1
|
Mazancová E, Zadrobílková E, Yubuki N, Čepička I. Phylogenetic and morphological diversity of free-living diplomonads. Eur J Protistol 2023; 91:126024. [PMID: 37774457 DOI: 10.1016/j.ejop.2023.126024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Diplomonadida is a lineage of anaerobic protists belonging to Fornicata, Metamonada. Most diplomonads are endobiotic or parasitic, such as Giardia intestinalis, which is a famous human pathogen, but several free-living species exist as well. Although it has been proposed that the free-living diplomonads are descendants of endobiotic organisms and thus interesting from the evolutionary point of view, they have been largely neglected. We obtained 58 cultures of free-living diplomonads belonging to four genera (Hexamita, Trepomonas, Gyromonas, and Trimitus) and six strains of endobiotic diplomonads and analyzed their SSU rRNA gene sequences. We also studied light-microscopic morphology of selected strains and the ultrastructure of Trepomonas rotans for the first time. Our phylogenetic analysis showed that the genus Hexamita, and, possibly, also the genus Trepomonas, are polyphyletic. Trepomonas rotans, which may represent a novel genus, is unique among Diplomonadida by having the cell covered in scales. Our results suggest that the evolution of the endobiotic life style and cell organization in diplomonads is more complicated than previously thought.
Collapse
Affiliation(s)
- Eva Mazancová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Naoji Yubuki
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic.
| |
Collapse
|
2
|
Fang YK, Vaitová Z, Hampl V. A mitochondrion-free eukaryote contains proteins capable of import into an exogenous mitochondrion-related organelle. Open Biol 2023; 13:220238. [PMID: 36629021 PMCID: PMC9832562 DOI: 10.1098/rsob.220238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endobiotic flagellate Monocercomonoides exilis is the only known eukaryote to have lost mitochondria and all its associated proteins in its evolutionary past. This final stage of the mitochondrial evolutionary pathway may serve as a model to explain events at their very beginning such as the initiation of protein import. We have assessed the capability of proteins from this eukaryote to enter emerging mitochondria using a specifically designed in vitro assay. Hydrogenosomes (reduced mitochondria) of Trichomonas vaginalis were incubated with a soluble protein pool derived from a cytosolic fraction of M. exilis, and proteins entering hydrogenosomes were subsequently detected by mass spectrometry. The assay detected 19 specifically and reproducibly imported proteins, and in 14 cases the import was confirmed by the overexpression of their tagged version in T. vaginalis. In most cases, only a small portion of the signal reached the hydrogenosomes, suggesting specific but inefficient transport. Most of these proteins represent enzymes of carbon metabolism, and none exhibited clear signatures of proteins targeted to hydrogenosomes or mitochondria, which is consistent with their inefficient import. The observed phenomenon may resemble a primaeval type of protein import which might play a role in the establishment of the organelle and shaping of its proteome in the initial stages of endosymbiosis.
Collapse
Affiliation(s)
- Yi-Kai Fang
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec 252 50, Czech Republic
| | - Zuzana Vaitová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Vladimir Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec 252 50, Czech Republic
| |
Collapse
|
3
|
Kornaliková M, Hampl V, Treitli SC. Investigation of the Genome Sizes and Ploidy Within the Genus
Monocercomonoides. J Eukaryot Microbiol 2022; 69:e12925. [DOI: 10.1111/jeu.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martina Kornaliková
- Department of Parasitology, Faculty of Science Charles University, BIOCEV Vestec Czech Republic
| | - Vladimir Hampl
- Department of Parasitology, Faculty of Science Charles University, BIOCEV Vestec Czech Republic
| | | |
Collapse
|
4
|
Treitli SC, Peña-Diaz P, Hałakuc P, Karnkowska A, Hampl V. High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microb Genom 2021; 7. [PMID: 34951395 PMCID: PMC8767320 DOI: 10.1099/mgen.0.000745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monocercomonoides exilis is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.5 % of the genome sequence is represented by unknown bases. To improve the contiguity, we re-sequenced the genome and transcriptome of M. exilis using Oxford Nanopore Technology (ONT). The resulting draft genome is assembled in 101 contigs with an N50 value of 1.38 Mbp, almost 20 times higher than the previously published assembly. Using a newly generated ONT transcriptome, we further improve the gene prediction and add high quality untranslated region (UTR) annotations, in which we identify two putative polyadenylation signals present in the 3′UTR regions and characterise the Kozak sequence in the 5′UTR regions. All these improvements are reflected by higher BUSCO genome completeness values. Regardless of an overall more complete genome assembly without missing bases and a better gene prediction, we still failed to identify any mitochondrial hallmark genes, thus further supporting the hypothesis on the absence of mitochondrion.
Collapse
Affiliation(s)
- Sebastian Cristian Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Priscila Peña-Diaz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| |
Collapse
|
5
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
6
|
Molecular and Morphological Diversity of the Oxymonad Genera Monocercomonoides and Blattamonas gen. nov. Protist 2018; 169:744-783. [DOI: 10.1016/j.protis.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022]
|
7
|
Aj Harris, Goldman AD. Phylogenetic Reconstruction Shows Independent Evolutionary Origins of Mitochondrial Transcription Factors from an Ancient Family of RNA Methyltransferase Proteins. J Mol Evol 2018; 86:277-282. [PMID: 29691606 PMCID: PMC6028840 DOI: 10.1007/s00239-018-9842-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
Here, we generate a robust phylogenetic framework for the rRNA adenine N(6)-methyltransferase (RAMTase) protein family that shows a more ancient and complex evolutionary history within the family than previously reported. RAMTases occur universally by descent across the three domains of life, and typical orthologs within the family perform methylation of the small subunits of ribosomal RNA (rRNA). However, within the RAMTase family, two different groups of mitochondrial transcription factors, mtTFB1 and mtTFB2, have evolved in eukaryotes through neofunctionalization. Previous phylogenetic analyses have suggested that mtTFB1 and mtTFB2 comprise sister clades that arose via gene duplication, which occurred sometime following the endosymbiosis event that produced the mitochondrion. Through dense and taxonomically broad sampling of RAMTase family members especially within bacteria, we found that these eukaryotic mitochondrial transcription factors, mtTFB1 and mtTFB2, have independent origins in phylogenetically distant clades such that their divergence most likely predates the last universal common ancestor of life. The clade of mtTFB2s comprises orthologs in Opisthokonts and the clade of mtTFB1s includes orthologs in Amoebozoa and Metazoa. Thus, we clearly demonstrate that the neofunctionalization producing the transcription factor function evolved twice independently within the RAMTase family. These results are consistent with and help to elucidate outcomes from prior experimental studies, which found that some members of mtTFB1 still perform the ancestral rRNA methylation function, and the results have broader implications for understanding the evolution of new protein functions. Our phylogenetic reconstruction is also in agreement with prior studies showing two independent origins of plastid RAMTases in Viridiplantae and other photosynthetic autotrophs. We believe that this updated phylogeny of RAMTases should provide a robust evolutionary framework for ongoing studies to identify and characterize the functions of these proteins within diverse organisms.
Collapse
Affiliation(s)
- Aj Harris
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA.
| | - Aaron David Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA. .,Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.
| |
Collapse
|
8
|
Novák L, Zubáčová Z, Karnkowska A, Kolisko M, Hroudová M, Stairs CW, Simpson AGB, Keeling PJ, Roger AJ, Čepička I, Hampl V. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol Biol 2016; 16:197. [PMID: 27716026 PMCID: PMC5052871 DOI: 10.1186/s12862-016-0771-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 09/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. RESULTS We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. CONCLUSIONS Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.
Collapse
Affiliation(s)
- Lukáš Novák
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Zuzana Zubáčová
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Anna Karnkowska
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Martin Kolisko
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Courtney W. Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | | | | | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Ivan Čepička
- Department of Zoology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
9
|
Zhang Q, Táborský P, Silberman JD, Pánek T, Čepička I, Simpson AGB. Marine Isolates of Trimastix marina Form a Plesiomorphic Deep-branching Lineage within Preaxostyla, Separate from Other Known Trimastigids (Paratrimastix n. gen.). Protist 2015; 166:468-91. [PMID: 26312987 DOI: 10.1016/j.protis.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/12/2015] [Accepted: 07/02/2015] [Indexed: 11/17/2022]
Abstract
Trimastigids are free-living, anaerobic protists that are closely related to the symbiotic oxymonads, forming together the taxon Preaxostyla (Excavata: Metamonada). We isolated fourteen new strains morphologically corresponding to two species assigned to Trimastix (until now the only genus of trimastigids), Trimastix marina and Trimastix pyriformis. Unexpectedly, marine strains of Trimastix marina branch separately from freshwater strains of this morphospecies in SSU rRNA gene trees, and instead form the sister group of all other Preaxostyla. This position is confirmed by three-gene phylogenies. Ultrastructural examination of a marine isolate of Trimastix marina demonstrates a combination of trimastigid-like features (e.g. preaxostyle-like I fibre) and ancestral characters (e.g. absence of thickened flagellar vane margins), consistent with inclusion of marine T. marina within Preaxostyla, but also supporting its distinctiveness from 'freshwater T. marina' and its deep-branching position within Preaxostyla. Since these results indicate paraphyly of Trimastix as currently understood, we transfer the other better-studied trimastigids to Paratrimastix n. gen. and Paratrimastigidae n. fam. The freshwater form previously identified as T. marina is described as Paratrimastix eleionoma n. sp., and Trimastix pyriformis becomes Paratrimastix pyriformis n. comb. Because of its phylogenetic position, 'true' Trimastix is potentially important for understanding the evolution of mitochondrion-related organelles in metamonads.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Biology, Dalhousie University, Halifax, B3H 4R2, Canada; Yantai Institute of Coastal Zone Research, Chinese Academy of Science, Yantai 264003, China
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Jeffrey D Silberman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague 2, Czech Republic
| | | |
Collapse
|
10
|
Cavalier-Smith T. Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny. Eur J Protistol 2015; 51:121-37. [DOI: 10.1016/j.ejop.2014.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
|
11
|
Yubuki N, Pánek T, Yabuki A, Čepička I, Takishita K, Inagaki Y, Leander BS. Morphological Identities of Two Different Marine Stramenopile Environmental Sequence Clades: Bicosoeca kenaiensis
(Hilliard, 1971) and Cantina marsupialis
(Larsen and Patterson, 1990) gen. nov., comb. nov. J Eukaryot Microbiol 2015; 62:532-42. [DOI: 10.1111/jeu.12207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Naoji Yubuki
- The Departments of Botany and Zoology; Beaty Biodiversity Research Centre and Museum; University of British Columbia; Vancouver British Columbia V6T 1Z4 Canada
| | - Tomáš Pánek
- Department of Zoology; Faculty of Science; Charles University in Prague; Prague 128 44 Czech Republic
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
| | - Ivan Čepička
- Department of Zoology; Faculty of Science; Charles University in Prague; Prague 128 44 Czech Republic
| | - Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
| | - Yuji Inagaki
- Center for Computational Sciences and Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8577 Japan
| | - Brian S. Leander
- The Departments of Botany and Zoology; Beaty Biodiversity Research Centre and Museum; University of British Columbia; Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
12
|
The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 2014; 81:1059-70. [PMID: 25452280 DOI: 10.1128/aem.02945-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected.
Collapse
|
13
|
Radek R, Strassert JF, Krüger J, Meuser K, Scheffrahn RH, Brune A. Phylogeny and Ultrastructure of Oxymonas jouteli, a Rostellum-free Species, and Opisthomitus longiflagellatus sp. nov., Oxymonadid Flagellates from the Gut of Neotermes jouteli. Protist 2014; 165:384-99. [DOI: 10.1016/j.protis.2014.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 11/24/2022]
|
14
|
Yubuki N, Simpson AG, Leander BS. Comprehensive Ultrastructure of Kipferlia bialata Provides Evidence for Character Evolution within the Fornicata (Excavata). Protist 2013; 164:423-39. [DOI: 10.1016/j.protis.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/25/2022]
|
15
|
Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa). Eur J Protistol 2013; 49:32-9. [DOI: 10.1016/j.ejop.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/07/2012] [Accepted: 07/13/2012] [Indexed: 11/30/2022]
|
16
|
Takishita K, Kolisko M, Komatsuzaki H, Yabuki A, Inagaki Y, Cepicka I, Smejkalová P, Silberman JD, Hashimoto T, Roger AJ, Simpson AGB. Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of 'amitochondriate' diplomonads and retortamonads. Protist 2012; 163:344-55. [PMID: 22364773 DOI: 10.1016/j.protis.2011.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 12/14/2011] [Indexed: 11/28/2022]
Abstract
Diplomonads, retortamonads, and "Carpediemonas-like" organisms (CLOs) are a monophyletic group of protists that are microaerophilic/anaerobic and lack typical mitochondria. Most diplomonads and retortamonads are parasites, and the pathogen Giardia intestinalis is known to possess reduced mitochondrion-related organelles (mitosomes) that do not synthesize ATP. By contrast, free-living CLOs have larger organelles that superficially resemble some hydrogenosomes, organelles that in other protists are known to synthesize ATP anaerobically. This group represents an excellent system for studying the evolution of parasitism and anaerobic, mitochondrion-related organelles. Understanding these evolutionary transitions requires a well-resolved phylogeny of diplomonads, retortamonads and CLOs. Unfortunately, until now the deep relationships amongst these taxa were unresolved due to limited data for almost all of the CLO lineages. To address this, we assembled a dataset of up to six protein-coding genes that includes representatives from all six CLO lineages, and complements existing rRNA datasets. Multigene phylogenetic analyses place CLOs as well as the retortamonad Chilomastix as a paraphyletic basal assemblage to the lineage comprising diplomonads and the retortamonad Retortamonas. In particular, the CLO Dysnectes was shown to be the closest relative of the diplomonads + Retortamonas clade, with strong support. This phylogeny is consistent with a drastic degeneration of mitochondrion-related organelles during the evolution from a free-living organism resembling extant CLOs to a probable parasite/commensal common ancestor of diplomonads and Retortamonas.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Noda S, Mantini C, Meloni D, Inoue JI, Kitade O, Viscogliosi E, Ohkuma M. Molecular phylogeny and evolution of parabasalia with improved taxon sampling and new protein markers of actin and elongation factor-1α. PLoS One 2012; 7:e29938. [PMID: 22253832 PMCID: PMC3253790 DOI: 10.1371/journal.pone.0029938] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/08/2011] [Indexed: 11/27/2022] Open
Abstract
Background Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa—in particular determining the root—is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. Principal Findings Actin and elongation factor-1α genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. Conclusions/Significance We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids.
Collapse
Affiliation(s)
- Satoko Noda
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama, Japan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan
- * E-mail: (SN); (MO)
| | - Cléa Mantini
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France, and Inserm U1019, CNRS UMR 8204, and University Lille – Nord de France, Lille, France
| | - Dionigia Meloni
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France, and Inserm U1019, CNRS UMR 8204, and University Lille – Nord de France, Lille, France
- Department of Biomedical Sciences, Division of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| | - Jun-Ichi Inoue
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama, Japan
| | - Osamu Kitade
- Natural History Laboratory, College of Science, Ibaraki University, Mito, Ibaraki, Japan
| | - Eric Viscogliosi
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France, and Inserm U1019, CNRS UMR 8204, and University Lille – Nord de France, Lille, France
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama, Japan
- * E-mail: (SN); (MO)
| |
Collapse
|
18
|
Malik SB, Brochu CD, Bilic I, Yuan J, Hess M, Logsdon JM, Carlton JM. Phylogeny of parasitic parabasalia and free-living relatives inferred from conventional markers vs. Rpb1, a single-copy gene. PLoS One 2011; 6:e20774. [PMID: 21695260 PMCID: PMC3111441 DOI: 10.1371/journal.pone.0020774] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/09/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms. PRINCIPAL FINDINGS Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas. CONCLUSIONS/SIGNIFICANCE The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia.
Collapse
Affiliation(s)
- Shehre-Banoo Malik
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Cynthia D. Brochu
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ivana Bilic
- Department for Farm Animals and Veterinary Public Health, Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Jing Yuan
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - John M. Logsdon
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Jane M. Carlton
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
19
|
Critical Taxonomic Revision of Parabasalids with Description of one New Genus and three New Species. Protist 2010; 161:400-33. [DOI: 10.1016/j.protis.2009.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/21/2009] [Indexed: 11/17/2022]
|
20
|
Wickstead B, Gull K, Richards TA. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol Biol 2010; 10:110. [PMID: 20423470 PMCID: PMC2867816 DOI: 10.1186/1471-2148-10-110] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genesis of the eukaryotes was a pivotal event in evolution and was accompanied by the acquisition of numerous new cellular features including compartmentalization by cytoplasmic organelles, mitosis and meiosis, and ciliary motility. Essential for the development of these features was the tubulin cytoskeleton and associated motors. It is therefore possible to map ancient cell evolution by reconstructing the evolutionary history of motor proteins. Here, we have used the kinesin motor repertoire of 45 extant eukaryotes to infer the ancestral state of this superfamily in the last common eukaryotic ancestor (LCEA). RESULTS We bioinformatically identified 1624 putative kinesin proteins, determined their protein domain architectures and calculated a comprehensive Bayesian phylogeny for the kinesin superfamily with statistical support. These data enabled us to define 51 anciently-derived kinesin paralogs (including three new kinesin families) and 105 domain architectures. We then mapped these characters across eukaryotes, accounting for secondary loss within established eukaryotic groupings, and alternative tree topologies. CONCLUSIONS We show that a minimum of 11 kinesin families and 3 protein domain architectures were present in the LCEA. This demonstrates that the microtubule-based cytoskeleton of the LCEA was surprisingly highly developed in terms of kinesin motor types, but that domain architectures have been extensively modified during the diversification of the eukaryotes. Our analysis provides molecular evidence for the existence of several key cellular functions in the LCEA, and shows that a large proportion of motor family diversity and cellular complexity had already arisen in this ancient cell.
Collapse
|
21
|
Marande W, López-García P, Moreira D. Eukaryotic diversity and phylogeny using small- and large-subunit ribosomal RNA genes from environmental samples. Environ Microbiol 2009; 11:3179-88. [DOI: 10.1111/j.1462-2920.2009.02023.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Mowbrey K, Dacks JB. Evolution and diversity of the Golgi body. FEBS Lett 2009; 583:3738-45. [PMID: 19837068 DOI: 10.1016/j.febslet.2009.10.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/11/2009] [Indexed: 01/15/2023]
Abstract
Often considered a defining eukaryotic feature, the Golgi body is one of the most recognizable and functionally integrated cellular organelles. It is therefore surprising that some unicellular eukaryotes do not, at first glance, appear to possess Golgi stacks. Here we review the molecular evolutionary, genomic and cell biological evidence for Golgi bodies in these organisms, with the organelle likely present in some form in all cases. This, along with the overwhelming prevalence of stacked cisternae in most eukaryotes, implies that the ancestral eukaryote possessed a stacked Golgi body, with at least eight independent instances of Golgi unstacking in our cellular history.
Collapse
Affiliation(s)
- Kevin Mowbrey
- Department of Cell Biology, University of Alberta, Edmonton, Canada T6G 2H7
| | | |
Collapse
|
23
|
Inagaki Y, Nakajima Y, Sato M, Sakaguchi M, Hashimoto T. Gene Sampling Can Bias Multi-Gene Phylogenetic Inferences: The Relationship between Red Algae and Green Plants as a Case Study. Mol Biol Evol 2009; 26:1171-8. [DOI: 10.1093/molbev/msp036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci U S A 2009; 106:3859-64. [PMID: 19237557 DOI: 10.1073/pnas.0807880106] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all of eukaryotic diversity has been classified into 6 suprakingdom-level groups (supergroups) based on molecular and morphological/cell-biological evidence; these are Opisthokonta, Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Excavata. However, molecular phylogeny has not provided clear evidence that either Chromalveolata or Excavata is monophyletic, nor has it resolved the relationships among the supergroups. To establish the affinities of Excavata, which contains parasites of global importance and organisms regarded previously as primitive eukaryotes, we conducted a phylogenomic analysis of a dataset of 143 proteins and 48 taxa, including 19 excavates. Previous phylogenomic studies have not included all major subgroups of Excavata, and thus have not definitively addressed their interrelationships. The enigmatic flagellate Andalucia is sister to typical jakobids. Jakobids (including Andalucia), Euglenozoa and Heterolobosea form a major clade that we name Discoba. Analyses of the complete dataset group Discoba with the mitochondrion-lacking excavates or "metamonads" (diplomonads, parabasalids, and Preaxostyla), but not with the final excavate group, Malawimonas. This separation likely results from a long-branch attraction artifact. Gradual removal of rapidly-evolving taxa from the dataset leads to moderate bootstrap support (69%) for the monophyly of all Excavata, and 90% support once all metamonads are removed. Most importantly, Excavata robustly emerges between unikonts (Amoebozoa + Opisthokonta) and "megagrouping" of Archaeplastida, Rhizaria, and chromalveolates. Our analyses indicate that Excavata forms a monophyletic suprakingdom-level group that is one of the 3 primary divisions within eukaryotes, along with unikonts and a megagroup of Archaeplastida, Rhizaria, and the chromalveolate lineages.
Collapse
|
25
|
Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. EUKARYOTIC CELL 2008; 8:47-55. [PMID: 19011120 DOI: 10.1128/ec.00276-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trichomonas vaginalis is one of a few eukaryotes that have been found to encode several homologues of flavodiiron proteins (FDPs). Widespread among anaerobic prokaryotes, these proteins are believed to function as oxygen and/or nitric oxide reductases to provide protection against oxidative/nitrosative stresses and host immune responses. One of the T. vaginalis FDP homologues is equipped with a hydrogenosomal targeting sequence and is expressed in the hydrogenosomes, oxygen-sensitive organelles that participate in carbohydrate metabolism and assemble iron-sulfur clusters. The bacterial homologues characterized thus far have been dimers or tetramers; the trichomonad protein is a dimer of identical 45-kDa subunits, each noncovalently binding one flavin mononucleotide. The protein reduces dioxygen to water but is unable to utilize nitric oxide as a substrate, similarly to its closest homologue from another human parasite Giardia intestinalis and related archaebacterial proteins. T. vaginalis FDP is able to accept electrons derived from pyruvate or NADH via ferredoxin and is proposed to play a role in the protection of hydrogenosomes against oxygen.
Collapse
|
26
|
Brinkmann H, Philippe H. The Diversity Of Eukaryotes And The Root Of The Eukaryotic Tree. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:20-37. [DOI: 10.1007/978-0-387-74021-8_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins. FEBS Lett 2008; 582:2817-25. [DOI: 10.1016/j.febslet.2008.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/19/2022]
|
28
|
de Koning AP, Noble GP, Heiss AA, Wong J, Keeling PJ. Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads. Environ Microbiol 2008; 10:65-74. [PMID: 18211267 DOI: 10.1111/j.1462-2920.2007.01430.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The universal genetic code is conserved throughout most living systems, but a non-canonical code where TAA and TAG encode glutamine has evolved in several eukaryotes, including oxymonad protists. Most oxymonads are uncultivable, so environmental RT-PCR and PCR was used to examine the distribution of this rare character. A total of 253 unique isolates of four protein-coding genes were sampled from the hindgut community of the cockroach, Cryptocercus punctulatus, an environment rich in diversity from two of the five subgroups of oxymonad, saccinobaculids and polymastigids. Four alpha-tubulins were found with non-canonical glutamine codons. Environmental RACE confirmed that these and related genes used only TGA as stop codons, as expected for the non-canonical code, whereas other genes used TAA or TAG as stop codons, as expected for the universal code. We characterized alpha-tubulin from manually isolated Saccinobaculus ambloaxostylus, confirming it uses the universal code and suggesting, by elimination, that the non-canonical code is used by a polymastigid. HSP90 and EF-1alpha phylogenies also showed environmental sequences falling into two distinct groups, and are generally consistent with previous hypotheses that polymastigids and Streblomastix are closely related. Overall, we propose that the non-canonical genetic code arose once in a common ancestor of Streblomastix and a subgroup of polymastigids.
Collapse
Affiliation(s)
- Audrey P de Koning
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
29
|
Long S, Jirků M, Mach J, Ginger ML, Sutak R, Richardson D, Tachezy J, Lukes J. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol Microbiol 2008; 69:94-109. [PMID: 18433447 DOI: 10.1111/j.1365-2958.2008.06260.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Frataxin is a small conserved mitochondrial protein; in humans, mutations affecting frataxin expression or function result in Friedreich's ataxia. Much of the current understanding of frataxin function comes from informative studies with yeast models, but considerable debates remain with regard to the primary functions of this ubiquitous protein. We exploit the tractable reverse genetics of Trypanosoma brucei in order to specifically consider the importance of frataxin in an early branching lineage. Using inducible RNAi, we show that frataxin is essential in T. brucei and that its loss results in reduced activity of the marker Fe-S cluster-containing enzyme aconitase in both the mitochondrion and cytosol. Activities of mitochondrial succinate dehydrogenase and fumarase also decreased, but the concentration of reactive oxygen species increased. Trypanosomes lacking frataxin also exhibited a low mitochondrial membrane potential and reduced oxygen consumption. Crucially, however, iron did not accumulate in frataxin-depleted mitochondria, and as T. brucei frataxin does not form large complexes, it suggests that it plays no role in iron storage. Interestingly, RNAi phenotypes were ameliorated by expression of frataxin homologues from hydrogenosomes of another divergent protist Trichomonas vaginalis. Collectively, the data suggest trypanosome frataxin functions primarily only in Fe-S cluster biogenesis and protection from reactive oxygen species.
Collapse
Affiliation(s)
- Shaojun Long
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Natural Sciences, University of South Bohemia, Ceské Budejovice (Budweis), Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Allen JWA, Jackson AP, Rigden DJ, Willis AC, Ferguson SJ, Ginger ML. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 2008; 275:2385-402. [PMID: 18393999 DOI: 10.1111/j.1742-4658.2008.06380.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment is restricted to, but conserved throughout, the protist phylum Euglenozoa.
Collapse
|
31
|
Surface Morphology of Saccinobaculus (Oxymonadida): Implications for Character Evolution and Function in Oxymonads. Protist 2008; 159:209-21. [DOI: 10.1016/j.protis.2007.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 09/01/2007] [Indexed: 11/20/2022]
|
32
|
Møller AB, Asp T, Holm PB, Palmgren MG. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol Phylogenet Evol 2008; 46:619-34. [DOI: 10.1016/j.ympev.2007.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/20/2007] [Accepted: 10/26/2007] [Indexed: 01/26/2023]
|
33
|
Hampl V, Silberman JD, Stechmann A, Diaz-Triviño S, Johnson PJ, Roger AJ. Genetic evidence for a mitochondriate ancestry in the 'amitochondriate' flagellate Trimastix pyriformis. PLoS One 2008; 3:e1383. [PMID: 18167542 PMCID: PMC2148110 DOI: 10.1371/journal.pone.0001383] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/07/2007] [Indexed: 11/24/2022] Open
Abstract
Most modern eukaryotes diverged from a common ancestor that contained the α-proteobacterial endosymbiont that gave rise to mitochondria. The ‘amitochondriate’ anaerobic protist parasites that have been studied to date, such as Giardia and Trichomonas harbor mitochondrion-related organelles, such as mitosomes or hydrogenosomes. Yet there is one remaining group of mitochondrion-lacking flagellates known as the Preaxostyla that could represent a primitive ‘pre-mitochondrial’ lineage of eukaryotes. To test this hypothesis, we conducted an expressed sequence tag (EST) survey on the preaxostylid flagellate Trimastix pyriformis, a poorly-studied free-living anaerobe. Among the ESTs we detected 19 proteins that, in other eukaryotes, typically function in mitochondria, hydrogenosomes or mitosomes, 12 of which are found exclusively within these organelles. Interestingly, one of the proteins, aconitase, functions in the tricarboxylic acid cycle typical of aerobic mitochondria, whereas others, such as pyruvate:ferredoxin oxidoreductase and [FeFe] hydrogenase, are characteristic of anaerobic hydrogenosomes. Since Trimastix retains genetic evidence of a mitochondriate ancestry, we can now say definitively that all known living eukaryote lineages descend from a common ancestor that had mitochondria.
Collapse
Affiliation(s)
- Vladimir Hampl
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey D. Silberman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Diaz-Triviño
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Dacks JB, Walker G, Field MC. Implications of the new eukaryotic systematics for parasitologists. Parasitol Int 2007; 57:97-104. [PMID: 18180199 DOI: 10.1016/j.parint.2007.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/15/2007] [Accepted: 11/16/2007] [Indexed: 11/24/2022]
Abstract
An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes "progressing" towards a "crown radiation" of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including Giardia, Trypanosoma and Trichomonas are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.
Collapse
Affiliation(s)
- Joel B Dacks
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
35
|
An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 2007; 3:e2879. [PMID: 18663385 PMCID: PMC2488364 DOI: 10.1371/journal.pone.0002879] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/08/2008] [Indexed: 12/23/2022] Open
Abstract
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.
Collapse
|
36
|
Da Lage JL, Danchin EGJ, Casane D. Where do animal α-amylases come from? An interkingdom trip. FEBS Lett 2007; 581:3927-35. [PMID: 17662722 DOI: 10.1016/j.febslet.2007.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 11/20/2022]
Abstract
Alpha-amylases are widely found in eukaryotes and prokaryotes. Few amino acids are conserved among these organisms, but at an intra-kingdom level, conserved protein domains exist. In animals, numerous conserved stretches are considered as typical of animal alpha-amylases. Searching databases, we found no animal-type alpha-amylases outside the Bilateria. Instead, we found in the sponge Reniera sp. and in the sea anemone Nematostella vectensis, alpha-amylases whose most similar cognate was that of the amoeba Dictyostelium discoideum. We found that this "Dictyo-type" alpha-amylase was shared not only by these non-Bilaterian animals, but also by other Amoebozoa, Choanoflagellates, and Fungi. This suggested that the Dictyo-type alpha-amylase was present in the last common ancestor of Unikonts. The additional presence of the Dictyo-type in some Ciliates and Excavates, suggests that horizontal gene transfers may have occurred among Eukaryotes. We have also detected putative interkingdom transfers of amylase genes, which obscured the historical reconstitution. Several alternative scenarii are discussed.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation (LEGS), CNRS, 91198 Gif sur Yvette cedex, France.
| | | | | |
Collapse
|
37
|
Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T. Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 2007; 44:255-66. [DOI: 10.1016/j.ympev.2006.11.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/11/2006] [Accepted: 11/02/2006] [Indexed: 11/16/2022]
|
38
|
Andersson JO, Sjögren ÅM, Horner DS, Murphy CA, Dyal PL, Svärd SG, Logsdon JM, Ragan MA, Hirt RP, Roger AJ. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 2007; 8:51. [PMID: 17298675 PMCID: PMC1805757 DOI: 10.1186/1471-2164-8-51] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 02/14/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). RESULTS The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes--mostly encoding metabolic proteins--that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. CONCLUSION Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Åsa M Sjögren
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David S Horner
- Department of Zoology, The Natural History Museum, London, UK
- Dipartimento di Scienze Biomolecolare e Biotecnologie, University of Milan, Milan, Italy
| | - Colleen A Murphy
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Patricia L Dyal
- Department of Zoology, The Natural History Museum, London, UK
| | - Staffan G Svärd
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - John M Logsdon
- Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, University of Iowa, Iowa City, USA
| | - Mark A Ragan
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
- ARC Centre in Bioinformatics, and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert P Hirt
- Department of Zoology, The Natural History Museum, London, UK
- School of Biology, The Devonshire building, The University of Newcastle upon Tyne, UK
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
39
|
Walker G. Meeting Report: 16th Meeting of the International Society for Evolutionary Protistology; Wrocław, Poland, August 2–5, 2006 (ISEP XVI). Protist 2007; 158:5-19. [PMID: 17166769 DOI: 10.1016/j.protis.2006.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Giselle Walker
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
40
|
Stechmann A, Baumgartner M, Silberman JD, Roger AJ. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic. BMC Evol Biol 2006; 6:101. [PMID: 17123440 PMCID: PMC1665464 DOI: 10.1186/1471-2148-6-101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/23/2006] [Indexed: 11/29/2022] Open
Abstract
Background Glycolysis and subsequent fermentation is the main energy source for many anaerobic organisms. The glycolytic pathway consists of ten enzymatic steps which appear to be universal amongst eukaryotes. However, it has been shown that the origins of these enzymes in specific eukaryote lineages can differ, and sometimes involve lateral gene transfer events. We have conducted an expressed sequence tag (EST) survey of the anaerobic flagellate Trimastix pyriformis to investigate the nature of the evolutionary origins of the glycolytic enzymes in this relatively unstudied organism. Results We have found genes in the Trimastix EST data that encode enzymes potentially catalyzing nine of the ten steps of the glycolytic conversion of glucose to pyruvate. Furthermore, we have found two different enzymes that in principle could catalyze the conversion of phosphoenol pyruvate (PEP) to pyruvate (or the reverse reaction) as part of the last step in glycolysis. Our phylogenetic analyses of all of these enzymes revealed at least four cases where the relationship of the Trimastix genes to homologs from other species is at odds with accepted organismal relationships. Although lateral gene transfer events likely account for these anomalies, with the data at hand we were not able to establish with confidence the bacterial donor lineage that gave rise to the respective Trimastix enzymes. Conclusion A number of the glycolytic enzymes of Trimastix have been transferred laterally from bacteria instead of being inherited from the last common eukaryotic ancestor. Thus, despite widespread conservation of the glycolytic biochemical pathway across eukaryote diversity, in a number of protist lineages the enzymatic components of the pathway have been replaced by lateral gene transfer from disparate evolutionary sources. It remains unclear if these replacements result from selectively advantageous properties of the introduced enzymes or if they are neutral outcomes of a gene transfer 'ratchet' from food or endosymbiotic organisms or a combination of both processes.
Collapse
Affiliation(s)
- Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| | - Manuela Baumgartner
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstraße 67, D-80638 München, Germany
| | - Jeffrey D Silberman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Canadian Institute for Advanced Research, Evolutionary Biology Program, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| |
Collapse
|
41
|
Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA. Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2006; 2:e220. [PMID: 17194223 PMCID: PMC1713255 DOI: 10.1371/journal.pgen.0020220] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 11/09/2006] [Indexed: 11/19/2022] Open
Abstract
Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. Evolutionary perspectives, including the classification of living organisms, provide the unifying scaffold on which biological knowledge is assembled. Researchers in many areas of biology use evolutionary classifications (taxonomy) in many ways, including as a means for interpreting the origin of evolutionary innovations, as a framework for comparative genetics/genomics, and as the basis for drawing broad conclusions about the diversity of living organisms. Thus, it is essential that taxonomy be robust. Here the authors evaluate the stability of and support for the current classification system of eukaryotic cells (cells with nuclei) in which eukaryotes are divided into six kingdom level categories, or supergroups. These six supergroups unite diverse microbial and macrobial eukaryotic lineages, including the well-known groups of plants, animals, and fungi. The authors assess the stability of supergroup classifications through time and reveal a rapidly changing taxonomic landscape that is difficult to navigate for the specialist and generalist alike. Additionally, the authors find variable support for each of the supergroups in published analyses based on DNA sequence variation. The support for supergroups differs according to the taxonomic area under study and the origin of the genes (e.g., nuclear, plastid) used in the analysis. Encouragingly, combining a conservative approach to taxonomy with increased sampling of microbial eukaryotes and the use of multiple types of data is likely to produce a robust scaffold for the eukaryotic tree of life.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Erika Barbero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Elyse Lasser
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Micah Dunthorn
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Debashish Bhattacharya
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - David J Patterson
- Bay Paul Center for Genomics, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Liapounova NA, Hampl V, Gordon PMK, Sensen CW, Gedamu L, Dacks JB. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. EUKARYOTIC CELL 2006; 5:2138-46. [PMID: 17071828 PMCID: PMC1694820 DOI: 10.1128/ec.00258-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment.
Collapse
Affiliation(s)
- Natalia A Liapounova
- Department of Biological Sciences, the University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Kim E, Simpson AGB, Graham LE. Evolutionary Relationships of Apusomonads Inferred from Taxon-Rich Analyses of 6 Nuclear Encoded Genes. Mol Biol Evol 2006; 23:2455-66. [PMID: 16982820 DOI: 10.1093/molbev/msl120] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phylogenetic relationships of the biflagellate protist group Apusomonadidae have been unclear despite the availability of some molecular data. We analyzed sequences from 6 nuclear encoded genes-small-subunit rRNA, large-subunit rRNA, alpha-tubulin, beta-tubulin, actin, and heat shock protein 90-to infer the phylogenetic position of Apusomonas proboscidea Aléxéieff 1924. To increase the taxon richness of the study, we also obtained new sequences from representatives of several other major eukaryotic groups: Chrysochromulina sp. National Institute for Environmental Studies 1333 (Haptophyta), Cyanophora paradoxa (Glaucophyta), Goniomonas truncata (Cryptophyceae), Leucocryptos marina (Kathablepharidae), Mesostigma viride (Streptophyta, Viridiplantae), Peridinium limbatum (Alveolata), Pterosperma cristatum (Prasinophytae, Viridiplantae), Synura sphagnicola (Stramenopiles), and Thaumatomonas sp. (Rhizaria). In most individual gene phylogenies, Apusomonas branched close to either of the 2 related taxa-Opisthokonta (including animals, fungi, and choanoflagellates) or Amoebozoa. Combined analyses of all 4 protein-coding genes or all 6 studied genes strongly supported the hypothesis that Apusomonadidae is closely related to Opisthokonta (or to all other eukaryotic groups except Opisthokonta, depending on the position of the eukaryotic root). Alternative hypotheses were rejected in approximately unbiased tests at the 5% level. However, the strong phylogenetic signal supporting a specific affiliation between Apusomonadidae and Opisthokonta largely originated from the alpha-tubulin data. If alpha-tubulin is not considered, topologies in which Apusomonadidae is sister to Opisthokonta or is sister to Amoebozoa were more or less equally supported. One current model for deep eukaryotic evolution holds that eukaryotes are divided into primary "unikont" and "bikont" clades and are descended from a "uniflagellate" common ancestor. Together with other information, our data suggest instead that unikonts (=Opisthokonta and Amoebozoa) are not strictly monophyletic and are descended from biflagellate ancestors.
Collapse
Affiliation(s)
- Eunsoo Kim
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | |
Collapse
|
44
|
Roger AJ, Hug LA. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philos Trans R Soc Lond B Biol Sci 2006; 361:1039-54. [PMID: 16754613 PMCID: PMC1578731 DOI: 10.1098/rstb.2006.1845] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes.
Collapse
Affiliation(s)
- Andrew J Roger
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Program in Evolutionary Biology Halifax, Nova Scotia, B3H 1X5 Canada.
| | | |
Collapse
|
45
|
Shalchian-Tabrizi K, Eikrem W, Klaveness D, Vaulot D, Minge M, Le Gall F, Romari K, Throndsen J, Botnen A, Massana R, Thomsen H, Jakobsen K. Telonemia, a new protist phylum with affinity to chromist lineages. Proc Biol Sci 2006; 273:1833-42. [PMID: 16790418 PMCID: PMC1634789 DOI: 10.1098/rspb.2006.3515] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup.
Collapse
Affiliation(s)
- K Shalchian-Tabrizi
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - W Eikrem
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - D Klaveness
- Program for Plankton Biology, Department of Biology, University of Oslo0316 Oslo, Norway
| | - D Vaulot
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - M.A Minge
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - F Le Gall
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - K Romari
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - J Throndsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - A Botnen
- Scientific Computing group at the University of Oslo's Center for Information Technology, University of Oslo0316 Oslo, Norway
| | - R Massana
- Institut de Ciències del Mar, CMIMA, Passeig Marítim de la Barceloneta37-49, 08003 Barcelona, Catalonia, Spain
| | - H.A Thomsen
- Department of Marine Ecology and Aquaculture, Danish Institute for Fisheries ResearchKavalergården 6, 2920 Charlottenlund, Denmark
| | - K.S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
- Author for correspondence ()
| |
Collapse
|
46
|
Heiss AA, Keeling PJ. The phylogenetic position of the oxymonad Saccinobaculus based on SSU rRNA. Protist 2006; 157:335-44. [PMID: 16839812 DOI: 10.1016/j.protis.2006.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
The oxymonads are a group of structurally complex anaerobic flagellates about which we know very little. They are found in association with complex microbial communities in the guts of animals. There are five recognized families of oxymonads; molecular data have been acquired for four of these. Here, we describe the first molecular data from the last remaining group, represented by Saccinobaculus, an organism that is found exclusively in the hindgut of the wood-eating cockroach Cryptocercus. We sequenced small subunit ribosomal RNA (SSU rRNA) from total gut DNA to describe Saccinobaculus SSU rRNA diversity. We also sequenced SSU rRNA from manually isolated cells of the two most abundant and readily identifiable species: the type species Saccinobaculus ambloaxostylus and the taxonomically contentious Saccinobaculus doroaxostylus. We inferred phylogenetic trees including all five known oxymonad subgroups in order to elucidate the internal phylogeny of this poorly studied group, to resolve some outstanding issues of the taxonomy and identification of certain Saccinobaculus species, and to investigate the evolution of character states within it. Our analysis recovered strong support for the existence of the five subgroups of oxymonads, and consistently united the subgroups containing Monocercomonoides and Streblomastix, but was unable to resolve any further higher-order branching patterns.
Collapse
Affiliation(s)
- Aaron A Heiss
- Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6 T 1Z4
| | | |
Collapse
|
47
|
Burki F, Pawlowski J. Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts. Mol Biol Evol 2006; 23:1922-30. [PMID: 16829542 DOI: 10.1093/molbev/msl055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reconstructing a global phylogeny of eukaryotes is an ongoing challenge of molecular phylogenetics. The availability of genomic data from a broad range of eukaryotic phyla helped in resolving the eukaryotic tree into a topology with a rather small number of large assemblages, but the relationships between these "supergroups" are yet to be confirmed. Rhizaria is the most recently recognized "supergroup," but, in spite of this important position within the tree of life, their representatives are still missing in global phylogenies of eukaryotes. Here, we report the first large-scale analysis of eukaryote phylogeny including data for 2 rhizarian species, the foraminiferan Reticulomyxa filosa and the chlorarachniophyte Bigelowiella natans. Our results confirm the monophyly of Rhizaria (Foraminifera + Cercozoa), with very high bootstrap supports in all analyses. The overall topology of our trees is in agreement with the current view of eukaryote phylogeny with basal division into "unikonts" (Opisthokonts and Ameobozoa) and "bikonts" (Plantae, alveolates, stramenopiles, and excavates). As expected, Rhizaria branch among bikonts; however, their phylogenetic position is uncertain. Depending on the data set and the type of analysis, Rhizaria branch as sister group to either stramenopiles or excavates. Overall, the relationships between the major groups of unicellular bikonts are poorly resolved, despite the use of 85 proteins and the largest taxonomic sampling for this part of the tree available to date. This may be due to an acceleration of evolutionary rates in some bikont phyla or be related to their rapid diversification in the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
48
|
Slamovits CH, Keeling PJ. A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol 2006; 6:34. [PMID: 16638131 PMCID: PMC1501061 DOI: 10.1186/1471-2148-6-34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 04/25/2006] [Indexed: 11/28/2022] Open
Abstract
Background Certain eukaryotic genomes, such as those of the amitochondriate parasites Giardia and Trichomonas, have very low intron densities, so low that canonical spliceosomal introns have only recently been discovered through genome sequencing. These organisms were formerly thought to be ancient eukaryotes that diverged before introns originated, or at least became common. Now however, they are thought to be members of a supergroup known as excavates, whose members generally appear to have low densities of canonical introns. Here we have used environmental expressed sequence tag (EST) sequencing to identify 17 genes from the uncultivable oxymonad Streblomastix strix, to survey intron densities in this most poorly studied excavate group. Results We find that Streblomastix genes contain an unexpectedly high intron density of about 1.1 introns per gene. Moreover, over 50% of these are at positions shared between a broad spectrum of eukaryotes, suggesting theyare very ancient introns, potentially present in the last common ancestor of eukaryotes. Conclusion The Streblomastix data show that the genome of the ancestor of excavates likely contained many introns and the subsequent evolution of introns has proceeded very differently in different excavate lineages: in Streblomastix there has been much stasis while in Trichomonas and Giardia most introns have been lost.
Collapse
Affiliation(s)
- Claudio H Slamovits
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
49
|
Andersson JO, Hirt RP, Foster PG, Roger AJ. Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evol Biol 2006; 6:27. [PMID: 16551352 PMCID: PMC1484493 DOI: 10.1186/1471-2148-6-27] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 03/21/2006] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Lateral gene transfer (LGT) in eukaryotes from non-organellar sources is a controversial subject in need of further study. Here we present gene distribution and phylogenetic analyses of the genes encoding the hybrid-cluster protein, A-type flavoprotein, glucosamine-6-phosphate isomerase, and alcohol dehydrogenase E. These four genes have a limited distribution among sequenced prokaryotic and eukaryotic genomes and were previously implicated in gene transfer events affecting eukaryotes. If our previous contention that these genes were introduced by LGT independently into the diplomonad and Entamoeba lineages were true, we expect that the number of putative transfers and the phylogenetic signal supporting LGT should be stable or increase, rather than decrease, when novel eukaryotic and prokaryotic homologs are added to the analyses. RESULTS The addition of homologs from phagotrophic protists, including several Entamoeba species, the pelobiont Mastigamoeba balamuthi, and the parabasalid Trichomonas vaginalis, and a large quantity of sequences from genome projects resulted in an apparent increase in the number of putative transfer events affecting all three domains of life. Some of the eukaryotic transfers affect a wide range of protists, such as three divergent lineages of Amoebozoa, represented by Entamoeba, Mastigamoeba, and Dictyostelium, while other transfers only affect a limited diversity, for example only the Entamoeba lineage. These observations are consistent with a model where these genes have been introduced into protist genomes independently from various sources over a long evolutionary time. CONCLUSION Phylogenetic analyses of the updated datasets using more sophisticated phylogenetic methods, in combination with the gene distribution analyses, strengthened, rather than weakened, the support for LGT as an important mechanism affecting the evolution of these gene families. Thus, gene transfer seems to be an on-going evolutionary mechanism by which genes are spread between unrelated lineages of all three domains of life, further indicating the importance of LGT from non-organellar sources into eukaryotic genomes.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, S-751 24 Uppsala, Sweden
| | - Robert P Hirt
- School of Biology, The Devonshire Building, The University of Newcastle upon Tyne, NE1 7RU, UK
| | - Peter G Foster
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
50
|
Slamovits CH, Keeling PJ. Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. EUKARYOTIC CELL 2006; 5:148-54. [PMID: 16400177 PMCID: PMC1360263 DOI: 10.1128/ec.5.1.148-154.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In pyrophosphate-dependent glycolysis, the ATP/ADP-dependent enzymes phosphofructokinase (PFK) and pyruvate kinase are replaced by the pyrophosphate-dependent PFK and pyruvate phosphate dikinase (PPDK), respectively. This variant of glycolysis is widespread among bacteria, but it also occurs in a few parasitic anaerobic eukaryotes such as Giardia and Entamoeba spp. We sequenced two genes for PPDK from the amitochondriate oxymonad Streblomastix strix and found evidence for PPDK in Trichomonas vaginalis and other parabasalia, where this enzyme was thought to be absent. The Streblomastix and Giardia genes may be related to one another, but those of Entamoeba and perhaps Trichomonas are distinct and more closely related to bacterial homologues. These findings suggest that pyrophosphate-dependent glycolysis is more widespread in eukaryotes than previously thought, enzymes from the pathway coexists with ATP-dependent more often than previously thought and may be spread by lateral transfer of genes for pyrophosphate-dependent enzymes from bacteria.
Collapse
Affiliation(s)
- Claudio H Slamovits
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|