S, Hochberg ME, van Doorn GS. Quorum sensing as a mechanism to harness the wisdom of the crowds. Nat Commun 2023; 14:3415. [PMID: 37296108 PMCID: PMC10256802 DOI: 10.1038/s41467-023-37950-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/05/2023] [Indexed: 06/12/2023] Open
Abstract
Bacteria release and sense small molecules called autoinducers in a process known as quorum sensing. The prevailing interpretation of quorum sensing is that by sensing autoinducer concentrations, bacteria estimate population density to regulate the expression of functions that are only beneficial when carried out by a sufficiently large number of cells. However, a major challenge to this interpretation is that the concentration of autoinducers strongly depends on the environment, often rendering autoinducer-based estimates of cell density unreliable. Here we propose an alternative interpretation of quorum sensing, where bacteria, by releasing and sensing autoinducers, harness social interactions to sense the environment as a collective. Using a computational model we show that this functionality can explain the evolution of quorum sensing and arises from individuals improving their estimation accuracy by pooling many imperfect estimates - analogous to the 'wisdom of the crowds' in decision theory. Importantly, our model reconciles the observed dependence of quorum sensing on both population density and the environment and explains why several quorum sensing systems regulate the production of private goods.
Collapse
Affiliation(s)
- Stefany Moreno-Gámez
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Michael E Hochberg
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, 34095, Montpellier, France
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - G S van Doorn
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
5
|
Cell-Cell Signaling Proteobacterial LuxR Solos: a Treasure Trove of Subgroups Having Different Origins, Ligands, and Ecological Roles. mSystems 2023; 8:e0103922. [PMID: 36802056 PMCID: PMC10134790 DOI: 10.1128/msystems.01039-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.
Collapse
|
6
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Lucero CT, Lorda GS, Halliday N, Ambrosino ML, Cámara M, Taurian T. Impact of quorum sensing from native peanut phosphate solubilizing Serratia sp. S119 strain on interactions with agronomically important crops. Symbiosis 2022. [DOI: 10.1007/s13199-022-00893-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Duan B, Peng W, Yan K, Liu F, Tang J, Yang F, Chen H, Yuan F, Bei W. The QseB/QseC two-component system contributes to virulence of Actinobacillus pleuropneumoniae by downregulating apf gene cluster transcription. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractActinobacillus pleuropneumoniae (APP) is the major pathogen of porcine contagious pleuropneumoniae (PCP). The QseB/QseC two-component system (TCS) consists of the regulator QseB and the kinase QseC, which relates to quorum sensing (QS) and virulence in some bacteria. Here, we investigated the role of QseB/QseC in apf gene cluster (apfABCD) expression of APP. Our results have showed that QseB/QseC TCS can potentially regulate the expression of apf gene cluster. The ΔqseBC, ΔapfA, ΔapfB, ΔapfC and ΔapfD strains are more sensitive to acidic and osmotic stressful conditions, and exhibite lower biofilm formation ability than wild-type (WT) strain, whereas the complemented strains show similar phenotype to the WT strain. In additon, the mutants have defective anti-phagocytosis, adhesion and invasion when they come into contact with the host cells. In experimental animal models of infection, mice infected with ΔqseBC, ΔapfA, ΔapfB, ΔapfC and ΔapfD strains showed lower mortality and bacterial loads in the lung and the blood than those infected with WT strain. In conclusion, our results suggest that QseB/QseC TCS contributes to stress resistance, biofilm formation, phagocytosis, adhesion, invasion and virulence by downregulating expression of apf gene cluster in A. pleuropneumoniae.
Collapse
|
9
|
Giannakara M, Koumandou VL. Evolution of two-component quorum sensing systems. Access Microbiol 2022; 4:000303. [PMID: 35252749 PMCID: PMC8895600 DOI: 10.1099/acmi.0.000303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication system that enables bacteria to coordinate their gene expression depending on their population density, via the detection of small molecules called autoinducers. In this way bacteria can act collectively to initiate processes like bioluminescence, virulence and biofilm formation. Autoinducers are detected by receptors, some of which are part of two-component signal transduction systems (TCS), which comprise of a (usually membrane-bound) sensor histidine kinase (HK) and a cognate response regulator (RR). Different QS systems are used by different bacterial taxa, and their relative evolutionary relationships have not been extensively studied. To address this, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to identify all the QS HKs and RRs that are part of TCSs and examined their conservation across microbial taxa. We compared the combinations of the highly conserved domains in the different families of receptors and response regulators using the Simple Modular Architecture Research Tool (SMART) and KEGG databases, and we also carried out phylogenetic analyses for each family, and all families together. The distribution of the different QS systems across taxa, indicates flexibility in HK–RR pairing and highlights the need for further study of the most abundant systems. For both the QS receptors and the response regulators, our results indicate close evolutionary relationships between certain families, highlighting a common evolutionary history which can inform future applications, such as the design of novel inhibitors for pathogenic QS systems.
Collapse
Affiliation(s)
- Marina Giannakara
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vassiliki Lila Koumandou
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
10
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Joshi JR, Khazanov N, Charkowski A, Faigenboim A, Senderowitz H, Yedidia I. Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:153-190. [PMID: 33951403 DOI: 10.1146/annurev-phyto-020620-095740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Amy Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Adi Faigenboim
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| |
Collapse
|
12
|
Wellington Miranda S, Cong Q, Schaefer AL, MacLeod EK, Zimenko A, Baker D, Greenberg EP. A covariation analysis reveals elements of selectivity in quorum sensing systems. eLife 2021; 10:69169. [PMID: 34180398 PMCID: PMC8328516 DOI: 10.7554/elife.69169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Many bacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). In these systems, a signal synthase produces an AHL to which its paired receptor selectively responds. Selectivity is fundamental to cell signaling. Despite its importance, it has been challenging to determine how this selectivity is achieved and how AHL QS systems evolve and diversify. We hypothesized that we could use covariation within the protein sequences of AHL synthases and receptors to identify selectivity residues. We began by identifying about 6000 unique synthase-receptor pairs. We then used the protein sequences of these pairs to identify covariation patterns and mapped the patterns onto the LasI/R system from Pseudomonas aeruginosa PAO1. The covarying residues in both proteins cluster around the ligand-binding sites. We demonstrate that these residues are involved in system selectivity toward the cognate signal and go on to engineer the Las system to both produce and respond to an alternate AHL signal. We have thus demonstrated that covariation methods provide a powerful approach for investigating selectivity in protein-small molecule interactions and have deepened our understanding of how communication systems evolve and diversify.
Collapse
Affiliation(s)
| | - Qian Cong
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Amy L Schaefer
- Department of Microbiology, University of Washington, Seattle, United States
| | - Emily Kenna MacLeod
- Department of Microbiology, University of Washington, Seattle, United States
| | - Angelina Zimenko
- Department of Microbiology, University of Washington, Seattle, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, United States
| |
Collapse
|
13
|
Önem E, Sarısu HC, Özaydın AG, Muhammed MT, Ak A. Phytochemical profile, antimicrobial, and anti-quorum sensing properties of fruit stalks of Prunus avium L. Lett Appl Microbiol 2021; 73:426-437. [PMID: 34173244 DOI: 10.1111/lam.13528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the phytochemical contents and antibacterial properties of 2-year Prunus avium L. standard cultivars [Cristalina (Cr), 0900 Ziraat (Zr)] and to elucidate the mechanism of action of the extracts on the quorum sensing (QS) system by using homology modelling and molecular docking. Phenolic contents of methanol extract of Cr and Zr stalks were detected by HPLC. As a result, catechin hydrate (6364·67-8127·93 µg g-1 ) and chlorogenic acid (998·81-1273·4 µg g-1 ) were found to be the highest in stalk extracts in the two varieties in 2017. All extracts had inhibitory effect on Gram-positive bacteria. Stalk extract of Zr showed higher inhibition rate (86%) on swarming motility. Stalk samples of Zr collected in 2017 and 2018 also reduced biofilm formation by 75 and 73%, respectively. The computational analysis revealed that one of the major component of the extracts, chlorogenic acid, was able to bind to the QS system receptors, LasR, RhlR, and PqsR. Therefore, the mechanism of decreasing the production of virulence factors by the extracts might be through inhibiting these receptors and thus interfering with the QS system.
Collapse
Affiliation(s)
- E Önem
- Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - H C Sarısu
- Republic of Turkey Ministry of Food Agriculture and Livestock, Fruit Research Institute, Isparta, Turkey
| | - A G Özaydın
- YETEM-Innovative Technology Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| | - M T Muhammed
- Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - A Ak
- Vocational School of Health Services, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
14
|
Assessing the Molecular Targets and Mode of Action of Furanone C-30 on Pseudomonas aeruginosa Quorum Sensing. Molecules 2021; 26:molecules26061620. [PMID: 33803983 PMCID: PMC7998126 DOI: 10.3390/molecules26061620] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein's productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.
Collapse
|
15
|
Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense. mSystems 2020; 5:5/1/e00650-19. [PMID: 31992632 PMCID: PMC6989131 DOI: 10.1128/msystems.00650-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study, we examine the impact of transcriptional network rearrangements driven by horizontal gene acquisition in PhoP and SlyA regulons using as a case study a phytopathosystem comprised of potato tubers and the soft-rot pathogen Pectobacterium brasiliense 1692 (Pb1692). Genome simulations and statistical analyses uncovered the tendency of PhoP and SlyA networks to mobilize lineage-specific traits predicted as horizontal gene transfer at late infection, highlighting the prominence of regulatory network rearrangements in this stage of infection. The evidence further supports the circumscription of two horizontally acquired quorum-sensing regulators (carR and expR1) by the PhoP network. By recruiting carR and expR1, the PhoP network also impacts certain host adaptation- and bacterial competition-related systems, seemingly in a quorum sensing-dependent manner, such as the type VI secretion system, carbapenem biosynthesis, and plant cell wall-degrading enzymes (PCWDE) like cellulases and pectate lyases. Conversely, polygalacturonases and the type III secretion system (T3SS) exhibit a transcriptional pattern that suggests quorum-sensing-independent regulation by the PhoP network. This includes an uncharacterized novel phage-related gene family within the T3SS gene cluster that has been recently acquired by two Pectobacterium species. The evidence further suggests a PhoP-dependent regulation of carbapenem- and PCWDE-encoding genes based on the synthesized products' optimum pH. The PhoP network also controls slyA expression in planta, which seems to impact carbohydrate metabolism regulation, especially at early infection, when 76.2% of the SlyA-regulated genes from that category also require PhoP to achieve normal expression levels.IMPORTANCE Exchanging genetic material through horizontal transfer is a critical mechanism that drives bacteria to efficiently adapt to host defenses. In this report, we demonstrate that a specific plant-pathogenic species (from the Pectobacterium genus) successfully integrated a population density-based behavior system (quorum sensing) acquired through horizontal transfer into a resident stress-response gene regulatory network controlled by the PhoP protein. Evidence found here underscores that subsets of bacterial weaponry critical for colonization, typically known to respond to quorum sensing, are also controlled by PhoP. Some of these traits include different types of enzymes that can efficiently break down plant cell walls depending on the environmental acidity level. Thus, we hypothesize that PhoP's ability to elicit regulatory responses based on acidity and nutrient availability fluctuations has strongly impacted the fixation of its regulatory connection with quorum sensing. In addition, another global gene regulator, known as SlyA, was found under the PhoP regulatory network. The SlyA regulator controls a series of carbohydrate metabolism-related traits, which also seem to be regulated by PhoP. By centralizing quorum sensing and slyA under PhoP scrutiny, Pectobacterium cells added an advantageous layer of control over those two networks that potentially enhances colonization efficiency.
Collapse
|
16
|
Prescott RD, Decho AW. Flexibility and Adaptability of Quorum Sensing in Nature. Trends Microbiol 2020; 28:436-444. [PMID: 32001099 DOI: 10.1016/j.tim.2019.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
Quorum sensing (QS), a type of chemical communication, allows bacteria to sense and coordinate activities in natural biofilm communities using N-acyl homoserine lactones (AHLs) as one type of signaling molecule. For AHL-based communication to occur, bacteria must produce and recognize the same signals, which activate similar genes in different species. Our current understanding of AHL-QS suggests that signaling between species would arise randomly, which is not probable. We propose that AHL-QS signaling is a mutable and adaptable process, within limits. AHLs are highly-conserved signals, however, their corresponding receptor proteins (LuxR) are highly variable. We suggest that both flexibility and adaptation occur among receptor proteins, allowing for complex signaling networks to develop in biofilms over time.
Collapse
Affiliation(s)
- Rebecca D Prescott
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK; Microbial Interactions Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | - Alan W Decho
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Li Z, Yao Q, Guo X, Crits-Christoph A, Mayes MA, Hervey WJ, Lebeis SL, Banfield JF, Hurst GB, Hettich RL, Pan C. Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO 2 and 13C-Methanol. Front Microbiol 2019; 10:2706. [PMID: 31866955 PMCID: PMC6908837 DOI: 10.3389/fmicb.2019.02706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022] Open
Abstract
Stable isotope probing (SIP) enables tracking the nutrient flows from isotopically labeled substrates to specific microorganisms in microbial communities. In proteomic SIP, labeled proteins synthesized by the microbial consumers of labeled substrates are identified with a shotgun proteomics approach. Here, proteomic SIP was combined with targeted metagenomic binning to reconstruct metagenome-assembled genomes (MAGs) of the microorganisms producing labeled proteins. This approach was used to track carbon flows from 13CO2 to the rhizosphere communities of Zea mays, Triticum aestivum, and Arabidopsis thaliana. Rhizosphere microorganisms that assimilated plant-derived 13C were capable of metabolic and signaling interactions with their plant hosts, as shown by their MAGs containing genes for phytohormone modulation, quorum sensing, and transport and metabolism of nutrients typical of those found in root exudates. XoxF-type methanol dehydrogenases were among the most abundant proteins identified in the rhizosphere metaproteomes. 13C-methanol proteomic SIP was used to test the hypothesis that XoxF was used to metabolize and assimilate methanol in the rhizosphere. We detected 7 13C-labeled XoxF proteins and identified methylotrophic pathways in the MAGs of 8 13C-labeled microorganisms, which supported the hypothesis. These two studies demonstrated the capability of proteomic SIP for functional characterization of active microorganisms in complex microbial communities.
Collapse
Affiliation(s)
- Zhou Li
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Qiuming Yao
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xuan Guo
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Melanie A Mayes
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - William Judson Hervey
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC, United States
| | - Sarah L Lebeis
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Chongle Pan
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,School of Computer Science and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
18
|
Xu G. Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnol Lett 2019; 42:181-186. [PMID: 31732826 DOI: 10.1007/s10529-019-02763-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Cell-cell communication in bacteria needs chemical signals and cognate receptors. Many Gram-negative bacteria use acyl-homoserine lactones (AHLs) and cognate LuxR-type receptors to regulate their quorum sensing (QS) systems. The signal synthase-receptor (LuxI-LuxR) pairs may have co-evolved together. However, many LuxR solo (orphan LuxR) regulators sense more signals than just AHLs, and expand the regulatory networks for inter-species and inter-kingdom communication. Moreover, there are also some QS regulators from the TetR family. LuxR solo regulators might have evolved by gene duplication and horizontal gene transfer. An increased understanding of the evolutionary roles of QS regulators would be helpful for engineering of cell-cell communication circuits in bacteria.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
19
|
Rebolleda-Gómez M, Wood CW. Unclear Intentions: Eavesdropping in Microbial and Plant Systems. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Girard L. Quorum sensing in Vibrio spp.: the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 2019; 45:451-471. [PMID: 31241379 DOI: 10.1080/1040841x.2019.1624499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS) is a density-dependent mechanism enabling bacteria to coordinate their actions via the release of small diffusible molecules named autoinducers (AIs). Vibrio spp. are able to adapt to changing environmental conditions by using a wide range of physiological mechanisms and many species pose a threat for human health and diverse marine and estuarine ecosystems worldwide. Cell-to-cell communication controls many of their vital functions such as niche colonization, survival strategies, or virulence. In this review, I summarize (1) the different known QS pathways (2) the diversity of AIs as well as their biological functions, and (3) the QS-mediated interactions between Vibrio and other organisms. However, the current knowledge is limited to a few pathogenic or bioluminescent species and in order to provide a genus-wide view an inventory of QS genes among 87 Vibrio species has been made. The large diversity of signal molecules and their differential effects on a particular physiological function suggest that the complexity of multiple signalling systems within bacterial communities is far from being fully understood. I question here the real level of specificity of such communication in the environment and discuss the different perspectives in order to better apprehend QS in natural habitats.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics , KU Leuven , Belgium
| |
Collapse
|
21
|
Wellington S, Greenberg EP. Quorum Sensing Signal Selectivity and the Potential for Interspecies Cross Talk. mBio 2019; 10:e00146-19. [PMID: 30837333 PMCID: PMC6401477 DOI: 10.1128/mbio.00146-19] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
Many species of proteobacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). Most AHL receptors are thought to be specific for their cognate signal, ensuring that bacteria cooperate and share resources only with closely related kin cells. Although specificity is considered fundamental to QS, there are reports of "promiscuous" receptors that respond broadly to nonself signals. These promiscuous responses expand the function of QS systems to include interspecies interactions and have been implicated in both interspecies competition and cooperation. Because bacteria are frequently members of polymicrobial communities, AHL cross talk between species could have profound impacts. To better understand the prevalence of QS promiscuity, we measured the activity of seven QS receptors in their native host organisms. To facilitate comparison of our results to previous studies, we also measured receptor activity using heterologous expression in Escherichia coli We found that the standard E. coli methods consistently overestimate receptor promiscuity and sensitivity and that overexpression of the receptors is sufficient to account for the discrepancy between native and E. coli reporters. Additionally, receptor overexpression resulted in AHL-independent activity in Pseudomonas aeruginosa Using our activation data, we developed a quantitative score of receptor selectivity. We find that the receptors display a wide range of selectivity and that most receptors respond sensitively and strongly to at least one nonself signal, suggesting a broad potential for cross talk between QS systems.IMPORTANCE Specific recognition of cognate signals is considered fundamental to cell signaling circuits as it creates fidelity in the communication system. In bacterial quorum sensing (QS), receptor specificity ensures that bacteria cooperate only with kin. There are examples, however, of QS receptors that respond promiscuously to multiple signals. "Eavesdropping" by these promiscuous receptors can be beneficial in both interspecies competition and cooperation. Despite their potential significance, we know little about the prevalence of promiscuous QS receptors. Further, many studies rely on methods requiring receptor overexpression, which is known to increase apparent promiscuity. By systematically studying QS receptors in their natural parent strains, we find that the receptors display a wide range of selectivity and that there is potential for significant cross talk between QS systems. Our results provide a basis for hypotheses about the evolution and function of promiscuous signal receptors and for predictions about interspecies interactions in complex microbial communities.
Collapse
Affiliation(s)
- Samantha Wellington
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Huang X, Zhu J, Cai Z, Lao Y, Jin H, Yu K, Zhang B, Zhou J. Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach. Microbiol Res 2018; 217:1-13. [PMID: 30384903 DOI: 10.1016/j.micres.2018.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
The complicated relationships among environmental microorganisms are regulated by quorum sensing (QS). Understanding QS-based signals could shed light on the interactions between microbial communities in certain environments. Although QS characteristics have been widely discussed, few studies have been conducted on the role of QS in phycospheric microorganisms. Here, we used metagenomics to examine the profile of AI-1 (AinS, HdtS, LuxI) and AI-2 (LuxS) autoinducers from a deeply sequenced microbial database, obtained from a complete dinoflagellate bloom. A total of 3001 putative AI-1 homologs and 130 AI-2 homologs were identified. The predominant member among the AI groups was HdtS. The abundance of HdtS, AinS, and LuxS increased as the bloom developed, whereas the abundance of LuxI showed the opposite trend. Phylogenetic analysis suggested that HdtS and LuxI synthase originated mainly from alpha-, beta-, and gamma-Proteobacteria, whereas AinS synthase originated solely from Vibrionales. In comparison to AI-1, the sequences related to AI-2 (LuxS) demonstrated a much wider taxonomic coverage. Some significant correlations were found between dominant species and QS signals. In addition to the QS, we also performed parallel analysis of the quorum quenching (QQ) sequences. In comparison to QS, the relative abundance of QQ signals was lower; however, an obvious frequency correlation was observed. These results suggested that QS and QQ signals co-participate in regulating microbial communities during an algal bloom. These data helped to reveal the characteristic behavior of algal symbiotic bacteria, and facilitated a better understanding of microbial dynamics during an algal bloom event from a chemical ecological perspective.
Collapse
Affiliation(s)
- Xinqing Huang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Yongmin Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Ke Yu
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Boya Zhang
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China.
| |
Collapse
|
23
|
Bhattacharya A, Pak HT, Bashey F. Plastic responses to competition: Does bacteriocin production increase in the presence of nonself competitors? Ecol Evol 2018; 8:6880-6888. [PMID: 30073052 PMCID: PMC6065276 DOI: 10.1002/ece3.4203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/07/2022] Open
Abstract
Anticompetitor traits such as the production of allelopathic toxins can confer significant competitive benefits but are often costly to produce. Evolution of these traits may be facilitated by environment-specific induction; however, the extent to which costly anticompetitor traits are induced by competitors is not well explored. Here, we addressed this question using bacteriocins, which are highly specific, proteinaceous anticompetitor toxins, produced by most lineages of bacteria and archaea. We tested the prediction that bacteriocin production is phenotypically plastic and induced by the presence of competitors by examining bacteriocin production in the presence and absence of nonself competitors over the course of growth of a producing strain. Our results show that bacteriocin production is detectable only at high cell densities, when competition for resources is high. However, the amount of bacteriocin activity was not significantly different in the presence vs. the absence of nonself competitors. These results suggest that bacteriocin production is either (a) canalized, constitutively produced by a fixed frequency of cells in the population or (b) induced by generic cues of competition, rather than specific self/nonself discrimination. Such a nonspecific response to competition could be favored in the natural environment where competition is ubiquitous.
Collapse
Affiliation(s)
| | | | - Farrah Bashey
- Department of BiologyIndiana UniversityBloomingtonIndiana
| |
Collapse
|
24
|
Barriuso J, Martínez MJ. In Silico Analysis of the Quorum Sensing Metagenome in Environmental Biofilm Samples. Front Microbiol 2018; 9:1243. [PMID: 29930547 PMCID: PMC6000730 DOI: 10.3389/fmicb.2018.01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing (QS) is a sophisticated cell to cell signaling mechanism mediated by small diffusible molecules called “autoinducers.” This phenomenon is well studied in bacteria, where different QS systems are described that differ between Gram-negative and Gram-positive bacteria. However, a common system to these groups was discovered, the autoinducer 2. QS has implications in biofilm formation, where the application of metagenomic techniques to study these phenomena may be useful to understand the communication networks established by the different components of the community, and to discover new targets for microbial control. Here we present an in silico screening of QS proteins in all publicly available biofilm metagenomes from the JGI database. We performed sequence, conserved motifs, phylogenetic, and three-dimensional structure analyses of the candidates, resulting in an effective strategy to search QS proteins in metagenomes sequences. The number of QS proteins present in each sample, and its phylogenetic affiliation, was clearly related to the bacterial diversity and the origin of the biofilm. The samples isolated from natural habitats presented clear differences with those from artificial habitats. Interesting findings have been made in the abundance of LuxR-like proteins finding an unbalanced ratio between the synthases and the receptor proteins in Bacteroidetes bacteria, pointing out the existence of “cheaters” in this group. Moreover, we have shown the presence of the LuxI/R QS system in bacteria from the Nitrospira taxonomic group. Finally, some undescribed proteins from the HdtS family have been found in Gamma-proteobacteria.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María J Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
25
|
Wysoczynski-Horita CL, Boursier ME, Hill R, Hansen K, Blackwell HE, Churchill MEA. Mechanism of agonism and antagonism of the Pseudomonas aeruginosa quorum sensing regulator QscR with non-native ligands. Mol Microbiol 2018; 108:240-257. [PMID: 29437248 DOI: 10.1111/mmi.13930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses the process of quorum sensing (QS) to coordinate the expression of many virulence genes. During quorum sensing, N-acyl-homoserine lactone (AHL) signaling molecules regulate the activity of three LuxR-type transcription factors, LasR, RhlR and QscR. To better understand P. aeruginosa QS signal reception, we examined the mechanism underlying the response of QscR to synthetic agonists and antagonists using biophysical and structural approaches. The structure of QscR bound to a synthetic agonist reveals a novel mode of ligand binding supporting a general mechanism for agonist activity. In turn, antagonists of QscR with partial agonist activity were found to destabilize and greatly impair QscR dimerization and DNA binding. These results highlight the diversity of LuxR-type receptor responses to small molecule agonists and antagonists and demonstrate the potential for chemical strategies for the selective targeting of individual QS systems.
Collapse
Affiliation(s)
- Christina L Wysoczynski-Horita
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Ryan Hill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mair E A Churchill
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
26
|
|
27
|
Venturi V, Subramoni S, Sabag-Daigle A, Ahmer BMM. Methods to Study Solo/Orphan Quorum-Sensing Receptors. Methods Mol Biol 2018; 1673:145-159. [PMID: 29130171 DOI: 10.1007/978-1-4939-7309-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
LuxR solos/orphans are very widespread among Proteobacteria; however they are surprisingly understudied given that they are likely to play a major role in cell-cell communication in bacteria. Here we describe three simple methodologies/approaches that can be used in order to begin to study this subgroup of quorum sensing-related LuxR receptors.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Science Engineering, Singapore, Singapore
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
In silico analyses of conservational, functional and phylogenetic distribution of the LuxI and LuxR homologs in Gram-positive bacteria. Sci Rep 2017; 7:6969. [PMID: 28765541 PMCID: PMC5539150 DOI: 10.1038/s41598-017-07241-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/26/2017] [Indexed: 11/08/2022] Open
Abstract
LuxI and LuxR are key factors that drive quorum sensing (QS) in bacteria through secretion and perception of the signaling molecules e.g. N-Acyl homoserine lactones (AHLs). The role of these proteins is well established in Gram-negative bacteria for intercellular communication but remain under-explored in Gram-positive bacteria where QS peptides are majorly responsible for cell-to-cell communication. Therefore, in the present study, we explored conservation, potential function, topological arrangements and evolutionarily aspects of these proteins in Gram-positive bacteria. Putative LuxI/LuxR containing proteins were retrieved using the domain-based strategy from InterPro v62.0 meta-database. Conservational analyses via multiple sequence alignment and domain showed that these are well conserved in Gram-positive bacteria and possess relatedness with Gram-negative bacteria. Further, Gene ontology and ligand-based functional annotation explain their active involvement in signal transduction mechanism via QS signaling molecules. Moreover, Phylogenetic analyses (LuxI, LuxR, LuxI + LuxR and 16s rRNA) revealed horizontal gene transfer events with significant statistical support among Gram-positive and Gram-negative bacteria. This in-silico study offers a detailed overview of potential LuxI/LuxR distribution in Gram-positive bacteria (mainly Firmicutes and Actinobacteria) and their functional role in QS. It would further help in understanding the extent of interspecies communications between Gram-positive and Gram-negative bacteria through QS signaling molecules.
Collapse
|
29
|
Rajput A, Kumar M. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing. Front Microbiol 2017; 8:798. [PMID: 28515720 PMCID: PMC5413776 DOI: 10.3389/fmicb.2017.00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs) and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS). Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site) evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS.
Collapse
Affiliation(s)
- Akanksha Rajput
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| |
Collapse
|
30
|
Dang HT, Komatsu S, Masuda H, Enomoto K. Characterization of LuxI and LuxR Protein Homologs of N-Acylhomoserine Lactone-Dependent Quorum Sensing System in Pseudoalteromonas sp. 520P1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:1-10. [PMID: 28083715 DOI: 10.1007/s10126-016-9726-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Pseudoalteromonas sp. 520P1 (hereafter referred to as strain 520P1) produces N-acylhomoserine lactones (AHLs), which serve as signaling molecules in Gram-negative bacterial quorum sensing. In a previous genomic analysis of the 5.25-Mb genome of strain 520P1, we detected the presence of at least one homolog of the AHL synthase gene (luxI) and five homologs of the transcriptional regulator protein gene (luxR). The LuxI homolog of strain 520P1 (PalI) contained the conserved amino acid motifs shared by all the LuxI family proteins of the different species examined here. The palI gene expressed in Escherichia coli produced two types of AHLs. In the thin-layer chromatography analysis, these AHLs showed identical mobility to the AHLs produced by strain 520P1. The five LuxR homologs of strain 520P1 (PalR1-PalR5) shared only 17-34% amino acid sequence identity, although higher identities were observed in the C-terminal DNA-binding domain. Among the five PalRs, only PalR5 displayed close homology with LuxR family proteins from other Pseudoalteromonas strains. Notably, the palR3 and palI genes were located close together and only 1021 bases apart in the genome. No cognate luxI homolog associated with the four other palR genes was detected. These characteristics of PalI and the PalRs suggest that AHL autoinducers generated by the PalI enzyme might regulate cellular metabolism in cooperation with five transcriptional regulator PalRs, each of which is presumed to play a distinctive role in bacterial signaling.
Collapse
Affiliation(s)
- Hoang Tran Dang
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Shinya Komatsu
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Hideyuki Masuda
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Keiichi Enomoto
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan.
| |
Collapse
|
31
|
Parker RE, Knupp D, Al Safadi R, Rosenau A, Manning SD. Contribution of the RgfD Quorum Sensing Peptide to rgf Regulation and Host Cell Association in Group B Streptococcus. Genes (Basel) 2017; 8:genes8010023. [PMID: 28067833 PMCID: PMC5295018 DOI: 10.3390/genes8010023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus; GBS) is a common inhabitant of the genitourinary and/or gastrointestinal tract in up to 40% of healthy adults; however, this opportunistic pathogen is able to breach restrictive host barriers to cause disease and persist in harsh and changing conditions. This study sought to identify a role for quorum sensing, a form of cell to cell communication, in the regulation of the fibrinogen-binding (rgfBDAC) two-component system and the ability to associate with decidualized endometrial cells in vitro. To do this, we created a deletion in rgfD, which encodes the putative autoinducing peptide, in a GBS strain belonging to multilocus sequence type (ST)-17 and made comparisons to the wild type. Sequence variation in the rgf operon was detected in 40 clinical strains and a non-synonymous single nucleotide polymorphism was detected in rgfD in all of the ST-17 genomes that resulted in a truncation. Using qPCR, expression of rgf operon genes was significantly decreased in the ST-17 ΔrgfD mutant during exponential growth with the biggest difference (3.3-fold) occurring at higher cell densities. Association with decidualized endometrial cells was decreased 1.3-fold in the mutant relative to the wild type and rgfC expression was reduced 22-fold in ΔrgfD following exposure to the endometrial cells. Collectively, these data suggest that this putative quorum sensing molecule is important for attachment to human tissues and demonstrate a role for RgfD in GBS pathogenesis through regulation of rgfC.
Collapse
Affiliation(s)
- Robert E Parker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - David Knupp
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Rim Al Safadi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Agnѐs Rosenau
- Infectiologie et Santé Publique ISP, Institut National de la Recherche Agronomique, Université de Tours, Equipe Bactéries et Risque Materno-fœtal, UMR1282 Tours, France.
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
32
|
Ecological patterns emerging as a result of the density distribution of organisms. Phys Life Rev 2016; 19:139-141. [DOI: 10.1016/j.plrev.2016.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/21/2022]
|
33
|
Rao RM, Pasha SN, Sowdhamini R. Genome-wide survey and phylogeny of S-Ribosylhomocysteinase (LuxS) enzyme in bacterial genomes. BMC Genomics 2016; 17:742. [PMID: 27650568 PMCID: PMC5029033 DOI: 10.1186/s12864-016-3002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/09/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The study of survival and communication of pathogenic bacteria is important to combat diseases caused by such micro-organisms. Bacterial cells communicate with each other using a density-dependent cell-cell communication process called Quorum Sensing (QS). LuxS protein is an important member of interspecies quorum-sensing system, involved in the biosynthesis of Autoinducer-2 (AI-2), and has been identified as a drug target. Despite the above mentioned significance, their evolution has not been fully studied, particularly from a structural perspective. RESULTS Search for LuxS in the non-redundant database of protein sequences yielded 3106 sequences. Phylogenetic analysis of these sequences revealed grouping of sequences into five distinct clusters belonging to different phyla and according to their habitat. A majority of the neighbouring genes of LuxS have been found to be hypothetical proteins. However, gene synteny analyses in different bacterial genomes reveal the presence of few interesting gene neighbours. Moreover, LuxS gene was found to be a component of an operon in only six out of 36 genomes. Analysis of conserved motifs in representative LuxS sequences of different clusters revealed the presence of conserved motifs common to sequences of all the clusters as well as motifs unique to each cluster. Homology modelling of LuxS protein sequences of each cluster revealed few structural features unique to protein of each cluster. Analyses of surface electrostatic potentials of the homology models of each cluster showed the interactions that are common to all the clusters, as well as cluster-specific potentials and therefore interacting partners, which may be unique to each cluster. CONCLUSIONS LuxS protein evolved early during the course of bacterial evolution, but has diverged into five subtypes. Analysis of sequence motifs and homology models of representative members reveal cluster-specific structural properties of LuxS. Further, it is also shown that LuxS protein may be involved in various protein-protein or protein-RNA interactions, which may regulate the activity of LuxS proteins in bacteria.
Collapse
Affiliation(s)
- Rajas M Rao
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, 560065, India
- Division of Biological Sciences, School of Natural Sciences, Bangalore University, Bangalore, 560056, India
| | - Shaik Naseer Pasha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, 560065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
34
|
Gan HM, Dailey LK, Halliday N, Williams P, Hudson AO, Savka MA. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family. PeerJ 2016; 4:e2332. [PMID: 27635318 PMCID: PMC5012321 DOI: 10.7717/peerj.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. METHODS In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. RESULTS Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. DISCUSSION This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Genomics Facility, Tropical Medicine Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lucas K Dailey
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Nigel Halliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| |
Collapse
|
35
|
Xu GM. Relationships between the Regulatory Systems of Quorum Sensing and Multidrug Resistance. Front Microbiol 2016; 7:958. [PMID: 27379084 PMCID: PMC4909744 DOI: 10.3389/fmicb.2016.00958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 11/23/2022] Open
Abstract
Cell–cell communications, known as quorum sensing (QS) in bacteria, involve the signal molecules as chemical languages and the corresponding receptors as transcriptional regulators. In Gram-negative bacteria, orphan LuxR receptors recognize signals more than just acylhomoserine lactones, and modulate interspecies and interkingdom communications. Whereas, in the Gram-positive Streptomyces, pseudo gamma-butyrolactones (GBLs) receptors bind antibiotics other than GBL signals, and coordinate antibiotics biosynthesis. By interacting with structurally diverse molecules like antibiotics, the TetR family receptors regulate multidrug resistance (MDR) by controlling efflux pumps. Antibiotics at subinhibitory concentration may act as signal molecules; while QS signals also have antimicrobial activity at high concentration. Moreover, the QS and MDR systems may share the same exporters to transport molecules. Among these orphan LuxR, pseudo GBL receptors, and MDR regulators, although only with low sequence homology, they have some structure similarity and function correlation. Therefore, perhaps there might be evolutionary relationship and biological relevance between the regulatory systems of QS and MDR. Since the QS systems become new targets for antimicrobial strategy, it would expand our understanding about the evolutionary history of these regulatory systems.
Collapse
Affiliation(s)
- Gang-Ming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| |
Collapse
|
36
|
Koul S, Prakash J, Mishra A, Kalia VC. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria. Indian J Microbiol 2015; 56:1-18. [PMID: 26843692 DOI: 10.1007/s12088-015-0558-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance.
Collapse
Affiliation(s)
- Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
37
|
Viswanath G, Jegan S, Baskaran V, Kathiravan R, Prabavathy VR. Diversity and N-acyl-homoserine lactone production by Gammaproteobacteria associated with Avicennia marina rhizosphere of South Indian mangroves. Syst Appl Microbiol 2015; 38:340-5. [DOI: 10.1016/j.syapm.2015.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/14/2015] [Accepted: 03/31/2015] [Indexed: 01/25/2023]
|
38
|
Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers. Appl Environ Microbiol 2015; 81:5917-26. [PMID: 26092466 DOI: 10.1128/aem.01103-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.
Collapse
|
39
|
Liu J, Hu L, Xu Z, Tan C, Yuan F, Fu S, Cheng H, Chen H, Bei W. Actinobacillus pleuropneumoniae two-component system QseB/QseC regulates the transcription of PilM, an important determinant of bacterial adherence and virulence. Vet Microbiol 2015; 177:184-92. [PMID: 25796134 DOI: 10.1016/j.vetmic.2015.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 01/01/2023]
Abstract
QseB/QseC is one of the five predicted two-component systems (TCSs) in Actinobacillus pleuropneumoniae. To understand the roles of this TCS in A. pleuropneumoniae, a markerless gene-deletion mutant ΔqseBC was constructed. Differentially expressed (DE) genes in ΔqseBC were filtered by microarray analysis. A total of 44 DE genes were found to be regulated by QseB/QseC system. The transcriptional profile of A. pleuropneumoniae ΔqseBC was compared with that of ΔluxS and catecholamine (CA) stimulations, 13 genes regulated by QseB/QseC were found also regulated by LuxS, and 3 Qse-regulons were co-regulated by CA stimulations, respectively. Binding of QseB to the promoters of three regulons (pilM, glpK and hugZ), which were co-regulated by QseB/QseC and LuxS, was evaluated by electrophoretic mobility-shift assay. Results indicated that pilM was directly regulated by phosphorylated-QseB. Then the pilM deletion mutant ΔpilM was constructed and characterized. Data presented here revealed that adherence ability of ΔpilM to St. Jude porcine lung cells was significantly decreased, and ΔpilM exhibited reduced virulence in pigs, suggesting PilM contributes to the process of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Jinlin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shulin Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
40
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
41
|
Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front Cell Infect Microbiol 2015; 4:188. [PMID: 25621282 PMCID: PMC4288048 DOI: 10.3389/fcimb.2014.00188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Huan You Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Nurul H Ahmad
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Nazrin A Aziz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| |
Collapse
|
42
|
Christensen QH, Brecht RM, Dudekula D, Greenberg EP, Nagarajan R. Evolution of acyl-substrate recognition by a family of acyl-homoserine lactone synthases. PLoS One 2014; 9:e112464. [PMID: 25401334 PMCID: PMC4234381 DOI: 10.1371/journal.pone.0112464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/06/2014] [Indexed: 11/23/2022] Open
Abstract
Members of the LuxI protein family catalyze synthesis of acyl-homoserine lactone (acyl-HSL) quorum sensing signals from S-adenosyl-L-methionine and an acyl thioester. Some LuxI family members prefer acyl-CoA, and others prefer acyl-acyl carrier protein (ACP) as the acyl-thioester substrate. We sought to understand the evolutionary history and mechanisms mediating this substrate preference. Our phylogenetic and motif analysis of the LuxI acyl-HSL synthase family indicates that the acyl-CoA-utilizing enzymes evolved from an acyl-ACP-utilizing ancestor. To further understand how acyl-ACPs and acyl-CoAs are recognized by acyl-HSL synthases we studied BmaI1, an octanoyl-ACP-dependent LuxI family member from Burkholderia mallei, and BjaI, an isovaleryl-CoA-dependent LuxI family member from Bradyrhizobium japonicum. We synthesized thioether analogs of their thioester acyl-substrates to probe recognition of the acyl-phosphopantetheine moiety common to both acyl-ACP and acyl-CoA substrates. The kinetics of catalysis and inhibition of these enzymes indicate that they recognize the acyl-phosphopantetheine moiety and they recognize non-preferred substrates with this moiety. We find that CoA substrate utilization arose through exaptation of acyl-phosphopantetheine recognition in this enzyme family.
Collapse
Affiliation(s)
- Quin H. Christensen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ryan M. Brecht
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, United States of America
| | - Dastagiri Dudekula
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, United States of America
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Rajesh Nagarajan
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, United States of America
- * E-mail:
| |
Collapse
|
43
|
Pérez-Rodríguez I, Bolognini M, Ricci J, Bini E, Vetriani C. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria. ISME JOURNAL 2014; 9:1222-34. [PMID: 25397946 DOI: 10.1038/ismej.2014.214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 12/27/2022]
Abstract
Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Marie Bolognini
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jessica Ricci
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Costantino Vetriani
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
44
|
Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes. Genetica 2014; 143:241-52. [PMID: 25297844 DOI: 10.1007/s10709-014-9793-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
Abstract
The blackleg and soft-rot diseases caused by pectinolytic enterobacteria such as Pectobacterium and Dickeya are major causes of losses affecting potato crop in the field and upon storage. In this work, we report the isolation, characterization and genome analysis of the Pectobacterium wasabiae (formerly identified as Pectobacterium carotovorum subsp. carotovorum) strain RNS 08.42.1A, that has been isolated from a Solanum tuberosum host plant in France. Comparative genomics with 3 other P. wasabiae strains isolated from potato plants in different areas in North America and Europe, highlighted both a strong similarity at the whole genome level (ANI > 99 %) and a conserved synteny of the virulence genes. In addition, our analyses evidenced a robust separation between these four P. wasabiae strains and the type strain P. wasabiae CFBP 3304(T), isolated from horseradish in Japan. In P. wasabiae RNS 08.42.1A, the expI and expR nucleotidic sequences are more related to those of some Pectobacterium atrosepticum and P. carotovorum strains (90 % of identity) than to those of the other potato P. wasabiae strains (70 to 74 % of identity). This could suggest a recruitment of these genes in the P. wasabiae strain RNS 08.42.1A by an horizontal transfer between pathogens infecting the same potato host plant.
Collapse
|
45
|
Bellezza I, Peirce MJ, Minelli A. Cyclic dipeptides: from bugs to brain. Trends Mol Med 2014; 20:551-8. [PMID: 25217340 DOI: 10.1016/j.molmed.2014.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Cyclic dipeptides (CDPs) are a group of hormone-like molecules that are evolutionarily conserved from bacteria to humans. In bacteria, CDPs are used in quorum sensing (QS) to communicate information about population size and to regulate a behavioural switch from symbiosis with their host to virulence. In mammals, CDPs have been shown to act on glial cells (macrophage-like cells) to control a conceptually homologous behavioural switch between homeostatic and inflammatory modes, with implications for the control of neurodegenerative disease. Here we argue that, because of their capacity to regulate inflammation via glial cells and induce a protective response in neuronal cells, CDPs have potential therapeutic utility in an array of inflammatory diseases.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy
| | - Matthew J Peirce
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy
| | - Alba Minelli
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy.
| |
Collapse
|
46
|
Sun Z, He X, Brancaccio VF, Yuan J, Riedel CU. Bifidobacteria exhibit LuxS-dependent autoinducer 2 activity and biofilm formation. PLoS One 2014; 9:e88260. [PMID: 24505453 PMCID: PMC3914940 DOI: 10.1371/journal.pone.0088260] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/08/2014] [Indexed: 12/26/2022] Open
Abstract
Autoinducer-2 (AI-2) molecules are one class of signalling molecules involved in gene regulation dependent on population density in a mechanism commonly referred to as quorum sensing (QS). AI-2 is produced by the methylthioadenosine/S-adenosyl-homocysteine nucleosidase LuxS. In the present study, we characterise the function of bifidobacterial LuxS proteins to address the question whether these economically important bacteria are able to perform QS communication. All publically available genome sequences of bifidobacteria harbour putative luxS genes. The deduced amino acid sequences are well conserved in the genus and show good homology to the LuxS protein of the prototypical AI-2 producer Vibrio harveyi. The luxS genes of three bifidobacterial strains were successfully expressed in AI-2-negative Escherichia coli DH5α. Supernatants of these recombinant E. coli strains contained significant AI-2 activity. In initial experiments, we failed to detect AI-2 activity in supernatants of bifidobacteria grown in MRSc. High concentration of glucose as well as acidic pH had strong inhibitory effects on AI-2 activity. AI-2 activity could be detected when lower volumes of supernatants were used in the assay. Homologous overexpression of luxS in Bifidobacterium longum NCC2705 increased AI-2 levels in the supernatant. Furthermore, over-expression of luxS or supplementation with AI-2-containing supernatants enhanced biofilm formation of B. longum NCC2705. Collectively, these results suggest that bifidobacteria indeed harbour functional luxS genes that are involved in the production of AI-2-like molecules. To the best of our knowledge, this represents the first report on AI-2 activity produced by bifidobacteria. Self-produced AI-2 activity as well as AI-2-like molecules of other bacteria of the intestinal tract may have a regulatory function in biofilm formation and host colonization by bifidobacteria.
Collapse
Affiliation(s)
- Zhongke Sun
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Xiang He
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | | | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (CUR); (JY)
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- * E-mail: (CUR); (JY)
| |
Collapse
|
47
|
Identification and characterization of a second quorum-sensing system in Agrobacterium tumefaciens A6. J Bacteriol 2014; 196:1403-11. [PMID: 24464459 DOI: 10.1128/jb.01351-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) is a widespread mechanism of bacterial communication in which individual cells produce and respond to small chemical signals. In Agrobacterium tumefaciens, an acylhomoserine lactone-dependent QS mechanism is known to regulate the replication and conjugation of the tumor-inducing (Ti) plasmid. Most of the QS regulatory proteins are encoded within the Ti plasmid. Among them, TraI is the LuxI-type enzyme synthesizing the QS signal N-3-oxooctanoyl-L-homoserine lactone (3OC8HSL), TraR is the LuxR-type transcriptional factor that recognizes 3OC8HSL, and TraM is an antiactivator that antagonizes TraR. Recently, we identified a TraM homolog encoded by the traM2 gene in the chromosomal background of A. tumefaciens A6. In this study, we further identified additional homologs (TraI2 and TraR2) of TraI and TraR in this strain. We showed that similar to TraI, TraI2 could predominantly synthesize the QS signal 3OC8HSL. We also showed that TraR2 could recognize 3OC8HSL and activate the tra box-containing promoters as efficiently as TraR. Further analysis showed that traM2, traI2, and traR2 are physically linked on a mobile genetic element that is not related to the Ti plasmid. These findings indicate that A. tumefaciens A6 carries a second QS system that may play a redundant role in the regulation of the replication and conjugation of the Ti plasmid.
Collapse
|
48
|
Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. J Bacteriol 2013; 196:1155-64. [PMID: 24375105 DOI: 10.1128/jb.01223-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many bacteria possess cell density-dependent quorum-sensing (QS) systems that often regulate cooperative secretions involved in host-microbe or microbe-microbe interactions. These secretions, or "public goods," are frequently coregulated by stress and starvation responses. Here we provide a physiological rationale for such regulatory complexity in the opportunistic pathogen Pseudomonas aeruginosa. Using minimal-medium batch and chemostat cultures, we comprehensively characterized specific growth rate-limiting macronutrients as key triggers for the expression of extracellular enzymes and metabolites directly controlled by the las and rhl QS systems. Expression was unrelated to cell density, depended on the secreted product's elemental composition, and was induced only when the limiting nutrient was not also a building block of the product; rhl-dependent products showed the strongest response, caused by the largely las-independent induction of the regulator RhlR and its cognate signal. In agreement with the prominent role of the rhl system, slow growth inverted the las-to-rhl signal ratio, previously considered a characteristic distinguishing between planktonic and biofilm lifestyles. Our results highlight a supply-driven, metabolically prudent regulation of public goods that minimizes production costs and thereby helps stabilize cooperative behavior. Such regulation would be beneficial for QS-dependent public goods that act broadly and nonspecifically, and whose need cannot always be accurately assessed by the producing cell. Clear differences in the capacities of the las and rhl systems to integrate starvation signals help explain the existence of multiple QS systems in one cell.
Collapse
|
49
|
Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 2013; 105:289-305. [DOI: 10.1007/s10482-013-0082-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|
50
|
Santiago-Rodriguez TM, Patrício AR, Rivera JI, Coradin M, Gonzalez A, Tirado G, Cano RJ, Toranzos GA. luxS in bacteria isolated from 25- to 40-million-year-old amber. FEMS Microbiol Lett 2013; 350:117-24. [PMID: 24102660 DOI: 10.1111/1574-6968.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Interspecies bacterial communication is mediated by autoinducer-2, whose synthesis depends on luxS. Due to the apparent universality of luxS (present in more than 40 bacterial species), it may have an ancient origin; however, no direct evidence is currently available. We amplified luxS in bacteria isolated from 25- to 40-million-year-old amber. The phylogenies and molecular clocks of luxS and the 16S rRNA gene from ancient and extant bacteria were determined as well. Luminescence assays using Vibrio harveyi BB170 aimed to determine the activity of luxS. While the phylogeny of luxS was very similar to that of extant Bacillus spp., amber isolates exhibited unique 16S rRNA gene phylogenies. This suggests that luxS may have been acquired by horizontal transfer millions of years ago. Molecular clocks of luxS suggest slow evolutionary rates, similar to those of the 16S rRNA gene and consistent with a conserved gene. Dendograms of the 16S rRNA gene and luxS show two separate clusters for the extant and ancient bacteria, confirming the uniqueness of the latter group.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodriguez
- Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rico, San Juan, Puerto Rico; Department of Pathology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|