1
|
Saini N, Gupta RS. A robust phylogenetic framework for members of the order Legionellales and its main genera (Legionella, Aquicella, Coxiella and Rickettsiella) based on phylogenomic analyses and identification of molecular markers demarcating different clades. Antonie van Leeuwenhoek 2021; 114:957-982. [PMID: 33881638 DOI: 10.1007/s10482-021-01569-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
The order Legionellales contains several clinically important microorganisms. Although members of this order are well-studied for their pathogenesis, there is a paucity of reliable characteristics distinguishing members of this order and its constituent genera. Genome sequences are now available for 73 Legionellales species encompassing ≈90% of known members from different genera. With the aim of understanding evolutionary relationships and identifying reliable molecular characteristics that are specific for this order and its constituent genera, detailed phylogenetic and comparative analyses were conducted on the protein sequences from these genomes. A phylogenomic tree was constructed based on 393 single copy proteins that are commonly shared by the members of this order to delineate the evolutionary relationships among its members. In parallel, comparative analyses were performed on protein sequences from Legionellales genomes to identify novel molecular markers consisting of conserved signature indels (CSIs) that are specific for different clades and genera. In the phylogenomic tree and in an amino acid identity matrix based on core proteins, members of the genera Aquicella, Coxiella, Legionella and Rickettsiella formed distinct clades confirming their monophyly. In these studies, Diplorickettsia massiliensis exhibited a close relationship to members of the genus Rickettsiella. The results of our comparative genomic analyses have identified 59 highly specific molecular markers consisting of CSIs in diverse proteins that are uniquely shared by different members of this order. Four of these CSIs are specific for all Legionellales species, except the two deeper-branching "Candidatus Berkiella" species, providing means for identifying members of this order in molecular terms. Twenty four, 7 and 6 CSIs are uniquely shared by members of the genera Legionella, Coxiella and Aquicella, respectively, identifying these groups in molecular terms. The descriptions of these three genera are emended to include information for their novel molecular characteristics. We also describe 12 CSIs that are uniquely shared by D. massiliensis and different members of the genus Rickettsiella. Based on these results, we are proposing an integration of the genus Diplorickettsia with Rickettsiella. Three other CSIs suggest that members of the genera Coxiella and Rickettsiella shared a common ancestor exclusive of other Legionellales. The described molecular markers, due to their exclusivity for the indicated taxa/genera, provide important means for the identification of these clinically important microorganisms and for discovering novel properties unique to them.
Collapse
Affiliation(s)
- Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
2
|
Boyd BM, Allen JM, Nguyen NP, Vachaspati P, Quicksall ZS, Warnow T, Mugisha L, Johnson KP, Reed DL. Primates, Lice and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice. Mol Biol Evol 2017; 34:1743-1757. [PMID: 28419279 PMCID: PMC5455983 DOI: 10.1093/molbev/msx117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects with restricted diets rely on symbiotic bacteria to provide essential metabolites missing in their diet. The blood-sucking lice are obligate, host-specific parasites of mammals and are themselves host to symbiotic bacteria. In human lice, these bacterial symbionts supply the lice with B-vitamins. Here, we sequenced the genomes of symbiotic and heritable bacterial of human, chimpanzee, gorilla, and monkey lice and used phylogenomics to investigate their evolutionary relationships. We find that these symbionts have a phylogenetic history reflecting the louse phylogeny, a finding contrary to previous reports of symbiont replacement. Examination of the highly reduced symbiont genomes (0.53–0.57 Mb) reveals much of the genomes are dedicated to vitamin synthesis. This is unchanged in the smallest symbiont genome and one that appears to have been reorganized. Specifically, symbionts from human lice, chimpanzee lice, and gorilla lice carry a small plasmid that encodes synthesis of vitamin B5, a vitamin critical to the bacteria-louse symbiosis. This plasmid is absent in an old world monkey louse symbiont, where this pathway is on its primary chromosome. This suggests the unique genomic configuration brought about by the plasmid is not essential for symbiosis, but once obtained, it has persisted for up to 25 My. We also find evidence that human, chimpanzee, and gorilla louse endosymbionts have lost a pathway for synthesis of vitamin B1, whereas the monkey louse symbiont has retained this pathway. It is unclear whether these changes are adaptive, but they may point to evolutionary responses of louse symbionts to shifts in primate biology.
Collapse
Affiliation(s)
- Bret M Boyd
- Department of Entomology, University of Georgia Athens, Athens, GA.,Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL
| | - Julie M Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL.,Florida Museum of Natural History, University of Florida, Gainesville, FL
| | - Nam-Phuong Nguyen
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Pranjal Vachaspati
- Department of Computer Science and Department of Bioengineering, University of Illinois Urbana-Champaign, Champaign, IL
| | | | - Tandy Warnow
- Department of Computer Science and Department of Bioengineering, University of Illinois Urbana-Champaign, Champaign, IL
| | - Lawrence Mugisha
- Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda.,College of Veterinary Medicine, Animal Resources & Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL
| | - David L Reed
- Florida Museum of Natural History, University of Florida, Gainesville, FL
| |
Collapse
|
3
|
Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575-5599. [DOI: 10.1099/ijsem.0.001485] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
4
|
Dilthey A, Lercher MJ. Horizontally transferred genes cluster spatially and metabolically. Biol Direct 2015; 10:72. [PMID: 26690249 PMCID: PMC4687082 DOI: 10.1186/s13062-015-0102-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023] Open
Abstract
Background Genomic uptake of DNA by prokaryotes often encompasses more than a single gene. In many cases, several horizontally transferred genes may be acquired together. Accordingly, we expect that horizontally transferred genes cluster spatially in the genome more often than expected if transfers were independent. Further, genes that depend on each other functionally may be unlikely to have beneficial fitness effects when taken up individually by a foreign genome. Hence, we also expect the co-acquisition of functionally related genes, resulting in the clustering of horizontally transferred genes in functional networks. Results Analysing spatial and metabolic clustering of recent horizontal (or lateral) gene transfers among 21 γ-proteobacteria, we confirm both predictions. When comparing two datasets of predicted transfers that differ in their expected false-positive rate, we find that the more stringent dataset shows a stronger enrichment of clustered pairs. Conclusions The enrichment of interdependent metabolic genes among predicted transfers supports a biologically significant role of horizontally transferred genes in metabolic adaptation. Our results further suggest that spatial and metabolic clustering may be used as a benchmark for methods that predict recent horizontal gene transfers. Reviewers This article was reviewed by Peter Gogarten in collaboration with Luiz Thiberio Rangel, and by Yuri Wolf.
Collapse
Affiliation(s)
- Alexander Dilthey
- Institute for Computer Science, Heinrich Heine University, 40225, Düsseldorf, Germany. .,Present address: The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
Abstract
SUMMARY Members of the Roseobacter clade are equipped with a tremendous diversity of metabolic capabilities, which in part explains their success in so many different marine habitats. Ideas on how this diversity evolved and is maintained are reviewed, focusing on recent evolutionary studies exploring the timing and mechanisms of Roseobacter ecological diversification.
Collapse
|
6
|
Williams LE, Wernegreen JJ. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini. PeerJ 2015; 3:e881. [PMID: 25861561 PMCID: PMC4389277 DOI: 10.7717/peerj.881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA) of these six Blochmannia genomes is reduced (690 protein coding genes), consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri) encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled) and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of coresident symbionts other than Wolbachia. Although gene order is strictly conserved in four Blochmannia of Camponotus sensu stricto, comparisons with deeply divergent lineages revealed inversions in eight genomic regions, indicating ongoing recombination despite ancestral loss of recA. In sum, the addition of two Blochmannia genomes of divergent host lineages enables reconstruction of early events in evolution of this symbiosis and suggests that Blochmannia lineages may experience distinct, host-associated selective pressures. Understanding how evolutionary forces shape genome reduction in this system may help to clarify forces driving gene loss in other bacteria, including intracellular pathogens.
Collapse
Affiliation(s)
- Laura E Williams
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA
| | - Jennifer J Wernegreen
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA ; Nicholas School of the Environment, Duke University , Durham, NC , USA
| |
Collapse
|
7
|
Luo H. The use of evolutionary approaches to understand single cell genomes. Front Microbiol 2015; 6:174. [PMID: 25806025 PMCID: PMC4354383 DOI: 10.3389/fmicb.2015.00191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/20/2015] [Indexed: 11/13/2022] Open
Abstract
The vast majority of environmental bacteria and archaea remain uncultivated, yet their genome sequences are rapidly becoming available through single cell sequencing technologies. Reconstructing metabolism is one common way to make use of genome sequences of ecologically important bacteria, but molecular evolutionary analysis is another approach that, while currently underused, can reveal important insights into the function of these uncultivated microbes in nature. Because genome sequences from single cells are often incomplete, metabolic reconstruction based on genome content can be compromised. However, this problem does not necessarily impede the use of phylogenomic and population genomic approaches that are based on patterns of polymorphisms and substitutions at nucleotide and amino acid sites. These approaches explore how various evolutionary forces act to assemble genetic diversity within and between lineages. In this mini-review, I present examples illustrating the benefits of analyzing single cell genomes using evolutionary approaches.
Collapse
Affiliation(s)
- Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
8
|
Luo H, Swan BK, Stepanauskas R, Hughes AL, Moran MA. Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters. ISME JOURNAL 2014; 8:1428-39. [PMID: 24451207 DOI: 10.1038/ismej.2013.248] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/11/2013] [Accepted: 12/14/2013] [Indexed: 11/09/2022]
Abstract
The vast majority of surface ocean bacteria are uncultivated. Compared with their cultured relatives, they frequently exhibit a streamlined genome, reduced G+C content and distinct gene repertoire. These genomic traits are relevant to environmental adaptation, and have generally been thought to become fixed in marine bacterial populations through selection. Using single-cell genomics, we sequenced four uncultivated cells affiliated with the ecologically relevant Roseobacter clade and used a composition-heterogeneous Bayesian phylogenomic model to resolve these single-cell genomes into a new clade. This lineage has no representatives in culture, yet accounts for ∼35% of Roseobacters in some surface ocean waters. Analyses of multiple genomic traits, including genome size, G+C content and percentage of noncoding DNA, suggest that these single cells are representative of oceanic Roseobacters but divergent from isolates. Population genetic analyses showed that substitution of physicochemically dissimilar amino acids and replacement of G+C-rich to G+C-poor codons are accelerated in the uncultivated clade, processes that are explained equally well by genetic drift as by the more frequently invoked explanation of natural selection. The relative importance of drift vs selection in this clade, and perhaps in other marine bacterial clades with streamlined G+C-poor genomes, remains unresolved until more evidence is accumulated.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Brandon K Swan
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
The pine bark Adelgid, Pineus strobi, contains two novel bacteriocyte-associated gammaproteobacterial symbionts. Appl Environ Microbiol 2013; 80:878-85. [PMID: 24271164 DOI: 10.1128/aem.03310-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial endosymbionts of the pine bark adelgid, Pineus strobi (Insecta: Hemiptera: Adelgidae), were investigated using transmission electron microscopy, 16S and 23S rRNA-based phylogeny, and fluorescence in situ hybridization. Two morphologically different symbionts affiliated with the Gammaproteobacteria were present in distinct bacteriocytes. One of them ("Candidatus Annandia pinicola") is most closely related to an endosymbiont of Adelges tsugae, suggesting that they originate from a lineage already present in ancient adelgids before the hosts diversified into the two major clades, Adelges and Pineus. The other P. strobi symbiont ("Candidatus Hartigia pinicola") represents a novel symbiont lineage in members of the Adelgidae. Our findings lend further support for a complex evolutionary history of the association of adelgids with a phylogenetically diverse set of bacterial symbionts.
Collapse
|
10
|
Li J, Li F, Yu S, Qin S, Wang G. Impacts of mariculture on the diversity of bacterial communities within intertidal sediments in the Northeast of China. MICROBIAL ECOLOGY 2013; 66:861-870. [PMID: 23963221 DOI: 10.1007/s00248-013-0272-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Mariculture is one of the major seafood supplies worldwide and has caused serious environmental concerns on the coastal zone. Its rapid development has been shown to disrupt the sediment ecosystems and thus influence the benthic bacterial communities. Bacterial diversity and community structure within both adjacent farms and non-cultured zones intertidal sediments along the coasts of Qinhuangdao and Dalian, China, were investigated using full-length 16S rRNA gene-based T-RFLP analyses and clone library construction. Richness and Shannon-Wiener index were significantly increased at sites adjacent the mariculture farm with mean values of 29 and 2.97 from peak profiles of T-RFLP result. Clustering analyses suggested that impacts of mariculture on bacterial diversity of sediment were significantly larger than those resulted from temporal and spatial scales. Upon comparisons of RFLP patterns from 602 clones from libraries of the selected five samples, 137 OTUs were retrieved. Members of γ- and δ-Proteobacteria, Bacilli, Flavobacteria, and Actinobacteria were recorded in all libraries. In addition, γ-Proteobacteria were dominant in all samples (21.7~45.0 %). Redundancy analysis revealed that the distribution of bacterial composition seemed to be determined by the variables of salinity, PO4 (3-)-P, NH4 (+)-N, and Chlorophyll a content. The phyla of γ-Proteobacteria, Clostridia, Flavobacteria, Bacilli, and Planctomycetes were principal components to contribute to the bacterial differences of clone libraries. Our finding demonstrated that these phyla could display variations of bacterial composition linked to environmental disturbance resulted from mariculture.
Collapse
Affiliation(s)
- Jialin Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | | | | | | | | |
Collapse
|
11
|
Smith WA, Oakeson KF, Johnson KP, Reed DL, Carter T, Smith KL, Koga R, Fukatsu T, Clayton DH, Dale C. Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: evidence for repeated symbiont replacements. BMC Evol Biol 2013; 13:109. [PMID: 23725492 PMCID: PMC3724504 DOI: 10.1186/1471-2148-13-109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/24/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many groups of insects have obligate bacterial symbionts that are vertically transmitted. Such associations are typically characterized by the presence of a monophyletic group of bacteria living in a well-defined host clade. In addition the phylogeny of the symbiotic bacteria is typically congruent with that of the host, signifying co-speciation. Here we show that bacteria living in a single genus of feather lice, Columbicola (Insecta: Phthiraptera), present an exception to this typical pattern. RESULTS The phylogeny of Columbicola spp. symbionts revealed the presence of three candidate clades, with the most species-rich clade having a comb-like topology with very short internodes and long terminal branches. Evolutionary simulations indicate that this topology is characteristic of a process of repeated symbiont replacement over a brief time period. The two remaining candidate clades in our study exhibit high levels of nucleotide substitution, suggesting accelerated molecular evolution due to relaxed purifying selection or smaller effective population size, which is typical of many vertically transmitted insect symbionts. Representatives of the fast-evolving and slow-evolving symbiont lineages exhibit the same localization, migration, and transmission patterns in their hosts, implying direct replacement. CONCLUSIONS Our findings suggest that repeated, independent symbiont replacements have taken place over the course of the relatively recent radiation of Columbicola spp. These results are compatible with the notion that lice and other insects have the capability to acquire novel symbionts through the domestication of progenitor strains residing in their local environment.
Collapse
Affiliation(s)
- Wendy A Smith
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Kelly F Oakeson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA
| | - David L Reed
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Tamar Carter
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Kari L Smith
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Dale H Clayton
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Groussin M, Boussau B, Gouy M. A branch-heterogeneous model of protein evolution for efficient inference of ancestral sequences. Syst Biol 2013; 62:523-38. [PMID: 23475623 PMCID: PMC3676677 DOI: 10.1093/sysbio/syt016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most models of nucleotide or amino acid substitution used in phylogenetic studies assume that the evolutionary process has been homogeneous across lineages and that composition of nucleotides or amino acids has remained the same throughout the tree. These oversimplified assumptions are refuted by the observation that compositional variability characterizes extant biological sequences. Branch-heterogeneous models of protein evolution that account for compositional variability have been developed, but are not yet in common use because of the large number of parameters required, leading to high computational costs and potential overparameterization. Here, we present a new branch-nonhomogeneous and nonstationary model of protein evolution that captures more accurately the high complexity of sequence evolution. This model, henceforth called Correspondence and likelihood analysis (COaLA), makes use of a correspondence analysis to reduce the number of parameters to be optimized through maximum likelihood, focusing on most of the compositional variation observed in the data. The model was thoroughly tested on both simulated and biological data sets to show its high performance in terms of data fitting and CPU time. COaLA efficiently estimates ancestral amino acid frequencies and sequences, making it relevant for studies aiming at reconstructing and resurrecting ancestral amino acid sequences. Finally, we applied COaLA on a concatenate of universal amino acid sequences to confirm previous results obtained with a nonhomogeneous Bayesian model regarding the early pattern of adaptation to optimal growth temperature, supporting the mesophilic nature of the Last Universal Common Ancestor.
Collapse
Affiliation(s)
- M Groussin
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.
| | | | | |
Collapse
|
13
|
Swenson KM, Chen E, Pattengale ND, Sankoff D. The Kernel of Maximum Agreement Subtrees. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:1023-1031. [PMID: 22231622 DOI: 10.1109/tcbb.2012.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A Maximum Agreement SubTree (MAST) is a largest subtree common to a set of trees and serves as a summary of common substructure in the trees. A single MAST can be misleading, however, since there can be an exponential number of MASTs, and two MASTs for the same tree set do not even necessarily share any leaves. In this paper, we introduce the notion of the Kernel Agreement SubTree (KAST), which is the summary of the common substructure in all MASTs, and show that it can be calculated in polynomial time (for trees with bounded degree). Suppose the input trees represent competing hypotheses for a particular phylogeny. We explore the utility of the KAST as a method to discern the common structure of confidence, and as a measure of how confident we are in a given tree set. We also show the trend of the KAST, as compared to other consensus methods, on the set of all trees visited during a Bayesian analysis of flatworm genomes.
Collapse
Affiliation(s)
- Krister M Swenson
- Department of Mathematics and Statistics, University of Ottawa and the Laboratoire de Combinatoire et d'Informatique Mathématique-LaCIM at the Université du Québec à Montréal-UQAM, 8337 Ave. Casgrain, Montreal, QC H2P2K7, Canada.
| | | | | | | |
Collapse
|
14
|
Ishikawa SA, Inagaki Y, Hashimoto T. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity. Evol Bioinform Online 2012; 8:357-71. [PMID: 22798721 PMCID: PMC3394461 DOI: 10.4137/ebo.s9017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.
Collapse
Affiliation(s)
- Sohta A Ishikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
15
|
Sumner JG, Jarvis PD, Fernández-Sánchez J, Kaine BT, Woodhams MD, Holland BR. Is the general time-reversible model bad for molecular phylogenetics? Syst Biol 2012; 61:1069-74. [PMID: 22442193 DOI: 10.1093/sysbio/sys042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeremy G Sumner
- School of Mathematics and Physics, University of Tasmania, Hobart 7001,
| | | | | | | | | | | |
Collapse
|
16
|
Philippe H, Roure B. Difficult phylogenetic questions: more data, maybe; better methods, certainly. BMC Biol 2011; 9:91. [PMID: 22206462 PMCID: PMC3248379 DOI: 10.1186/1741-7007-9-91] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022] Open
Abstract
Contradicting the prejudice that endosymbiosis is a rare phenomenon, Husník and co-workers show in BMC Biology that bacterial endosymbiosis has occured several times independently during insect evolution. Rigorous phylogenetic analyses, in particular using complex models of sequence evolution and an original site removal procedure, allow this conclusion to be established after eschewing inference artefacts that usually plague the positioning of highly divergent endosymbiont genomic sequences.
Collapse
Affiliation(s)
- Hervé Philippe
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada.
| | | |
Collapse
|
17
|
Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol 2011; 9:87. [PMID: 22201529 PMCID: PMC3271043 DOI: 10.1186/1741-7007-9-87] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from the loosely associated commensals, often designated as secondary (S) symbionts, to obligate mutualists, called primary (P) symbionts. Determination of the evolutionary processes behind this phenomenon has long been hampered by the unreliability of phylogenetic reconstructions within this group of bacteria. The main reasons have been the absence of sufficient data, the highly derived nature of the symbiont genomes and lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to cluster as a monophyletic group. This state of phylogenetic uncertainty is now improving with an increasing number of complete bacterial genomes and development of new methods. In this study, we address the monophyly versus polyphyly of enterobacterial symbionts by exploring a multigene matrix within a complex phylogenetic framework. RESULTS We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 orthologous genes with no missing data) and analyzed both nucleic and amino acid data sets using several probabilistic methods. We particularly focused on the long-branch attraction-reducing methods, such as a nucleotide and amino acid data recoding and exclusion (including our new approach and slow-fast analysis), taxa exclusion and usage of complex evolutionary models, such as nonhomogeneous model and models accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our data strongly suggest independent origins of four symbiotic clusters; the first is formed by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the Erwinia and Pantoea clade. CONCLUSIONS The results of this study confirm the efficiency of several artifact-reducing methods and strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. Interestingly, the model species of symbiotic bacteria research, Buchnera and Wigglesworthia, originated from closely related, but different, ancestors. The possible origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are suggested, as well as the role of facultative secondary symbionts as a source of bacteria that can gradually become obligate maternally transferred symbionts.
Collapse
Affiliation(s)
- Filip Husník
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Chrudimský
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
- Institute of Parasitology, Biology Centre of ASCR, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
18
|
Regier JC, Zwick A. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods. PLoS One 2011; 6:e23408. [PMID: 21829732 PMCID: PMC3150433 DOI: 10.1371/journal.pone.0023408] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/15/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study aims to investigate the strength of various sources of phylogenetic information that led to recent seemingly robust conclusions about higher-level arthropod phylogeny and to assess the role of excluding or downweighting synonymous change for arriving at those conclusions. METHODOLOGY/PRINCIPAL FINDINGS The current study analyzes DNA sequences from 68 gene segments of 62 distinct protein-coding nuclear genes for 80 species. Gene segments analyzed individually support numerous nodes recovered in combined-gene analyses, but few of the higher-level nodes of greatest current interest. However, neither is there support for conflicting alternatives to these higher-level nodes. Gene segments with higher rates of nonsynonymous change tend to be more informative overall, but those with lower rates tend to provide stronger support for deeper nodes. Higher-level nodes with bootstrap values in the 80% - 99% range for the complete data matrix are markedly more sensitive to substantial drops in their bootstrap percentages after character subsampling than those with 100% bootstrap, suggesting that these nodes are likely not to have been strongly supported with many fewer data than in the full matrix. Data set partitioning of total data by (mostly) synonymous and (mostly) nonsynonymous change improves overall node support, but the result remains much inferior to analysis of (unpartitioned) nonsynonymous change alone. Clusters of genes with similar nonsynonymous rate properties (e.g., faster vs. slower) show some distinct patterns of node support but few conflicts. Synonymous change is shown to contribute little, if any, phylogenetic signal to the support of higher-level nodes, but it does contribute nonphylogenetic signal, probably through its underlying heterogeneous nucleotide composition. Analysis of seemingly conservative indels does not prove useful. CONCLUSIONS Generating a robust molecular higher-level phylogeny of Arthropoda is currently possible with large amounts of data and an exclusive reliance on nonsynonymous change.
Collapse
Affiliation(s)
- Jerome C. Regier
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States of America
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America
| | - Andreas Zwick
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America
- Entomology, State Museum of Natural History, Stuttgart, Germany
| |
Collapse
|
19
|
Retchless AC, Lawrence JG. Quantification of codon selection for comparative bacterial genomics. BMC Genomics 2011; 12:374. [PMID: 21787402 PMCID: PMC3162537 DOI: 10.1186/1471-2164-12-374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/25/2011] [Indexed: 11/16/2022] Open
Abstract
Background Statistics measuring codon selection seek to compare genes by their sensitivity to selection for translational efficiency, but existing statistics lack a model for testing the significance of differences between genes. Here, we introduce a new statistic for measuring codon selection, the Adaptive Codon Enrichment (ACE). Results This statistic represents codon usage bias in terms of a probabilistic distribution, quantifying the extent that preferred codons are over-represented in the gene of interest relative to the mean and variance that would result from stochastic sampling of codons. Expected codon frequencies are derived from the observed codon usage frequencies of a broad set of genes, such that they are likely to reflect nonselective, genome wide influences on codon usage (e.g. mutational biases). The relative adaptiveness of synonymous codons is deduced from the frequency of codon usage in a pre-selected set of genes relative to the expected frequency. The ACE can predict both transcript abundance during rapid growth and the rate of synonymous substitutions, with accuracy comparable to or greater than existing metrics. We further examine how the composition of reference gene sets affects the accuracy of the statistic, and suggest methods for selecting appropriate reference sets for any genome, including bacteriophages. Finally, we demonstrate that the ACE may naturally be extended to quantify the genome-wide influence of codon selection in a manner that is sensitive to a large fraction of codons in the genome. This reveals substantial variation among genomes, correlated with the tRNA gene number, even among groups of bacteria where previously proposed whole-genome measures show little variation. Conclusions The statistical framework of the ACE allows rigorous comparison of the level of codon selection acting on genes, both within a genome and between genomes.
Collapse
Affiliation(s)
- Adam C Retchless
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
20
|
Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 2011; 3:702-14. [PMID: 21737395 PMCID: PMC3157840 DOI: 10.1093/gbe/evr064] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obligate endocellular symbiotic bacteria of insects and other organisms generally exhibit drastic genome reduction. Recently, it was shown that symbiotic gut bacteria of some stinkbugs also have remarkably reduced genomes. Here, we report the complete genome sequence of such a gut bacterium Ishikawaella capsulata of the plataspid stinkbug Megacopta punctatissima. Gene repertoire and evolutionary patterns, including AT richness and elevated evolutionary rate, of the 745,590 bp genome were strikingly similar to those of obligate γ-proteobacterial endocellular insect symbionts like Buchnera in aphids and Wigglesworthia in tsetse flies. Ishikawaella was suggested to supply essential amino acids for the plant-sucking stinkbug as Buchnera does for the host aphid. Although Buchnera is phylogenetically closer to Wigglesworthia than to Ishikawaella, in terms of gene repertoire Buchnera was similar to Ishikawaella rather than to Wigglesworthia, providing a possible case of genome-level convergence of gene content. Meanwhile, several notable differences were identified between the genomes of Ishikawaella and Buchnera, including retention of TCA cycle genes and lack of flagellum-related genes in Ishikawaella, which may reflect their adaptation to distinct symbiotic habitats. Unexpectedly, Ishikawaella retained fewer genes related to cell wall synthesis and lipid metabolism than many endocellular insect symbionts. The plasmid of Ishikawaella encoded genes for arginine metabolism and oxalate detoxification, suggesting the possibility of additional Ishikawaella roles similar to those of human gut bacteria. Our data highlight strikingly similar evolutionary patterns that are shared between the extracellular and endocellular insect symbiont genomes.
Collapse
Affiliation(s)
- Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Degnan PH, Bittleston LS, Hansen AK, Sabree ZL, Moran NA, Almeida RPP. Origin and examination of a leafhopper facultative endosymbiont. Curr Microbiol 2011; 62:1565-72. [PMID: 21336565 PMCID: PMC3069327 DOI: 10.1007/s00284-011-9893-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Eukaryotes engage in intimate interactions with microbes that range in age and type of association. Although many conspicuous examples of ancient insect associates are studied (e.g., Buchnera aphidicola), fewer examples of younger associations are known. Here, we further characterize a recently evolved bacterial endosymbiont of the leafhopper Euscelidius variegatus (Hemiptera, Cicadellidae), called BEV. We found that BEV, continuously maintained in E. variegatus hosts at UC Berkeley since 1984, is vertically transmitted with high fidelity. Unlike many vertically transmitted, ancient endosymbioses, the BEV-E. variegatus association is not obligate for either partner, and BEV can be cultivated axenically. Sufficient BEV colonies were grown and harvested to estimate its genome size and provide a partial survey of the genome sequence. The BEV chromosome is about 3.8 Mbp, and there is evidence for an extrachromosomal element roughly 53 kb in size (e.g., prophage or plasmid). We sequenced 438 kb of unique short-insert clones, representing about 12% of the BEV genome. Nearly half of the gene fragments were similar to mobile DNA, including 15 distinct types of insertion sequences (IS). Analyses revealed that BEV not only shares virulence genes with plant pathogens, but also is closely related to the plant pathogenic genera Dickeya, Pectobacterium, and Brenneria. However, the slightly reduced genome size, abundance of mobile DNA, fastidious growth in culture, and efficient vertical transmission suggest that symbiosis with E. variegatus has had a significant impact on genome evolution in BEV.
Collapse
Affiliation(s)
- Patrick H Degnan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Res 2010; 20:1001-9. [PMID: 20530252 DOI: 10.1101/gr.104372.109] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The origin, evolution, and functional relevance of genomic variations in GC content are a long-debated topic, especially in mammals. Most of the existing literature, however, has focused on a small number of model species and/or limited sequence data sets. We analyzed more than 1000 orthologous genes in 33 fully sequenced mammalian genomes, reconstructed their ancestral isochore organization in the maximum likelihood framework, and explored the evolution of third-codon position GC content in representatives of 16 orders and 27 families. We showed that the previously reported erosion of GC-rich isochores is not a general trend. Several species (e.g., shrew, microbat, tenrec, rabbit) have independently undergone a marked increase in GC content, with a widening gap between the GC-poorest and GC-richest classes of genes. The intensively studied apes and (especially) murids do not reflect the general placental pattern. We correlated GC-content evolution with species life-history traits and cytology. Significant effects of body mass and genome size were detected, with each being consistent with the GC-biased gene conversion model.
Collapse
|
24
|
Abstract
The frequencies of alternative synonymous codons vary both among species and among genes from the same genome. These patterns have been inferred to reflect the action of natural selection. Here we evaluate this in bacteria. While intragenomic variation in many species is consistent with selection favouring translationally optimal codons, much of the variation among species appears to be due to biased patterns of mutation. The strength of selection on codon usage can be estimated by two different approaches. First, the extent of bias in favour of translationally optimal codons in highly expressed genes, compared to that in genes where selection is weak, reveals the long-term effectiveness of selection. Here we show that the strength of selected codon usage bias is highly correlated with bacterial growth rate, suggesting that selection has favoured translational efficiency. Second, the pattern of bias towards optimal codons at polymorphic sites reveals the ongoing action of selection. Using this approach we obtained results that were completely consistent with the first method; importantly, the frequency spectra of optimal codons at polymorphic sites were similar to those predicted under an equilibrium model. Highly expressed genes in Escherichia coli appear to be under continuing strong selection, whereas selection is very weak in genes expressed at low levels.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, , Kings Buildings, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
25
|
Abstract
The phylogeny of the large bacterial class Gammaproteobacteria has been difficult to resolve. Here we apply a telescoping multiprotein approach to the problem for 104 diverse gammaproteobacterial genomes, based on a set of 356 protein families for the whole class and even larger sets for each of four cohesive subregions of the tree. Although the deepest divergences were resistant to full resolution, some surprising patterns were strongly supported. A representative of the Acidithiobacillales routinely appeared among the outgroup members, suggesting that in conflict with rRNA-based phylogenies this order does not belong to Gammaproteobacteria; instead, it (and, independently, "Mariprofundus") diverged after the establishment of the Alphaproteobacteria yet before the betaproteobacteria/gammaproteobacteria split. None of the orders Alteromonadales, Pseudomonadales, or Oceanospirillales were monophyletic; we obtained strong support for clades that contain some but exclude other members of all three orders. Extreme amino acid bias in the highly A+T-rich genome of Candidatus Carsonella prevented its reliable placement within Gammaproteobacteria, and high bias caused artifacts that limited the resolution of the relationships of other insect endosymbionts, which appear to have had multiple origins, although the unbiased genome of the endosymbiont Sodalis acted as an attractor for them. Instability was observed for the root of the Enterobacteriales, with nearly equal subsets of the protein families favoring one or the other of two alternative root positions; the nematode symbiont Photorhabdus was identified as a disruptor whose omission helped stabilize the Enterobacteriales root.
Collapse
|
26
|
Gupta RS, Mathews DW. Signature proteins for the major clades of Cyanobacteria. BMC Evol Biol 2010; 10:24. [PMID: 20100331 PMCID: PMC2823733 DOI: 10.1186/1471-2148-10-24] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 01/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phylogeny and taxonomy of cyanobacteria is currently poorly understood due to paucity of reliable markers for identification and circumscription of its major clades. RESULTS A combination of phylogenomic and protein signature based approaches was used to characterize the major clades of cyanobacteria. Phylogenetic trees were constructed for 44 cyanobacteria based on 44 conserved proteins. In parallel, Blastp searches were carried out on each ORF in the genomes of Synechococcus WH8102, Synechocystis PCC6803, Nostoc PCC7120, Synechococcus JA-3-3Ab, Prochlorococcus MIT9215 and Prochlor. marinus subsp. marinus CCMP1375 to identify proteins that are specific for various main clades of cyanobacteria. These studies have identified 39 proteins that are specific for all (or most) cyanobacteria and large numbers of proteins for other cyanobacterial clades. The identified signature proteins include: (i) 14 proteins for a deep branching clade (Clade A) of Gloebacter violaceus and two diazotrophic Synechococcus strains (JA-3-3Ab and JA2-3-B'a); (ii) 5 proteins that are present in all other cyanobacteria except those from Clade A; (iii) 60 proteins that are specific for a clade (Clade C) consisting of various marine unicellular cyanobacteria (viz. Synechococcus and Prochlorococcus); (iv) 14 and 19 signature proteins that are specific for the Clade C Synechococcus and Prochlorococcus strains, respectively; (v) 67 proteins that are specific for the Low B/A ecotype Prochlorococcus strains, containing lower ratio of chl b/a2 and adapted to growth at high light intensities; (vi) 65 and 8 proteins that are specific for the Nostocales and Chroococcales orders, respectively; and (vii) 22 and 9 proteins that are uniquely shared by various Nostocales and Oscillatoriales orders, or by these two orders and the Chroococcales, respectively. We also describe 3 conserved indels in flavoprotein, heme oxygenase and protochlorophyllide oxidoreductase proteins that are specific for either Clade C cyanobacteria or for various subclades of Prochlorococcus. Many other conserved indels for cyanobacterial clades have been described recently. CONCLUSIONS These signature proteins and indels provide novel means for circumscription of various cyanobacterial clades in clear molecular terms. Their functional studies should lead to discovery of novel properties that are unique to these groups of cyanobacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
27
|
Wernegreen JJ, Kauppinen SN, Brady SG, Ward PS. One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evol Biol 2009; 9:292. [PMID: 20015388 PMCID: PMC2810300 DOI: 10.1186/1471-2148-9-292] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 12/16/2009] [Indexed: 11/28/2022] Open
Abstract
Background Bacterial endosymbiosis has a recurring significance in the evolution of insects. An estimated 10-20% of insect species depend on bacterial associates for their nutrition and reproductive viability. Members of the ant tribe Camponotini, the focus of this study, possess a stable, intracellular bacterial mutualist. The bacterium, Blochmannia, was first discovered in Camponotus and has since been documented in a distinct subgenus of Camponotus, Colobopsis, and in the related genus Polyrhachis. However, the distribution of Blochmannia throughout the Camponotini remains in question. Documenting the true host range of this bacterial mutualist is an important first step toward understanding the various ecological contexts in which it has evolved, and toward identifying its closest bacterial relatives. In this study, we performed a molecular screen, based on PCR amplification of 16S rDNA, to identify bacterial associates of diverse Camponotini species. Results Phylogenetic analyses of 16S rDNA gave four important insights: (i) Blochmannia occurs in a broad range of Camponotini genera including Calomyrmex, Echinopla, and Opisthopsis, and did not occur in outgroups related to this tribe (e.g., Notostigma). This suggests that the mutualism originated in the ancestor of the tribe Camponotini. (ii) The known bacteriocyte-associated symbionts of ants, in Formica, Plagiolepis, and the Camponotini, arose independently. (iii) Blochmannia is nestled within a diverse clade of endosymbionts of sap-feeding hemipteran insects, such as mealybugs, aphids, and psyllids. In our analyses, a group of secondary symbionts of mealybugs are the closest relatives of Blochmannia. (iv) Blochmannia has cospeciated with its known hosts, although deep divergences at the genus level remain uncertain. Conclusions The Blochmannia mutualism occurs in Calomyrmex, Echinopla, and Opisthopsis, in addition to Camponotus, and probably originated in the ancestral lineage leading to the Camponotini. This significant expansion of its known host range implies that the mutualism is more ancient and ecologically diverse than previously documented. Blochmannia is most closely related to endosymbionts of sap-feeding hemipterans, which ants tend for their carbohydrate-rich honeydew. Based on phylogenetic results, we propose Camponotini might have originally acquired this bacterial mutualist through a nutritional symbiosis with other insects.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|
28
|
Brinza L, Viñuelas J, Cottret L, Calevro F, Rahbé Y, Febvay G, Duport G, Colella S, Rabatel A, Gautier C, Fayard JM, Sagot MF, Charles H. Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. C R Biol 2009; 332:1034-49. [PMID: 19909925 DOI: 10.1016/j.crvi.2009.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Buchnera aphidicola is the primary obligate intracellular symbiont of most aphid species. B. aphidicola and aphids have been evolving in parallel since their association started, about 150 Myr ago. Both partners have lost their autonomy, and aphid diversification has been confined to smaller ecological niches by this co-evolution. B. aphidicola has undergone major genomic and biochemical changes as a result of adapting to intracellular life. Several genomes of B. aphidicola from different aphid species have been sequenced in the last decade, making it possible to carry out analyses and comparative studies using system-level in silico methods. This review attempts to provide a systemic description of the symbiotic function of aphid endosymbionts, particularly of B. aphidicola from the pea aphid Acyrthosiphon pisum, by analyzing their structural genomic properties, as well as their genetic and metabolic networks.
Collapse
Affiliation(s)
- Lilia Brinza
- UMR203 BF2I, Biologie fonctionnelle insectes et interactions, Université de Lyon, INRA, INSA-Lyon, IFR41, 20, avenue A. Einstein, 69621 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 2009; 9:143. [PMID: 19619300 PMCID: PMC2724383 DOI: 10.1186/1471-2180-9-143] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Arsenophonus is a group of symbiotic, mainly insect-associated bacteria with rapidly increasing number of records. It is known from a broad spectrum of hosts and symbiotic relationships varying from parasitic son-killers to coevolving mutualists.The present study extends the currently known diversity with 34 samples retrieved mainly from hippoboscid (Diptera: Hippoboscidae) and nycteribiid (Diptera: Nycteribiidae) hosts, and investigates phylogenetic relationships within the genus. RESULTS The analysis of 110 Arsenophonus sequences (incl. Riesia and Phlomobacter), provides a robust monophyletic clade, characterized by unique molecular synapomorphies. On the other hand, unstable inner topology indicates that complete understanding of Arsenophonus evolution cannot be achieved with 16S rDNA. Moreover, taxonomically restricted Sampling matrices prove sensitivity of the phylogenetic signal to sampling; in some cases, Arsenophonus monophyly is disrupted by other symbiotic bacteria. Two contrasting coevolutionary patterns occur throughout the tree: parallel host-symbiont evolution and the haphazard association of the symbionts with distant hosts. A further conspicuous feature of the topology is the occurrence of monophyletic symbiont lineages associated with monophyletic groups of hosts without a co-speciation pattern. We suggest that part of this incongruence could be caused by methodological artifacts, such as intragenomic variability. CONCLUSION The sample of currently available molecular data presents the genus Arsenophonus as one of the richest and most widespread clusters of insect symbiotic bacteria. The analysis of its phylogenetic lineages indicates a complex evolution and apparent ecological versatility with switches between entirely different life styles. Due to these properties, the genus should play an important role in the studies of evolutionary trends in insect intracellular symbionts. However, under the current practice, relying exclusively on 16S rRNA sequences, the phylogenetic analyses are sensitive to various methodological artifacts that may even lead to description of new Arsenophonus lineages as independent genera (e.g. Riesia and Phlomobacter). The resolution of the evolutionary questions encountered within the Arsenophonus clade will thus require identification of new molecular markers suitable for the low-level phylogenetics.
Collapse
Affiliation(s)
- Eva Nováková
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia and Institute of Parasitology, Biology Centre of ASCR, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Nancy A Moran
- Department of Ecology and Evolutionary Biology, The University of Arizona, 1041 E. Lowell St, Tucson, Arizona 85721-0088, USA
| |
Collapse
|
30
|
McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 2009; 5:e1000565. [PMID: 19609354 PMCID: PMC2704378 DOI: 10.1371/journal.pgen.1000565] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/17/2009] [Indexed: 11/19/2022] Open
Abstract
The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop→Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an α-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stop→Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment. The genetic code, which relates DNA sequence to protein sequence, is nearly universal across all life. Examples of recodings do exist, but new instances are rare. Genomes that exhibit recodings typically have other extreme properties, including reduced size, reduced gene sets, and low guanine plus cytosine (GC) content. The most common recoding event, the reassignment of UGA to Tryptophan instead of Stop (Stop→Trp), was previously known from several mitochondrial and one bacterial lineage, and it was proposed to be driven by extinction of the UGA codon due to reduction in GC content. Here we present an unusual bacterial genome from a symbiont of cicadas. It exhibits the UGA Stop→Trp reassignment, but has a high GC content, showing that reduction in GC content is not a necessary condition for this recoding. This symbiont genome is also the smallest known for any cellular organism. We therefore propose gene loss during genome reduction as the common force driving this code change in bacteria and organelles. Additionally, the extremely small size of the genome further obscures the once-clear distinction between organelle and autonomous bacterial life.
Collapse
|
31
|
Sheffield NC, Song H, Cameron SL, Whiting MF. Nonstationary Evolution and Compositional Heterogeneity in Beetle Mitochondrial Phylogenomics. Syst Biol 2009; 58:381-94. [DOI: 10.1093/sysbio/syp037] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nathan C. Sheffield
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- Program in Computational Biology & Bioinformatics, Institute for Genome Sciences and Policy, Duke University, Box 90090, Durham, NC 27708, USA
| | - Hojun Song
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stephen L. Cameron
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Entomology, PO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | | |
Collapse
|
32
|
|
33
|
Toft C, Williams TA, Fares MA. Genome-wide functional divergence after the symbiosis of proteobacteria with insects unraveled through a novel computational approach. PLoS Comput Biol 2009; 5:e1000344. [PMID: 19343224 PMCID: PMC2659769 DOI: 10.1371/journal.pcbi.1000344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/27/2009] [Indexed: 11/18/2022] Open
Abstract
Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote) provides the endosymbiont (prokaryote) with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity. Biological complexity has emerged on earth by the combination of living forms. This combination, called symbiosis, had to overcome the problems caused by the uncoupled metabolisms of the organisms involved. One way to do so was through the loss of genes that were no longer needed for the endosymbiont in the protected cellular environment provided by the host. Another step necessary to adjust both metabolisms was through the change in the function of bacterial proteins to perform new roles in the symbiotic system. In this article, we test such events in symbiotic systems involving an insect and a bacterium by developing a new and simple method to identify proteome-wide functional shifts. Our results show that most of the functional changes occurred at genes involved in metabolic communication with the host and are correlated with the host's ecological traits.
Collapse
Affiliation(s)
- Christina Toft
- Department of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Tom A. Williams
- Department of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mario A. Fares
- Department of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
34
|
Whelan S. Spatial and Temporal Heterogeneity in Nucleotide Sequence Evolution. Mol Biol Evol 2008; 25:1683-94. [DOI: 10.1093/molbev/msn119] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Conord C, Despres L, Vallier A, Balmand S, Miquel C, Zundel S, Lemperiere G, Heddi A. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Mol Biol Evol 2008; 25:859-68. [PMID: 18310662 DOI: 10.1093/molbev/msn027] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial intracellular symbiosis (endosymbiosis) is well documented in the insect world where it is believed to play a crucial role in adaptation and evolution. However, although Coleopteran insects are of huge ecological and economical interest, endosymbiont molecular analysis is limited to the Dryophthoridae family. Here, we have analyzed the intracellular symbiotic bacteria in 2 Hylobius species belonging to the Molytinae subfamily (Curculionoidea superfamily) that exhibit different features from the Dryophthoridae insects in terms of their ecology and geographical spanning. Fluorescence in situ hybridization has shown that both Hylobius species harbor rod-shaped pleiomorphic symbiotic bacteria in the oocyte and in the bacteria-bearing organ (the bacteriome), with a shape and location similar to those of the Dryophthoridae bacteriome. Phylogenetic analysis of the 16S ribosomal DNA gene sequences, using the heterogeneous model of DNA evolution, has placed the Hylobius spp. endosymbionts (H-group) at the basal position of the ancestral R-clade of Dryophthoridae endosymbionts named Candidatus Nardonella but relatively distant from the S-clade of Sitophilus spp. endosymbionts. Endosymbionts from the H-group and the R-clade evolved more quickly compared with free-living enteric bacteria and endosymbionts from the S- and D-clades of Dryophthoridae. They are AT biased (58.3% A + T), and they exhibit AT-rich insertions at the same position as previously described in the Candidatus Nardonella 16S rDNA sequence. Moreover, the host phylogenetic tree based on the mitochondrial COI gene was shown to be highly congruent with the H-group and the R-clade, the divergence of which was estimated to be around 125 MYA. These new molecular data show that endosymbiosis is old in Curculionids, going back at least to the common ancestor of Molytinae and Dryophthoridae, and is evolutionary stable, except in 2 Dryophthoridae clades, providing additional and independent supplementary evidence for endosymbiont replacement in these taxa.
Collapse
Affiliation(s)
- Cyrille Conord
- Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5553, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ochman H, Liu R, Rocha EPC. Erosion of interaction networks in reduced and degraded genomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:97-103. [PMID: 17219366 DOI: 10.1002/jez.b.21147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unlike eukaryotes, which often recruit duplicated genes into existing protein-protein interaction (PPI) networks, the low levels of gene duplication coupled with the high probability of lateral transfer of novel genes alters the manner in which PPI networks can evolve in bacteria. By inferring the PPIs present in the ancestor to contemporary Gammaproteobacteria, we were able to trace the changes in gene repertoires, and their consequences on PPI network evolution, in several bacterial lineages that have independently undergone reductions in genome size and genome contents. As genomes degrade, virtually all multi-partner proteins have lost interactors; however, the overall average number of connections increases due to the preferential elimination of proteins that interact with only one other protein partner. We also studied the effect of lateral gene transfer on PPI network evolution by analyzing the connectivity of genes that have been gained along the Escherichia coli lineage, as well as those acquired genes subsequently silenced in Shigella flexneri, since diverging from the gammaproteobacterial ancestor. The situation in PPI networks, in which newly acquired genes preferentially attach to the hubs of the network, contrasts that observed in metabolic networks, which evolve by the peripheral gain and loss of genes, and in regulatory networks, in which high connectivity increases the propensity of loss.
Collapse
Affiliation(s)
- Howard Ochman
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
37
|
The power of phylogenetic approaches to detect horizontally transferred genes. BMC Evol Biol 2007; 7:45. [PMID: 17376230 PMCID: PMC1847511 DOI: 10.1186/1471-2148-7-45] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 03/21/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horizontal gene transfer plays an important role in evolution because it sometimes allows recipient lineages to adapt to new ecological niches. High genes transfer frequencies were inferred for prokaryotic and early eukaryotic evolution. Does horizontal gene transfer also impact phylogenetic reconstruction of the evolutionary history of genomes and organisms? The answer to this question depends at least in part on the actual gene transfer frequencies and on the ability to weed out transferred genes from further analyses. Are the detected transfers mainly false positives, or are they the tip of an iceberg of many transfer events most of which go undetected by current methods? RESULTS Phylogenetic detection methods appear to be the method of choice to infer gene transfers, especially for ancient transfers and those followed by orthologous replacement. Here we explore how well some of these methods perform using in silico transfers between the terminal branches of a gamma proteobacterial, genome based phylogeny. For the experiments performed here on average the AU test at a 5% significance level detects 90.3% of the transfers and 91% of the exchanges as significant. Using the Robinson-Foulds distance only 57.7% of the exchanges and 60% of the donations were identified as significant. Analyses using bipartition spectra appeared most successful in our test case. The power of detection was on average 97% using a 70% cut-off and 94.2% with 90% cut-off for identifying conflicting bipartitions, while the rate of false positives was below 4.2% and 2.1% for the two cut-offs, respectively. For all methods the detection rates improved when more intervening branches separated donor and recipient. CONCLUSION Rates of detected transfers should not be mistaken for the actual transfer rates; most analyses of gene transfers remain anecdotal. The method and significance level to identify potential gene transfer events represent a trade-off between the frequency of erroneous identification (false positives) and the power to detect actual transfer events.
Collapse
|
38
|
Comas I, Moya A, González-Candelas F. Phylogenetic signal and functional categories in Proteobacteria genomes. BMC Evol Biol 2007; 7 Suppl 1:S7. [PMID: 17288580 PMCID: PMC1796616 DOI: 10.1186/1471-2148-7-s1-s7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A comprehensive evolutionary analysis of bacterial genomes implies to identify the hallmark of vertical and non-vertical signals and to discriminate them from the presence of mere phylogenetic noise. In this report we have addressed the impact of factors like the universal distribution of the genes, their essentiality or their functional role in the cell on the inference of vertical signal through phylogenomic methods. RESULTS We have established that supermatrices derived from data sets composed mainly by genes suspected to be essential for bacterial cellular life perform better on the recovery of vertical signal than those composed by widely distributed genes. In addition, we show that the "Transcription" category of genes seems to harbor a better vertical signal than other functional categories. Moreover, the "Poorly characterized" category performs better than other categories related with metabolism or cellular processes. CONCLUSION From these results we conclude that different data sets allow addressing different questions in phylogenomic analyses. The vertical signal seems to be more present in essential genes although these also include a significant degree of incongruence. From a functional perspective, as expected, informational genes perform better than operational ones but we have also shown the surprising behavior of poorly annotated genes, which points to their importance in the genome evolution of bacteria.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. Apartado Oficial 22085, Valencia E-46071, Spain
| | - Andrés Moya
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. Apartado Oficial 22085, Valencia E-46071, Spain
| | - Fernando González-Candelas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. Apartado Oficial 22085, Valencia E-46071, Spain
| |
Collapse
|
39
|
Comas I, Moya A, González-Candelas F. From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case. Syst Biol 2007; 56:1-16. [PMID: 17366133 DOI: 10.1080/10635150601109759] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The increasing availability of complete genome sequences and the development of new, faster methods for phylogenetic reconstruction allow the exploration of the set of evolutionary trees for each gene in the genome of any species. This has led to the development of new phylogenomic methods. Here, we have compared different phylogenetic and phylogenomic methods in the analysis of the monophyletic origin of insect endosymbionts from the gamma-Proteobacteria, a hotly debated issue with several recent, conflicting reports. We have obtained the phylogenetic tree for each of the 579 identified protein-coding genes in the genome of the primary endosymbiont of carpenter ants, Blochmannia floridanus, after determining their presumed orthologs in 20 additional Proteobacteria genomes. A reference phylogeny reflecting the monophyletic origin of insect endosymbionts was further confirmed with different approaches, which led us to consider it as the presumed species tree. Remarkably, only 43 individual genes produced exactly the same topology as this presumed species tree. Most discrepancies between this tree and those obtained from individual genes or by concatenation of different genes were due to the grouping of Xanthomonadales with beta-Proteobacteria and not to uncertainties over the monophyly of insect endosymbionts. As previously noted, operational genes were more prone to reject the presumed species tree than those included in information-processing categories, but caution should be exerted when selecting genes for phylogenetic inference on the basis of their functional category assignment. We have obtained strong evidence in support of the monophyletic origin of gamma-Proteobacteria insect endosymbionts by a combination of phylogenetic and phylogenomic methods. In our analysis, the use of concatenated genes has shown to be a valuable tool for analyzing primary phylogenetic signals coded in the genomes. Nevertheless, other phylogenomic methods such as supertree approaches were useful in revealing alternative phylogenetic signals and should be included in comprehensive phylogenomic studies.
Collapse
Affiliation(s)
- Iñaki Comas
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain.
| | | | | |
Collapse
|
40
|
Nováková E, Hypsa V. A new Sodalis lineage from bloodsucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont Sodalis glossinidius. FEMS Microbiol Lett 2007; 269:131-5. [PMID: 17227456 DOI: 10.1111/j.1574-6968.2006.00620.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Symbiotic bacterium closely related to the secondary symbiont of tsetse flies, Sodalis glossinidius, has been described from the bloodsucking fly Craterina melbae. Phylogenetic analysis of two genes, 16S rRNA gene and component of type three secretion system, placed the bacterium closer to the Sitophilus-derived branch of Sodalis than to the tsetse symbionts. This indicates that the Craterina-derived lineage of Sodalis originated independent of the tsetse flies symbionts and documents the capability of Sodalis bacteria either to switch between different host groups or to establish the symbiosis by several independent events.
Collapse
Affiliation(s)
- Eva Nováková
- Faculty of Biological Sciences and Institute of Parasitology, Ceské Budejovice, Czech Republic
| | | |
Collapse
|
41
|
Khachane AN, Timmis KN, Martins dos Santos VAP. Dynamics of reductive genome evolution in mitochondria and obligate intracellular microbes. Mol Biol Evol 2006; 24:449-56. [PMID: 17108184 DOI: 10.1093/molbev/msl174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reductive evolution in mitochondria and obligate intracellular microbes has led to a significant reduction in their genome size and guanine plus cytosine content (GC). We show that genome shrinkage during reductive evolution in prokaryotes follows an exponential decay pattern and provide a method to predict the extent of this decay on an evolutionary timescale. We validated predictions by comparison with estimated extents of genome reduction known to have occurred in mitochondria and Buchnera aphidicola, through comparative genomics and by drawing on available fossil evidences. The model shows how the mitochondrial ancestor would have quickly shed most of its genome, shortly after its incorporation into the protoeukaryotic cell and prior to codivergence subsequent to the split of eukaryotic lineages. It also predicts that the primary rickettsial parasitic event would have occurred between 180 and 425 million years ago (MYA), an event of relatively recent evolutionary origin considering the fact that Rickettsia and mitochondria evolved from a common alphaproteobacterial ancestor. This suggests that the symbiotic events of Rickettsia and mitochondria originated at different time points. Moreover, our model results predict that the ancestor of Wigglesworthia glossinidia brevipalpis, dated around the time of origin of its symbiotic association with the tsetse fly (50-100 MYA), was likely to have been an endosymbiont itself, thus supporting an earlier proposition that Wigglesworthia, which is currently a maternally inherited primary endosymbiont, evolved from a secondary endosymbiont.
Collapse
Affiliation(s)
- Amit N Khachane
- Department of Environmental Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
42
|
Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics. BMC Evol Biol 2006; 6:97. [PMID: 17107620 PMCID: PMC1664589 DOI: 10.1186/1471-2148-6-97] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 11/15/2006] [Indexed: 11/23/2022] Open
Abstract
Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction.
Collapse
|
43
|
Abstract
Recent advances in heuristics have made maximum likelihood phylogenetic tree estimation tractable for hundreds of sequences. Noticeably, these algorithms are currently limited to reversible models of evolution, in which Felsenstein's pulley principle applies. In this paper we show that by reorganizing the way likelihood is computed, one can efficiently compute the likelihood of a tree from any of its nodes with a nonreversible model of DNA sequence evolution, and hence benefit from cutting-edge heuristics. This computational trick can be used with reversible models of evolution without any extra cost. We then introduce nhPhyML, the adaptation of the nonhomogeneous nonstationary model of Galtier and Gouy (1998; Mol. Biol. Evol. 15:871-879) to the structure of PhyML, as well as an approximation of the model in which the set of equilibrium frequencies is limited. This new version shows good results both in terms of exploration of the space of tree topologies and ancestral G+C content estimation. We eventually apply it to rRNA sequences slowly evolving sites and conclude that the model and a wider taxonomic sampling still do not plead for a hyperthermophilic last universal common ancestor.
Collapse
Affiliation(s)
- Bastien Boussau
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS, Université Lyon 1, Villeurbanne Cedex, France.
| | | |
Collapse
|
44
|
Delmotte F, Rispe C, Schaber J, Silva FJ, Moya A. Tempo and mode of early gene loss in endosymbiotic bacteria from insects. BMC Evol Biol 2006; 6:56. [PMID: 16848891 PMCID: PMC1544356 DOI: 10.1186/1471-2148-6-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/18/2006] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Understanding evolutionary processes that drive genome reduction requires determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene loss could be driven by the selective importance of genes. We used a parsimony method to reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index, or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-living bacteria or in pairs of symbionts. RESULTS Our results demonstrate that genes lost in the early stages of symbiosis were on average less selectively constrained than genes conserved in any of the extant symbiotic strains studied. These results also extend to more recent events of gene losses (i.e. among Buchnera strains) that still tend to concentrate on genes with low adaptive bias in E. coli and high evolutionary rates both in free-living and in symbiotic lineages. In addition, we analyzed the physical organization of gene losses for early steps of symbiosis acquisition under the hypothesis of a common origin of different symbioses. In contrast with previous findings we show that gene losses mostly occurred through loss of rather small blocks and mostly in syntenic regions between at least one of the symbionts and present-day E. coli. CONCLUSION At both ancient and recent stages of symbiosis evolution, gene loss was at least partially influenced by selection, highly conserved genes being retained more readily than lowly conserved genes: although losses might result from drift due to the bottlenecking of endosymbiontic populations, we demonstrated that purifying selection also acted by retaining genes of greater selective importance.
Collapse
Affiliation(s)
- F Delmotte
- UMR Santé Végétale (INRA-ENITAB), INRA BP81, 33883 Villenave d'Ornon Cedex, France
| | - C Rispe
- UMR Biologie des Organismes et des Populations appliquée à la Protection des Plantes [BIO3P], INRA BP 35327, 35653 Le Rheu Cedex, France
| | - J Schaber
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73, 14196 Berlin, Germany
| | - FJ Silva
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, A.C. 22085, 46071 Valencia, Spain
| | - A Moya
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, A.C. 22085, 46071 Valencia, Spain
| |
Collapse
|
45
|
Patron NJ, Rogers MB, Keeling PJ. Comparative rates of evolution in endosymbiotic nuclear genomes. BMC Evol Biol 2006; 6:46. [PMID: 16772046 PMCID: PMC1523203 DOI: 10.1186/1471-2148-6-46] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/14/2006] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The nucleomorphs associated with secondary plastids of cryptomonads and chlorarachniophytes are the sole examples of organelles with eukaryotic nuclear genomes. Although not as widespread as their prokaryotic equivalents in mitochondria and plastids, nucleomorph genomes share similarities in terms of reduction and compaction. They also differ in several aspects, not least in that they encode proteins that target to the plastid, and so function in a different compartment from that in which they are encoded. RESULTS Here, we test whether the phylogenetically distinct nucleomorph genomes of the cryptomonad, Guillardia theta, and the chlorarachniophyte, Bigelowiella natans, have experienced similar evolutionary pressures during their transformation to reduced organelles. We compared the evolutionary rates of genes from nuclear, nucleomorph, and plastid genomes, all of which encode proteins that function in the same cellular compartment, the plastid, and are thus subject to similar selection pressures. Furthermore, we investigated the divergence of nucleomorphs within cryptomonads by comparing G. theta and Rhodomonas salina. CONCLUSION Chlorarachniophyte nucleomorph genes have accumulated errors at a faster rate than other genomes within the same cell, regardless of the compartment where the gene product functions. In contrast, most nucleomorph genes in cryptomonads have evolved faster than genes in other genomes on average, but genes for plastid-targeted proteins are not overly divergent, and it appears that cryptomonad nucleomorphs are not presently evolving rapidly and have therefore stabilized. Overall, these analyses suggest that the forces at work in the two lineages are different, despite the similarities between the structures of their genomes.
Collapse
Affiliation(s)
- Nicola J Patron
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Matthew B Rogers
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
46
|
Huerta AM, Collado-Vides J, Francino MP. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Positional conservation of clusters of overlapping promoter-like sequences in enterobacterial genomes. Mol Biol Evol 2006; 23:997-1010. [PMID: 16547149 DOI: 10.1093/molbev/msk004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The selective mechanisms operating in regulatory regions of bacterial genomes are poorly understood. We have previously shown that, in most bacterial genomes, regulatory regions contain high densities of sigma70 promoter-like signals that are significantly above the densities detected in nonregulatory genomic regions. In order to investigate the molecular evolutionary forces that operate in bacterial regulatory regions and how they affect the observed redundancy of promoter-like signals, we have undertaken a comparative analysis across the completely sequenced genomes of enteric gamma-proteobacteria. This analysis detects significant positional conservation of promoter-like signal clusters across enterics, some times in spite of strong primary sequence divergence. This suggests that the conservation of the nature and exact position of specific nucleotides is not necessarily the priority of selection for maintaining the transcriptional function in these bacteria. We have further characterized the structural conservation of the regulatory regions of dnaQ and crp across all enterics. These two regions differ in essentiality and mode of regulation, the regulation of crp being more complex and involving interactions with several transcription factors. This results in substantially different modes of evolution, with the dnaQ region appearing to evolve under stronger purifying selection and the crp region showing the likely effects of stabilizing selection for a complex pattern of gene expression. The higher flexibility of the crp region is consistent with the observed less conservation of global regulators in evolution. Patterns of regulatory evolution are also found to be markedly different in endosymbiotic bacteria, in a manner consistent with regulatory regions suffering some level of degradation, as has been observed for many other characters in these genomes. Therefore, the mode of evolution of bacterial regulatory regions appears to be highly dependent on both the lifestyle of the bacterium and the specific regulatory requirements of different genes. In fact, in many bacteria, the mode of evolution of genes requiring significant physiological adaptability in expression levels may follow patterns similar to those operating in the more complex regulatory regions of eukaryotic genomes.
Collapse
Affiliation(s)
- Araceli M Huerta
- Evolutionary Genomics Department, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA.
| | | | | |
Collapse
|
47
|
Csűrös M, Miklós I. A Probabilistic Model for Gene Content Evolution with Duplication, Loss, and Horizontal Transfer. LECTURE NOTES IN COMPUTER SCIENCE 2006. [DOI: 10.1007/11732990_18] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Philippe H, Delsuc F, Brinkmann H, Lartillot N. Phylogenomics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.35.112202.130205] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hervé Philippe
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada; , ,
| | - Frédéric Delsuc
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada; , ,
| | - Henner Brinkmann
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada; , ,
| | - Nicolas Lartillot
- Laboratoire d'Informatique, de Robotique et de Mathématiques de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, 34392 Montpellier Cedex 5, France;
| |
Collapse
|
49
|
Belda E, Moya A, Silva FJ. Genome rearrangement distances and gene order phylogeny in gamma-Proteobacteria. Mol Biol Evol 2005; 22:1456-67. [PMID: 15772379 DOI: 10.1093/molbev/msi134] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome rearrangements have been studied in 30 gamma-proteobacterial complete genomes by comparing the order of a reduced set of genes on the chromosome. This set included those genes fulfilling several characteristics, the main ones being that an ortholog was present in every genome and that none of them had been acquired by horizontal gene transfer. Genome rearrangement distances were estimated based on either the number of breakpoints or the minimal number of inversions separating two genomes. Breakpoint and inversion distances were highly correlated, indicating that inversions were the main type of rearrangement event in gamma-Proteobacteria. In general, the progressive increase in sequence-based distances between genome pairs was associated with the increase in their rearrangement-based distances but with several groups of distances not following this pattern. Compared with free-living enteric bacteria, the lineages of Pasteurellaceae were evolving, on average, to relatively higher rates of between 2.02 and 1.64, while the endosymbiotic bacterial lineages of Buchnera aphidicola and Wigglesworthia glossinidia were evolving at moderately higher rates of 1.38 and 1.35, respectively. Because we know that the rearrangement rate in the Bu. aphidicola lineage was close to zero during the last 100-150 Myr of evolution, we deduced that a much higher rate took place in the first period of lineage evolution after the divergence of the Escherichia coli lineage. On the other hand, the lineage of the endosymbiont Blochmannia floridanus did present an almost identical rate to free-living enteric bacteria, indicating that the increase in the genome rearrangement rate is not a general change associated with bacterial endosymbiosis. Phylogenetic reconstruction based on rearrangement distances showed a different topology from the one inferred by sequence information. This topology broke the proposed monophyly of the three endosymbiotic lineages and placed Bl. floridanus as a closer relative to E. coli than Yersinia pestis. These results indicate that the phylogeny of these insect endosymbionts is still an open question that will require the development of specific phylogenetic methods to confirm whether the sisterhood of the three endosymbiotic lineages is real or a consequence of a long-branch attraction phenomenon.
Collapse
Affiliation(s)
- Eugeni Belda
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Genètica, Universitat de València, Valencia, Spain
| | | | | |
Collapse
|