1
|
Bains RK, Kovacevic M, Plaster CA, Tarekegn A, Bekele E, Bradman NN, Thomas MG. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genet 2013; 14:34. [PMID: 23641907 PMCID: PMC3655848 DOI: 10.1186/1471-2156-14-34] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
Background Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago. Results We estimate that ~43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as ~76,400 years and CYP3A5*6 as ~218,400 years. Finally we report that global CYP3A5 expression levels correlated significantly with aridity measures for 10,000 [Spearmann’s Rho= −0.465, p=0.004] and 50,000 years ago [Spearmann’s Rho= −0.379, p=0.02]. Conclusions Significant intra-African diversity at the CYP3A5 gene is likely to contribute to multiple pharmacogenetic profiles across the continent. Significant correlations between CYP3A5 expression phenotypes and aridity data are consistent with a hypothesis that the enzyme is important in salt-retention adaptation.
Collapse
Affiliation(s)
- Ripudaman K Bains
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
2
|
Research proceedings on primate comparative genomics. Zool Res 2013; 33:108-18. [DOI: 10.3724/sp.j.1141.2012.01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Kitano T, Blancher A, Saitou N. The functional A allele was resurrected via recombination in the human ABO blood group gene. Mol Biol Evol 2012; 29:1791-6. [PMID: 22319172 DOI: 10.1093/molbev/mss021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Functional A and B alleles are distinguished at two critical sites in exon 7 of the human ABO blood group gene. The most frequent nonfunctional O alleles have one-base deletion in exon 6 producing a frameshift, and it has the A type signature in two critical sites in exon 7. Previous studies indicated that B and O alleles were derived from A allele in human lineage. In this study, we conducted a phylogenetic network analysis using six representative haplotypes: A101, A201, B101, O01, O02, and O09. The result indicated that the A allele, possibly once extinct in the human lineage a long time ago, was resurrected by a recombination between B and O alleles less than 300,000 years ago.
Collapse
Affiliation(s)
- Takashi Kitano
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, Hitachi, Japan.
| | | | | |
Collapse
|
4
|
Brieuc MSO, Naish KA. Detecting signatures of positive selection in partial sequences generated on a large scale: pitfalls, procedures and resources. Mol Ecol Resour 2011; 11 Suppl 1:172-83. [PMID: 21429173 DOI: 10.1111/j.1755-0998.2010.02948.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studying the actions of selection provides insight into adaptation, population divergence and gene function. Next-generation sequencing produces large amounts of partial sequences, potentially facilitating efforts to detect signatures of selection based on comparisons between synonymous (d(S)) and nonsynonymous (d(N)) substitutions, and single nucleotide polymorphism assays placed in selected genes would improve the ability to study adaptation in population surveys. However, sequences generated by these technologies are typically short. In nonmodel organisms that are a focus of evolutionary studies, the lack of a reference genome that facilitates the assembly of short sequences has limited surveys of positive selection in large numbers of genes. Here, we describe a series of steps to facilitate these surveys. We provide PERL scripts to assist data analysis, and describe the use of commonly available programs. We demonstrate these approaches in six salmon species, which have partially duplicated genomes. We recommend using multiway blast to optimize the number of alignments between partial coding sequences. Reading frames should be manually detected after alignment with sequences in Genbank using the BLASTX program. We encourage the use of a phylogenetic approach to separate orthologs from paralogs in duplicated genomes. Simple simulations on a gene known to have undergone selection in salmon species, transferrin, showed that the ability to detect selection in short sequences (<600 bp) depended on the proportion of codons under selection (1-2%) within that sequence. This relationship was less relevant in longer sequences. In this exploratory study, we detected 11 genes showing evidence of positive selection.
Collapse
Affiliation(s)
- Marine S O Brieuc
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, 98195, USA.
| | | |
Collapse
|
5
|
Abstract
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the 'genes that make us human' also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
6
|
Yang CC, Sakai H, Numa H, Itoh T. Gene tree discordance of wild and cultivated Asian rice deciphered by genome-wide sequence comparison. Gene 2011; 477:53-60. [PMID: 21277362 DOI: 10.1016/j.gene.2011.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
Abstract
Although a large number of genes are expected to correctly solve a phylogenetic relationship, inconsistent gene tree topologies have been observed. This conflicting evidence in gene tree topologies, known as gene tree discordance, becomes increasingly important as advanced sequencing technologies produce an enormous amount of sequence information for phylogenomic studies among closely related species. Here, we aim to characterize the gene tree discordance of the Asian cultivated rice Oryza sativa and its progenitor, O. rufipogon, which will be an ideal case study of gene tree discordance. Using genome and cDNA sequences of O. sativa and O. rufipogon, we have conducted the first in-depth analyses of gene tree discordance in Asian rice. Our comparison of full-length cDNA sequences of O. rufipogon with the genome sequences of the japonica and indica cultivars of O. sativa revealed that 60% of the gene trees showed a topology consistent with the expected one, whereas the remaining genes supported significantly different topologies. Moreover, the proportions of the topologies deviated significantly from expectation, suggesting at least one hybridization event between the two subgroups of O. sativa, japonica and indica. In fact, a genome-wide alignment between japonica and indica indicated that significant portions of the indica genome are derived from japonica. In addition, literature concerning the pedigree of the indica cultivar strongly supported the hybridization hypothesis. Our molecular evolutionary analyses deciphered complicated evolutionary processes in closely related species. They also demonstrated the importance of gene tree discordance in the era of high-speed DNA sequencing.
Collapse
Affiliation(s)
- Ching-chia Yang
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan.
| | | | | | | |
Collapse
|
7
|
Mohamadi A, Martari M, Holladay CD, Phillips JA, Mullis PE, Salvatori R. Mutation analysis of the muscarinic cholinergic receptor genes in isolated growth hormone deficiency type IB. J Clin Endocrinol Metab 2009; 94:2565-70. [PMID: 19417035 PMCID: PMC2708943 DOI: 10.1210/jc.2009-0512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. OBJECTIVE We hypothesized that mAchR mutations may cause a subset of familial IGHD. PATIENTS/METHODS After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. RESULTS In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. CONCLUSION mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.
Collapse
Affiliation(s)
- Ali Mohamadi
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
8
|
Portin P. Evolution of man in the light of molecular genetics: a review. Part II. Regulation of gene function, evolution of speech and of brains. Hereditas 2008; 145:113-25. [DOI: 10.1111/j.0018-0661.2008.02053.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Abstract
Reading abilities are acquired only through specific teaching and training. A significant proportion of children fail to achieve these skills despite normal intellectual abilities and an appropriate opportunity to learn. Difficulty in learning to read is attributable to specific dysfunctions of the brain, which so far remain poorly understood. However, it is recognized that the neurological basis for dyslexia, or reading disability, is caused in large part by genetic factors. Linkage studies have successfully identified several regions of the human genome that are likely to harbor susceptibility genes for dyslexia. In the past few years there have been exciting advances with the identification of four candidate genes located within three of these linked chromosome regions: DYX1C1 on chromosome 15, ROBO1 on chromosome 3, and KIAA0319 and DCDC2 on chromosome 6. Functional studies of these genes are offering new insights about the biological mechanisms underlying the development of dyslexia and, in general, of cognition.
Collapse
Affiliation(s)
- Silvia Paracchini
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
10
|
Parker-Katiraee L, Carson AR, Yamada T, Arnaud P, Feil R, Abu-Amero SN, Moore GE, Kaneda M, Perry GH, Stone AC, Lee C, Meguro-Horike M, Sasaki H, Kobayashi K, Nakabayashi K, Scherer SW. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet 2007; 3:e65. [PMID: 17480121 PMCID: PMC1865561 DOI: 10.1371/journal.pgen.0030065] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 03/12/2007] [Indexed: 12/22/2022] Open
Abstract
Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage. Imprinted genes are expressed in a parent-of-origin manner, where one of the two inherited copies of the imprinted gene is silenced. Aberrations in the expression of these genes, which generally regulate growth, are associated with various developmental disorders, emphasizing the importance of their discovery and analysis. In this study, we identify a novel imprinted gene, named KLF14, on human Chromosome 7. It is predicted to bind DNA and regulate transcription and was shown to be expressed from the maternally inherited chromosome in all human and mouse tissues examined. Surprisingly, we did not identify molecular signatures generally associated with imprinted regions, such as DNA methylation. Additionally, the identification of numerous DNA sequence variants led to an in-depth analysis of the gene's evolution. It was determined that there is greater variability in KLF14 in the human lineage, when compared to other primates, with a significantly increased number of polymorphisms encoding for changes at the protein level, suggesting human-specific accelerated evolution. As the first example of an imprinted transcript undergoing accelerated evolution in the human lineage, we propose that the accumulation of polymorphisms in KLF14 may be aided by the silencing of the inactive allele, allowing for stronger selection.
Collapse
Affiliation(s)
- Layla Parker-Katiraee
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew R Carson
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Takahiro Yamada
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Philippe Arnaud
- Institute of Molecular Genetics (IGMM), CNRS UMR5535, Montpellier, France
- University of Montpellier II, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR5535, Montpellier, France
- University of Montpellier II, Montpellier, France
| | - Sayeda N Abu-Amero
- Institute of Child Health, University College London, London, United Kingdom
| | - Gudrun E Moore
- Institute of Child Health, University College London, London, United Kingdom
| | - Masahiro Kaneda
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - George H Perry
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Charles Lee
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Makiko Meguro-Horike
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hiroyuki Sasaki
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (Sokendai), Mishima, Japan
| | - Keiko Kobayashi
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhiko Nakabayashi
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Stephen W Scherer
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Kehrer-Sawatzki H, Cooper DN. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat 2007; 28:99-130. [PMID: 17024666 DOI: 10.1002/humu.20420] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.
Collapse
|
12
|
Blasi P, Palmerio F, Aiello A, Rocchi M, Malaspina P, Novelletto A. SSADH Variation in Primates: Intra- and Interspecific Data on a Gene with a Potential Role in Human Cognitive Functions. J Mol Evol 2006; 63:54-68. [PMID: 16786440 DOI: 10.1007/s00239-005-0154-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 12/22/2005] [Indexed: 10/24/2022]
Abstract
In the present study we focus on the nucleotide and the inferred amino acid variation occurring in humans and other primate species for mitochondrial NAD(+)-dependent succinic semialdehyde dehydrogenase, a gene recently supposed to contribute to cognitive performance in humans. We determined 2527 bp of coding, intronic, and flanking sequences from chimpanzee, bonobo, gorilla, orangutan, gibbon, and macaque. We also resequenced the entire coding sequence on 39 independent chromosomes from Italian families. Four variable coding sites were genotyped in additional populations from Europe, Africa, and Asia. A test for constancy of the nonsynonymous vs. synonymous rates of nucleotide changes revealed that primates are characterized by largely variable d(N)/d(S) ratios. On a background of strong conservation, probably controlled by selective constraints, the lineage leading to humans showed a ratio increased to 0.42. Human polymorphic levels fall in the range reported for other genes, with a pattern of frequency and haplotype structure strongly suggestive of nonneutrality. The comparison with the primate sequences allowed inferring the ancestral state at all variable positions, suggesting that the c.538(C) allele and the associated functional variant is indeed a derived state that is proceeding to fixation. The unexpected pattern of human polymorphism compared to interspecific findings outlines the possibility of a recent positive selection on some variants relevant to new cognitive capabilities unique to humans.
Collapse
Affiliation(s)
- Paola Blasi
- Department of Biology, University "Tor Vergata", via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Goodman M, Grossman LI, Wildman DE. Moving primate genomics beyond the chimpanzee genome. Trends Genet 2005; 21:511-7. [PMID: 16009448 DOI: 10.1016/j.tig.2005.06.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/06/2005] [Accepted: 06/30/2005] [Indexed: 11/16/2022]
Abstract
The comparative DNA sequence data that already exist on individual genomic loci depict the phylogenetic relationships of nearly all extant primate genera. Such a phylogenetic representation of the primates, validated by many sequenced primate genomes, and encompassing the full adaptive diversity of the order, is a prerequisite for identifying the genetic basis of humankind, and for testing the proposed human uniqueness of these traits. Some of these traits have been discovered recently, particularly in genes encoding proteins that are important for brain function.
Collapse
Affiliation(s)
- Morris Goodman
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
14
|
Glazko G, Veeramachaneni V, Nei M, Makałowski W. Eighty percent of proteins are different between humans and chimpanzees. Gene 2005; 346:215-9. [PMID: 15716009 DOI: 10.1016/j.gene.2004.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/01/2004] [Accepted: 11/05/2004] [Indexed: 11/16/2022]
Abstract
The chimpanzee is our closest living relative. The morphological differences between the two species are so large that there is no problem in distinguishing between them. However, the nucleotide difference between the two species is surprisingly small. The early genome comparison by DNA hybridization techniques suggested a nucleotide difference of 1-2%. Recently, direct nucleotide sequencing confirmed this estimate. These findings generated the common belief that the human is extremely close to the chimpanzee at the genetic level. However, if one looks at proteins, which are mainly responsible for phenotypic differences, the picture is quite different, and about 80% of proteins are different between the two species. Still, the number of proteins responsible for the phenotypic differences may be smaller since not all genes are directly responsible for phenotypic characters.
Collapse
Affiliation(s)
- Galina Glazko
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
15
|
Abstract
This is the year of the chimpanzee genome. Chimpanzee chromosome 22 has been sequenced and soon will be followed by the whole genome, and thousands of chimpanzee cDNA sequences are available for comparative analysis. Not only does this genomic information allow us to identify human-specific changes in particular genes that are potentially under selection, but also to understand molecular evolutionary dynamics characterizing the two most closely related mammalian genomes sequenced so far. Studies comparing gene expression in chimpanzees and other closely related primates reveal significant species differences in brain, liver and fibroblasts. New empirical data, in combination with models of speciation, are giving insight into how humans and chimpanzees speciated.
Collapse
Affiliation(s)
- Maryellen Ruvolo
- Department of Anthropology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Kitano T, Saitou N. Evolutionary Conservation of 5' upstream Sequence of Nine Genes between Human and Great Apes. Genes Genet Syst 2005; 80:225-32. [PMID: 16172534 DOI: 10.1266/ggs.80.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleotide sequences of nine 5' upstream gene regions for human, chimpanzee, gorilla, and orangutan were determined. We estimated nucleotide differences (d) for each region between human and great apes. The overall d was 0.027 (ranged from 0.004 to 0.052). Rates of nucleotide substitution were estimated by using d and divergence times of human, chimpanzee, gorilla, and orangutan. The overall rate of nucleotide substitution between human and other hominoids was estimated to be 0.52-0.85 x 10(-9). This rate in 5' upstream regions was lower than that of synonymous sites, suggesting that 5' upstream regions have evolved under some functional constraints. Because lower rates have been reported for coding sequences in primates compared to rodents, we also estimated the rate (1.17-1.76 x 10(-9)) of nucleotide substitutions for the corresponding 5' upstream regions in rodents (mouse/rat comparison). Thus the primate rate was lower than rodent rate also for the 5' upstream regions.
Collapse
Affiliation(s)
- Takashi Kitano
- Division of Population Genetics, National Institute of Genetics Mishima, Japan
| | | |
Collapse
|
17
|
Saitou N. Evolution of hominoids and the search for a genetic basis for creating humanness. Cytogenet Genome Res 2004; 108:16-21. [PMID: 15545711 DOI: 10.1159/000080797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 03/11/2004] [Indexed: 01/01/2023] Open
Abstract
The phylogenetic relationship of human and apes are reviewed. The history of molecular phylogenetic studies in this field is then discussed, as is the role of natural selection at the molecular level. It is argued that approximately 10,000 genetic changes are responsible for creating human specific phenotypes. A genome-wide comparison is necessary to decipher those changes.
Collapse
Affiliation(s)
- N Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan.
| |
Collapse
|