1
|
Hanke DM, Wang Y, Dagan T. Pseudogenes in plasmid genomes reveal past transitions in plasmid mobility. Nucleic Acids Res 2024; 52:7049-7062. [PMID: 38808675 PMCID: PMC11229322 DOI: 10.1093/nar/gkae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Evidence for gene non-functionalization due to mutational processes is found in genomes in the form of pseudogenes. Pseudogenes are known to be rare in prokaryote chromosomes, with the exception of lineages that underwent an extreme genome reduction (e.g. obligatory symbionts). Much less is known about the frequency of pseudogenes in prokaryotic plasmids; those are genetic elements that can transfer between cells and may encode beneficial traits for their host. Non-functionalization of plasmid-encoded genes may alter the plasmid characteristics, e.g. mobility, or their effect on the host. Analyzing 10 832 prokaryotic genomes, we find that plasmid genomes are characterized by threefold-higher pseudogene density compared to chromosomes. The majority of plasmid pseudogenes correspond to deteriorated transposable elements. A detailed analysis of enterobacterial plasmids furthermore reveals frequent gene non-functionalization events associated with the loss of plasmid self-transmissibility. Reconstructing the evolution of closely related plasmids reveals that non-functionalization of the conjugation machinery led to the emergence of non-mobilizable plasmid types. Examples are virulence plasmids in Escherichia and Salmonella. Our study highlights non-functionalization of core plasmid mobility functions as one route for the evolution of domesticated plasmids. Pseudogenes in plasmids supply insights into past transitions in plasmid mobility that are akin to transitions in bacterial lifestyle.
Collapse
Affiliation(s)
- Dustin M Hanke
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Yang Y, Wang P, Qaidi SE, Hardwidge PR, Huang J, Zhu G. Loss to gain: pseudogenes in microorganisms, focusing on eubacteria, and their biological significance. Appl Microbiol Biotechnol 2024; 108:328. [PMID: 38717672 PMCID: PMC11078800 DOI: 10.1007/s00253-023-12971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 05/12/2024]
Abstract
Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- College of Bioscience and Biotechnology, Yangzhou University, 12 East Wenhui Road Yangzhou, Jiangsu, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Zhang G, Dong H, Feng Y, Jiang H, Wu T, Sun J, Wang X, Liu M, Peng X, Zhang Y, Zhang X, Zhu L, Ding J, Shen X. The Pseudogene BMEA_B0173 Deficiency in Brucella melitensis Contributes to M-epitope Formation and Potentiates Virulence in a Mice Infection Model. Curr Microbiol 2022; 79:378. [DOI: 10.1007/s00284-022-03078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
5
|
Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Phylogenomic analysis and metabolic role reconstruction of mutualistic Rhizobiales hindgut symbionts of Acromyrmex leaf-cutting ants. FEMS Microbiol Ecol 2022; 98:6652133. [PMID: 35906195 DOI: 10.1093/femsec/fiac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Rhizobiales are well-known plant-root nitrogen-fixing symbionts, but the functions of insect-associated Rhizobiales are poorly understood. We obtained genomes of three strains associated with Acromyrmex leaf-cutting ants and show that, in spite of being extracellular gut symbionts, they lost all pathways for essential amino acid biosynthesis, making them fully dependent on their hosts. Comparison with 54 Rhizobiales genomes showed that all insect-associated Rhizobiales lost the ability to fix nitrogen and that the Acromyrmex symbionts had exceptionally also lost the urease genes. However, the Acromyrmex strains share biosynthesis pathways for riboflavin vitamin, queuosine and a wide range of antioxidant enzymes likely to be beneficial for the ant fungus-farming symbiosis. We infer that the Rhizobiales symbionts catabolize excess of fungus-garden-derived arginine to urea, supplementing complementary Mollicutes symbionts that turn arginine into ammonia and infer that these combined symbiont activities stabilize the fungus-farming mutualism. Similar to the Mollicutes symbionts, the Rhizobiales species have fully functional CRISPR/Cas and R-M phage defenses, suggesting that these symbionts are important enough for the ant hosts to have precluded the evolution of metabolically cheaper defenseless strains.
Collapse
Affiliation(s)
- Mariya Zhukova
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Panagiotis Sapountzis
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Characterization of metabolite, genome and volatile organic compound changes provides insights into the spoilage and cold adaptive markers of Acinetobacter johnsonii XY27. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Distinct Potentially Adaptive Accumulation of Truncation Mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Microbiol Spectr 2022; 10:e0196921. [PMID: 35467366 PMCID: PMC9241588 DOI: 10.1128/spectrum.01969-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene inactivation through the accumulation of truncation (or premature stop codon) mutations is a common mode of evolution in bacteria. It is frequently believed to result from reductive evolutionary processes allowing purging of superfluous traits. However, several works have demonstrated that, similar to the occurrences of inactivating nonsynonymous (i.e., amino acid replacement) mutations under positive selection pressures, truncation mutations can also be adaptive where specific traits deleterious in particular environmental conditions need to be inactivated for survival. Here, we performed a comparative analysis of genome-wide accumulation of truncation mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Considering the known convergent evolutionary trajectories in these two serovars, we expected a strong overlap of truncated genes in S. Typhi and S. Paratyphi A, emerging through either reductive or adaptive dynamics. However, we detected a distinct set of core truncated genes encoding different overrepresented functional clusters in each serovar. In 54% and 28% truncated genes in S. Typhi and S. Paratyphi A, respectively, inactivating mutations were acquired by only different subsets of isolates, instead of all isolates analyzed for that serovar. Importantly, 62% truncated genes (P < 0.001) in S. Typhi and S. Paratyphi A were also targeted by convergent amino acid mutations in different serovars, suggesting those genes to be under selection pressures. Our findings indicate significant presence of potentially adaptive truncation mutations in conjunction with the ones emerging due to reductive evolution. Further experimental and large-scale bioinformatic studies are necessary to better explore the impact of such adaptive footprints of truncation mutations in the evolution of bacterial virulence. IMPORTANCE Detecting the adaptive mutations leading to gene inactivation or loss of function is crucial for understanding their contribution in the evolution of bacterial virulence and antibiotic resistance. Such inactivating mutations, apart from being of nonsynonymous (i.e., amino acid replacement) nature, can also be truncation mutations, abruptly trimming the length of encoded proteins. Importantly, the notion of reductive evolutionary dynamics is primarily accepted toward the accumulation of truncation mutations. However, our case study on S. Typhi and S. Paratyphi A, two human-restricted systemically invasive pathogens exerting similar clinical manifestations, indicated that a significant proportion of truncation mutations emerge from positive selection pressures. The candidate genes from our study will enable directed functional assays for deciphering the adaptive role of truncation mutations in S. Typhi and S. Paratyphi A pathogenesis. Also, our genome-level analytical approach will pave the way to understand the contribution of truncation mutations in the adaptive evolution of other bacterial pathogens.
Collapse
|
8
|
Urban C, Blom AA, Pfrengle S, Walker-Meikle K, Stone AC, Inskip SA, Schuenemann VJ. One Health Approaches to Trace Mycobacterium leprae's Zoonotic Potential Through Time. Front Microbiol 2021; 12:762263. [PMID: 34745073 PMCID: PMC8566891 DOI: 10.3389/fmicb.2021.762263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Hansen's disease (leprosy), mainly caused by infection with Mycobacterium leprae, has accompanied humanity for thousands of years. Although currently rare in Europe, there are over 200,000 new infections annually in South East Asia, Africa, and South America. Over the years many disciplines - palaeopathology, ancient DNA and other ancient biomolecules, and history - have contributed to a better understanding of leprosy's past, in particular its history in medieval Europe. We discuss their contributions and potential, especially in relation to the role of inter-species transmission, an unexplored phenomenon in the disease's history. Here, we explore the potential of interdisciplinary approaches that understand disease as a biosocial phenomenon, which is a product of both infection with M. leprae and social behaviours that facilitate transmission and spread. Genetic evidence of M. leprae isolated from archaeological remains combined with systematic zooarchaeological and historical analysis would not only identify when and in what direction transmission occurred, but also key social behaviours and motivations that brought species together. In our opinion, this combination is crucial to understand the disease's zoonotic past and current potential.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Alette A. Blom
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | | | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Sarah A. Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
9
|
Kinjo Y, Lo N, Martín PV, Tokuda G, Pigolotti S, Bourguignon T. Enhanced Mutation Rate, Relaxed Selection, and the "Domino Effect" are associated with Gene Loss in Blattabacterium, A Cockroach Endosymbiont. Mol Biol Evol 2021; 38:3820-3831. [PMID: 34426845 PMCID: PMC8382890 DOI: 10.1093/molbev/msab159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intracellular endosymbionts have reduced genomes that progressively lose genes at a timescale of tens of million years. We previously reported that gene loss rate is linked to mutation rate in Blattabacterium, however, the mechanisms causing gene loss are not yet fully understood. Here, we carried out comparative genomic analyses on the complete genome sequences of a representative set of 67 Blattabacterium strains, with sizes ranging between 511 and 645 kb. We found that 200 of the 566 analyzed protein-coding genes were lost in at least one lineage of Blattabacterium, with the most extreme case being one gene that was lost independently in 24 lineages. We found evidence for three mechanisms influencing gene loss in Blattabacterium. First, gene loss rates were found to increase exponentially with the accumulation of substitutions. Second, genes involved in vitamin and amino acid metabolism experienced relaxed selection in Cryptocercus and Mastotermes, possibly triggered by their vertically inherited gut symbionts. Third, we found evidence of epistatic interactions among genes leading to a "domino effect" of gene loss within pathways. Our results highlight the complexity of the process of genome erosion in an endosymbiont.
Collapse
Affiliation(s)
- Yukihiro Kinjo
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Paula Villa Martín
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Gaku Tokuda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Simone Pigolotti
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| |
Collapse
|
10
|
Hahn MM, González JF, Gunn JS. Salmonella Biofilms Tolerate Hydrogen Peroxide by a Combination of Extracellular Polymeric Substance Barrier Function and Catalase Enzymes. Front Cell Infect Microbiol 2021; 11:683081. [PMID: 34095002 PMCID: PMC8171120 DOI: 10.3389/fcimb.2021.683081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) to cause chronic gallbladder infections is dependent on biofilm growth on cholesterol gallstones. Non-typhoidal Salmonella (e.g. S. Typhimurium) also utilize the biofilm state to persist in the host and the environment. How the pathogen maintains recalcitrance to the host response, and oxidative stress in particular, during chronic infection is poorly understood. Previous experiments demonstrated that S. Typhi and S. Typhimurium biofilms are tolerant to hydrogen peroxide (H2O2), but that mutations in the biofilm extracellular polymeric substances (EPSs) O antigen capsule, colanic acid, or Vi antigen reduce tolerance. Here, biofilm-mediated tolerance to oxidative stress was investigated using a combination of EPS and catalase mutants, as catalases are important detoxifiers of H2O2. Using co-cultured biofilms of wild-type (WT) bacteria with EPS mutants, it was demonstrated that colanic acid in S. Typhimurium and Vi antigen in S. Typhi have a community function and protect all biofilm-resident bacteria rather than to only protect the individual cells producing the EPSs. However, the H2O2 tolerance deficiency of a O antigen capsule mutant was unable to be compensated for by co-culture with WT bacteria. For curli fimbriae, both WT and mutant strains are tolerant to H2O2 though unexpectedly, co-cultured WT/mutant biofilms challenged with H2O2 resulted in sensitization of both strains, suggesting a more nuanced oxidative resistance alteration in these co-cultures. Three catalase mutant (katE, katG and a putative catalase) biofilms were also examined, demonstrating significant reductions in biofilm H2O2 tolerance for the katE and katG mutants. Biofilm co-culture experiments demonstrated that catalases exhibit a community function. We further hypothesized that biofilms are tolerant to H2O2 because the physical barrier formed by EPSs slows penetration of H2O2 into the biofilm to a rate that can be mitigated by intra-biofilm catalases. Compared to WT, EPS-deficient biofilms have a heighted response even to low-dose (2.5 mM) H2O2 challenge, confirming that resident bacteria of EPS-deficient biofilms are under greater stress and have limited protection from H2O2. Thus, these data provide an explanation for how Salmonella achieves tolerance to H2O2 by a combination of an EPS-mediated barrier and enzymatic detoxification.
Collapse
Affiliation(s)
- Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Juan F González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
11
|
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, Guzmán-Verri C. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci 2020; 21:E7749. [PMID: 33092044 PMCID: PMC7589603 DOI: 10.3390/ijms21207749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| |
Collapse
|
12
|
Rakov AV, Kuznetsova NA, Yakovlev AA. Genetic diversity of Salmonella enterica subsp. enterica serovar Enteritidis in the Siberia and Far East of Russia based on plasmid profiles. AIMS Microbiol 2020; 6:106-120. [PMID: 32617444 PMCID: PMC7326731 DOI: 10.3934/microbiol.2020007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
For the first time, in the literature review we presents the molecular genetic structure of Salmonella Enteritidis populations in Russia, and particularly, in Siberia and the Far East of the country. Pathogen population in Russia has been compared with Salmonella populations circulating in different countries of the world. It has been shown that the microbial population is heterogeneous, but it is possible to identify the dominant and main genotypes, which determine up to 90% of the total population morbidity. The data were obtained as a result of a 30-year monitoring (1988 to 2018) by studying the microbial plasmid profiles. It was shown that the same S. Enteritidis clones circulate throughout Russia, however, their significance in the population morbidity may vary depending on geographic and temporal characteristics. Population is characterized by heterogeneity and relative stability of the plasmid types' structure. At the same time, the population is also specified by variability, reflected as a simple change of the annual number of constantly detected plasmid types, and the appearance of new ones that can play a significant role in the etiology of Salmonella infection.
Collapse
Affiliation(s)
- Alexey V. Rakov
- Laboratory of Molecular Epidemiology and Ecology of Pathogenic Bacteria, Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | | | | |
Collapse
|
13
|
Abstract
Bacterial genes are sometimes found to be inactivated by mutation. This inactivation may be observable simply because selection for function is intermittent or too weak to eliminate inactive alleles quickly. Here, I investigate cases in Salmonella enterica where inactivation is instead positively selected. These are identified by a rate of introduction of premature stop codons to a gene that is higher than expected under selective neutrality, as assessed by comparison to the rate of synonymous changes. I identify 84 genes that meet this criterion at a 10% false discovery rate. Many of these genes are involved in virulence, motility and chemotaxis, biofilm formation, and resistance to antibiotics or other toxic substances. It is hypothesized that most of these genes are subject to an ongoing process in which inactivation is favored under rare conditions, but the inactivated allele is deleterious under most other conditions and is subsequently driven to extinction by purifying selection.
Collapse
Affiliation(s)
- Joshua L Cherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Avni E, Montoya D, Lopez D, Modlin R, Pellegrini M, Snir S. A phylogenomic study quantifies competing mechanisms for pseudogenization in prokaryotes-The Mycobacterium leprae case. PLoS One 2018; 13:e0204322. [PMID: 30383852 PMCID: PMC6211624 DOI: 10.1371/journal.pone.0204322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pseudogenes are non-functional sequences in the genome with homologous sequences that are functional (i.e. genes). They are abundant in eukaryotes where they have been extensively investigated, while in prokaryotes they are significantly scarcer and less well studied. Here we conduct a comprehensive analysis of the evolution of orthologs of Mycobacterium leprae pseudogenes in prokaryotes. The leprosy pathogen M. leprae is of particular interest since it contains an unusually large number of pseudogenes, comprising approximately 40% of its entire genome. The analysis is conducted in both broad and narrow phylogenetic ranges. RESULTS We have developed an informatics-based approach to characterize the evolution of pseudogenes. This approach combines tools from phylogenomics, genomics, and transcriptomics. The results we obtain are used to assess the contributions of two mechanisms for pseudogene formation: failed horizontal gene transfer events and disruption of native genes. CONCLUSIONS We conclude that, although it was reported that in most bacteria the former is most likely responsible for the majority of pseudogenization events, in mycobacteria, and in particular in M. leprae with its exceptionally high pseudogene numbers, the latter predominates. We believe that our study sheds new light on the evolution of pseudogenes in bacteria, by utilizing new methodologies that are applied to the unusually abundant M. leprae pseudogenes and their orthologs.
Collapse
Affiliation(s)
- Eliran Avni
- Dept. of Evolutionary Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dennis Montoya
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - David Lopez
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Robert Modlin
- Dept. of Microbiology, Immunology and Molecular Genetics, and Division of Dermatology, David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Matteo Pellegrini
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Sagi Snir
- Dept. of Evolutionary Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Floriano AM, Castelli M, Krenek S, Berendonk TU, Bazzocchi C, Petroni G, Sassera D. The Genome Sequence of "Candidatus Fokinia solitaria": Insights on Reductive Evolution in Rickettsiales. Genome Biol Evol 2018; 10:1120-1126. [PMID: 29659807 PMCID: PMC5905368 DOI: 10.1093/gbe/evy072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
"Candidatus Fokinia solitaria" is an obligate intracellular endosymbiont of a unicellular eukaryote, a ciliate of the genus Paramecium. Here, we present the genome sequence of this bacterium and subsequent analysis. Phylogenomic analysis confirmed the previously reported positioning of the symbiont within the "Candidatus Midichloriaceae" family (order Rickettsiales), as well as its high sequence divergence from other members of the family, indicative of fast sequence evolution. Consistently with this high evolutionary rate, a comparative genomic analysis revealed that the genome of this symbiont is the smallest of the Rickettsiales to date. The reduced genome does not present flagellar genes, nor the pathway for the biosynthesis of lipopolysaccharides (present in all the other so far sequenced members of the family "Candidatus Midichloriaceae") or genes for the Krebs cycle (present, although not always complete, in Rickettsiales). These results indicate an evolutionary trend toward a stronger dependence on the host, in comparison with other members of the family. Two alternative scenarios are compatible with our results; "Candidatus Fokinia solitaria" could be either a recently evolved, vertically transmitted mutualist, or a parasite with a high host-specificity.
Collapse
Affiliation(s)
- Anna M Floriano
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Italy
| | - Michele Castelli
- Department of Biosciences, University of Milan, Italy.,Department of Veterinary Medicine, University of Milan, Italy
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, Germany
| | | | | | | | - Davide Sassera
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Italy
| |
Collapse
|
16
|
Martínez-Cano DJ, Bor G, Moya A, Delaye L. Testing the Domino Theory of Gene Loss in Buchnera aphidicola: The Relevance of Epistatic Interactions. Life (Basel) 2018; 8:17. [PMID: 29843462 PMCID: PMC6027505 DOI: 10.3390/life8020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
The domino theory of gene loss states that when some particular gene loses its function and cripples a cellular function, selection will relax in all functionally related genes, which may allow for the non-functionalization and loss of these genes. Here we study the role of epistasis in determining the pattern of gene losses in a set of genes participating in cell envelope biogenesis in the endosymbiotic bacteria Buchnera aphidicola. We provide statistical evidence indicating pairs of genes in B. aphidicola showing correlated gene loss tend to have orthologs in Escherichia coli known to have alleviating epistasis. In contrast, pairs of genes in B. aphidicola not showing correlated gene loss tend to have orthologs in E. coli known to have aggravating epistasis. These results suggest that during the process of genome reduction in B. aphidicola by gene loss, positive or alleviating epistasis facilitates correlated gene losses while negative or aggravating epistasis impairs correlated gene losses. We interpret this as evidence that the reduced proteome of B. aphidicola contains less pathway redundancy and more compensatory interactions, mimicking the situation of E. coli when grown under environmental constrains.
Collapse
Affiliation(s)
- David J Martínez-Cano
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| | - Gil Bor
- CIMAT, A.P. 402, Guanajuato 36000, Gto., Mexico.
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, Avenida de Catalunya 21, 46020 València, Spain.
- Institute for Integrative Systems Biology, Universitat de València, Calle Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Luis Delaye
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
17
|
El-Sayed A, Awad W. Brucellosis: Evolution and expected comeback. Int J Vet Sci Med 2018; 6:S31-S35. [PMID: 30761318 PMCID: PMC6161863 DOI: 10.1016/j.ijvsm.2018.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Brucellosis is a serious infectious disease which causes great direct and indirect economic loses for animal holders worldwide such as the reduction of milk and meat production through abortions/culling of positive reactors, the expense of disease control/eradication and farmers compensation. Although the disease was eradicated from most of the industrial countries, it remains one of the most common zoonotic diseases in developing countries being responsible for more than 500,000 new cases yearly. Brucella is considered to be a bioterrorism organism due to its low infectious doses (10-100 bacteria), capability of persistence in the environment, rapid transmission via different routes including aerosols, and finally due to its difficult treatment by antibiotics.There are many reasons to believe that a new comeback of brucellosis may occur in near future. This expectation is supported by the recent discovery of new atypical Brucella species with new genetic properties and the recent reports of (man to man) disease transmission as will be discussed later. The development of new concepts and measurements for disease control is urgently required. In the present review, the evolution of Brucella and the different factors favoring its comeback are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | | |
Collapse
|
18
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events. Methods Mol Biol 2018; 1829:17-35. [PMID: 29987712 DOI: 10.1007/978-1-4939-8654-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.
Collapse
Affiliation(s)
- Zoltán Füssy
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
19
|
Galen JE, Buskirk AD, Tennant SM, Pasetti MF. Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0010-2016. [PMID: 27809955 PMCID: PMC5119766 DOI: 10.1128/ecosalplus.esp-0010-2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 04/08/2023]
Abstract
Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality in both animals and humans. In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable.
Collapse
Affiliation(s)
- James E Galen
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Amanda D Buskirk
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
| | - Sharon M Tennant
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
| | - Marcela F Pasetti
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
| |
Collapse
|
20
|
Ortega A, Villagra N, Urrutia I, Valenzuela L, Talamilla-Espinoza A, Hidalgo A, Rodas P, Gil F, Calderón I, Paredes-Sabja D, Mora G, Fuentes J. Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV -dependent survival to H 2 O 2 , and inside human macrophage-like cells. INFECTION GENETICS AND EVOLUTION 2016; 45:111-121. [DOI: 10.1016/j.meegid.2016.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
|
21
|
Johns BE, Purdy KJ, Tucker NP, Maddocks SE. Phenotypic and Genotypic Characteristics of Small Colony Variants and Their Role in Chronic Infection. Microbiol Insights 2015; 8:15-23. [PMID: 26448688 PMCID: PMC4581789 DOI: 10.4137/mbi.s25800] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 01/02/2023] Open
Abstract
Small colony variant (SCV) bacteria arise spontaneously within apparently homogeneous microbial populations, largely in response to environmental stresses, such as antimicrobial treatment. They display unique phenotypic characteristics conferred in part by heritable genetic changes. Characteristically slow growing, SCVs comprise a minor proportion of the population from which they arise but persist by virtue of their inherent resilience and host adaptability. Consequently, SCVs are problematic in chronic infection, where antimicrobial treatment is administered during the acute phase of infection but fails to eradicate SCVs, which remain within the host causing recurrent or chronic infection. This review discusses some of the phenotypic and genotypic changes that enable SCVs to successfully proliferate within the host environment as potential pathogens and strategies that could ameliorate the resolution of infection where SCVs are present.
Collapse
Affiliation(s)
- Benjamin E Johns
- Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Kevin J Purdy
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Sarah E Maddocks
- Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
22
|
Abstract
SUMMARY Members of the Roseobacter clade are equipped with a tremendous diversity of metabolic capabilities, which in part explains their success in so many different marine habitats. Ideas on how this diversity evolved and is maintained are reviewed, focusing on recent evolutionary studies exploring the timing and mechanisms of Roseobacter ecological diversification.
Collapse
|
23
|
Luo H, Moran MA. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol 2015; 23:577-84. [PMID: 26051014 DOI: 10.1016/j.tim.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
Abstract
Heterotrophic bacteria in pelagic marine environments are frequently categorized into two canonical ecological groups: patch-associated and free-living. This framework provides a conceptual basis for understanding bacterial utilization of oceanic organic matter. Some patch-associated bacteria are ecologically linked with eukaryotic phytoplankton, and this observation fits with predicted coincidence of their genome expansion with marine phytoplankton diversification. By contrast, free-living bacteria in today's oceans typically live singly with streamlined metabolic and regulatory functions that allow them to grow in nutrient-poor seawater. Recent analyses of marine Alphaproteobacteria suggest that some free-living bacterioplankton lineages evolved from patch-associated ancestors up to several hundred million years ago. While evolutionary analyses agree with the hypothesis that natural selection has maintained these distinct ecological strategies and genomic traits in present-day populations, they do not rule out a major role for genetic drift in driving ancient ecological switches. These two evolutionary forces may have acted on ocean bacteria at different geological time scales and under different geochemical constraints, with possible implications for future adaptations to a changing ocean. New evolutionary models and genomic data are leading to a more comprehensive understanding of marine bacterioplankton evolutionary history.
Collapse
Affiliation(s)
- Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Badawi M, Giraud I, Vavre F, Grève P, Cordaux R. Signs of neutralization in a redundant gene involved in homologous recombination in Wolbachia endosymbionts. Genome Biol Evol 2014; 6:2654-64. [PMID: 25230723 PMCID: PMC4224334 DOI: 10.1093/gbe/evu207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic reduction in bacterial endosymbionts occurs through large genomic deletions and long-term accumulation of mutations. The latter process involves successive steps including gene neutralization, pseudogenization, and gradual erosion until complete loss. Although many examples of pseudogenes at various levels of degradation have been reported, neutralization cases are scarce because of the transient nature of the process. Gene neutralization may occur due to relaxation of selection in nonessential genes, for example, those involved in redundant functions. Here, we report an example of gene neutralization in the homologous recombination (HR) pathway of Wolbachia, a bacterial endosymbiont of arthropods and nematodes. The HR pathway is often depleted in endosymbiont genomes, but it is apparently intact in some Wolbachia strains. Analysis of 12 major HR genes showed that they have been globally under strong purifying selection during the evolution of Wolbachia strains hosted by arthropods, supporting the evolutionary importance of the HR pathway for these Wolbachia genomes. However, we detected signs of recent neutralization of the ruvA gene in a subset of Wolbachia strains, which might be related to an ancestral, clade-specific amino acid change that impaired DNA-binding activity. Strikingly, RuvA is part of the RuvAB complex involved in branch migration, whose function overlaps with the RecG helicase. Although ruvA is experiencing neutralization, recG is under strong purifying selection. Thus, our high phylogenetic resolution suggests that we identified a rare example of targeted neutralization of a gene involved in a redundant function in an endosymbiont genome.
Collapse
Affiliation(s)
- Myriam Badawi
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Isabelle Giraud
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Fabrice Vavre
- Université de Lyon, UMR CNRS 5558 Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| |
Collapse
|
25
|
Urrutia IM, Fuentes JA, Valenzuela LM, Ortega AP, Hidalgo AA, Mora GC. Salmonella Typhi shdA: pseudogene or allelic variant? INFECTION GENETICS AND EVOLUTION 2014; 26:146-52. [PMID: 24859062 DOI: 10.1016/j.meegid.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
ShdA from Salmonella Typhimurium (ShdASTm) is a large outer membrane protein that specifically recognizes and binds to fibronectin. ShdASTm is involved in the colonization of the cecum and the Peyer's patches of terminal ileum in mice. On the other hand, shdA gene from Salmonella Typhi (shdASTy) has been considered a pseudogene (i.e. a nonfunctional sequence of genomic DNA) due to the presence of deletions and mutations that gave rise to premature stop codons. In this work we show that, despite the deletions and mutations, shdASTy is fully functional. S. Typhi ΔshdA mutants presented an impaired adherence and invasion of HEp-2 pre-treated with TGF-β1, an inducer of fibronectin production. Moreover, shdA from S. Typhi and S. Typhimurium seem to be equivalent since shdASTm restored the adherence and invasion of S. Typhi ΔshdA mutant to wild type levels. In addition, anti-FLAG mAbs interfered with the adherence and invasion of the S. Typhi shdA-3xFLAG strain. Finally, shdASTy encodes a detectable protein when heterologously expressed in Escherichia coli DH5α. The data presented here show that shdASTy is not a pseudogene, but a different functional allele compared with shdASTm.
Collapse
Affiliation(s)
- I M Urrutia
- Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago de Chile, Chile.
| | - J A Fuentes
- Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago de Chile, Chile.
| | - L M Valenzuela
- Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago de Chile, Chile.
| | - A P Ortega
- Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago de Chile, Chile.
| | - A A Hidalgo
- Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago de Chile, Chile.
| | - G C Mora
- Facultad de Medicina, Universidad Andres Bello, República 330, Santiago de Chile, Chile.
| |
Collapse
|
26
|
Sharma P, Gupta SK, Rolain JM. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution. Expert Rev Anti Infect Ther 2014; 12:343-55. [PMID: 24502835 DOI: 10.1586/14787210.2014.887441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs.
Collapse
Affiliation(s)
- Poonam Sharma
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergents, CNRS-IRD, UMR 7278, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, 27 Bd Jean-Moulin, Marseille Cedex 05 13385, France
| | | | | |
Collapse
|
27
|
Wolf YI, Koonin EV. Genome reduction as the dominant mode of evolution. Bioessays 2013; 35:829-37. [PMID: 23801028 PMCID: PMC3840695 DOI: 10.1002/bies.201300037] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/21/2013] [Indexed: 11/09/2022]
Abstract
A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron-rich ancestor of eukaryotes. In both cases, evolution in most of the lineages was apparently dominated by extensive loss of genes and introns, respectively. These and many other cases of reductive evolution are consistent with a general model composed of two distinct evolutionary phases: the short, explosive, innovation phase that leads to an abrupt increase in genome complexity, followed by a much longer reductive phase, which encompasses either a neutral ratchet of genetic material loss or adaptive genome streamlining. Quantitatively, the evolution of genomes appears to be dominated by reduction and simplification, punctuated by episodes of complexification.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MA, USA.
| | | |
Collapse
|
28
|
Abstract
Obligate intracellular bacteria comprising the order Chlamydiales lack the ability to synthesize nucleotides de novo and must acquire these essential compounds from the cytosol of the host cell. The environmental protozoan endosymbiont Protochlamydia amoebophila UWE25 encodes five nucleotide transporters with specificities for different nucleotide substrates, including ATP, GTP, CTP, UTP, and NAD. In contrast, the human pathogen Chlamydia trachomatis encodes only two nucleotide transporters, the ATP/ADP translocase C. trachomatis Npt1 (Npt1(Ct)) and the nucleotide uniporter Npt2(Ct), which transports GTP, UTP, CTP, and ATP. The notable absence of a NAD transporter, coupled with the lack of alternative nucleotide transporters on the basis of bioinformatic analysis of multiple C. trachomatis genomes, led us to re-evaluate the previously characterized transport properties of Npt1(Ct). Using [adenylate-(32)P]NAD, we demonstrate that Npt1(Ct) expressed in Escherichia coli enables the transport of NAD with an apparent K(m) and V(max) of 1.7 μM and 5.8 nM mg(-1) h(-1), respectively. The K(m) for NAD transport is comparable to the K(m) for ATP transport of 2.2 μM, as evaluated in this study. Efflux and substrate competition assays demonstrate that NAD is a preferred substrate of Npt1(Ct) compared to ATP. These results suggest that during reductive evolution, the pathogenic chlamydiae lost individual nucleotide transporters, in contrast to their environmental endosymbiont relatives, without compromising their ability to obtain nucleotides from the host cytosol through relaxation of transport specificity. The novel properties of Npt1Ct and its conservation in chlamydiae make it a potential target for the development of antimicrobial compounds and a model for studying the evolution of transport specificity.
Collapse
|
29
|
Abstract
Obligate pathogenic and endosymbiotic bacteria typically experience gene loss due to functional redundancy, asexuality, and genetic drift. We hypothesize that reduced genomes increase their functional complexity through protein multitasking, in which many genes adopt new roles to counteract gene loss. Comparisons of interaction networks among six bacteria that have varied genome sizes (Mycoplasma pneumoniae, Treponema pallidum, Helicobacter pylori, Campylobacter jejuni, Synechocystis sp., and Mycobacterium tuberculosis) reveal that proteins in small genomes interact with proteins from a wider range of functions than do their orthologs in larger genomes. This suggests that surviving proteins form increasingly complex functional relationships to compensate for genes that are lost.
Collapse
|
30
|
Rau MH, Marvig RL, Ehrlich GD, Molin S, Jelsbak L. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environ Microbiol 2012; 14:2200-11. [PMID: 22672046 DOI: 10.1111/j.1462-2920.2012.02795.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adaptation of bacterial pathogens to a permanently host-associated lifestyle by means of deletion or acquisition of genetic material is usually examined through comparison of present-day isolates to a distant theoretical ancestor. This limits the resolution of the adaptation process. We conducted a retrospective study of the dissemination of the P.aeruginosa DK2 clone type among patients suffering from cystic fibrosis, sequencing the genomes of 45 isolates collected from 16 individuals over 35 years. Analysis of the genomes provides a high-resolution examination of the dynamics and mechanisms of the change in genetic content during the early stage of host adaptation by this P.aeruginosa strain as it adapts to the cystic fibrosis (CF) lung of several patients. Considerable genome reduction is detected predominantly through the deletion of large genomic regions, and up to 8% of the genome is deleted in one isolate. Compared with in vitro estimates the resulting average deletion rates are 12- to 36-fold higher. Deletions occur through both illegitimate and homologous recombination, but they are not IS element mediated as previously reported for early stage host adaptation. Uptake of novel DNA sequences during infection is limited as only one prophage region was putatively inserted in one isolate, demonstrating that early host adaptation is characterized by the reduction of genomic repertoire rather than acquisition of novel functions. Finally, we also describe the complete genome of this highly adapted pathogenic strain of P.aeruginosa to strengthen the genetic basis, which serves to help our understanding of microbial evolution in a natural environment.
Collapse
Affiliation(s)
- Martin H Rau
- Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
31
|
Luo H, Friedman R, Tang J, Hughes AL. Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus. Mol Biol Evol 2011; 28:2751-60. [PMID: 21531921 PMCID: PMC3203624 DOI: 10.1093/molbev/msr081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several isolates of the marine cyanobacterial genus Prochlorococcus have smaller genome sizes than those of the closely related genus Synechococcus. In order to test whether loss of protein-coding genes has contributed to genome size reduction in Prochlorococcus, we reconstructed events of gene family evolution over a strongly supported phylogeny of 12 Prochlorococcus genomes and 9 Synechococcus genomes. Significantly, more events both of loss of paralogs within gene families and of loss of entire gene families occurred in Prochlorococcus than in Synechococcus. The number of nonancestral gene families in genomes of both genera was positively correlated with the extent of genomic islands (GIs), consistent with the hypothesis that horizontal gene transfer (HGT) is associated with GIs. However, even when only isolates with comparable extents of GIs were compared, significantly more events of gene family loss and of paralog loss were seen in Prochlorococcus than in Synechococcus, implying that HGT is not the primary reason for the genome size difference between the two genera.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Biological Sciences, University of South Carolina
| | - Robert Friedman
- Department of Biological Sciences, University of South Carolina
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina
| | | |
Collapse
|
32
|
Investigating the genome diversity of B. cereus and evolutionary aspects of B. anthracis emergence. Genomics 2011; 98:26-39. [PMID: 21447378 DOI: 10.1016/j.ygeno.2011.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/08/2011] [Accepted: 03/21/2011] [Indexed: 12/25/2022]
Abstract
Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax-a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a "species" DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.
Collapse
|
33
|
Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS One 2011; 6:e17962. [PMID: 21437250 PMCID: PMC3060909 DOI: 10.1371/journal.pone.0017962] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We conducted a comparative genomic study based on a neutral approach to identify genome specificities associated with the virulence capacity of pathogenic bacteria. We also determined whether virulence is dictated by rules, or if it is the result of individual evolutionary histories. We systematically compared the genomes of the 12 most dangerous pandemic bacteria for humans ("bad bugs") to their closest non-epidemic related species ("controls"). METHODOLOGY/PRINCIPAL FINDINGS We found several significantly different features in the "bad bugs", one of which was a smaller genome that likely resulted from a degraded recombination and repair system. The 10 Cluster of Orthologous Group (COG) functional categories revealed a significantly smaller number of genes in the "bad bugs", which lacked mostly transcription, signal transduction mechanisms, cell motility, energy production and conversion, and metabolic and regulatory functions. A few genes were identified as virulence factors, including secretion system proteins. Five "bad bugs" showed a greater number of poly (A) tails compared to the controls, whereas an elevated number of poly (A) tails was found to be strongly correlated to a low GC% content. The "bad bugs" had fewer tandem repeat sequences compared to controls. Moreover, the results obtained from a principal component analysis (PCA) showed that the "bad bugs" had surprisingly more toxin-antitoxin modules than did the controls. CONCLUSIONS/SIGNIFICANCE We conclude that pathogenic capacity is not the result of "virulence factors" but is the outcome of a virulent gene repertoire resulting from reduced genome repertoires. Toxin-antitoxin systems could participate in the virulence repertoire, but they may have developed independently of selfish evolution.
Collapse
|
34
|
Trombert AN, Berrocal L, Fuentes JA, Mora GC. S. Typhimurium sseJ gene decreases the S. Typhi cytotoxicity toward cultured epithelial cells. BMC Microbiol 2010; 10:312. [PMID: 21138562 PMCID: PMC3004891 DOI: 10.1186/1471-2180-10-312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022] Open
Abstract
Background Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection. Results We investigated whether the S. Typhi trans-complemented with the functional sseJ gene from S. Typhimurium (STM) affects the cytotoxicity toward cultured cell lines. It was found that S. Typhi harbouring sseJSTM presents a similar cytotoxicity level and intracellular retention/proliferation of cultured epithelial cells (HT-29 or HEp-2) as wild type S. Typhimurium. These phenotypes are significantly different from wild type S. Typhi Conclusions Based on our results we conclude that the mutation that inactivate the sseJ gene in S. Typhi resulted in evident changes in the behaviour of bacteria in contact with eukaryotic cells, plausibly contributing to the S. Typhi adaptation to the systemic infection in humans.
Collapse
Affiliation(s)
- A Nicole Trombert
- Laboratorio de Microbiologia, Facultad de Ciencias Biologicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | | | | |
Collapse
|
35
|
Zucko J, Dunlap WC, Shick JM, Cullum J, Cercelet F, Amin B, Hammen L, Lau T, Williams J, Hranueli D, Long PF. Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. BMC Genomics 2010; 11:628. [PMID: 21070645 PMCID: PMC3018139 DOI: 10.1186/1471-2164-11-628] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background A central tenet in biochemistry for over 50 years has held that microorganisms, plants and, more recently, certain apicomplexan parasites synthesize essential aromatic compounds via elaboration of a complete shikimic acid pathway, whereas metazoans lacking this pathway require a dietary source of these compounds. The large number of sequenced bacterial and archaean genomes now available for comparative genomic analyses allows the fundamentals of this contention to be tested in prokaryotes. Using Hidden Markov Model profiles (HMM profiles) to identify all known enzymes of the pathway, we report the presence of genes encoding shikimate pathway enzymes in the hypothetical proteomes constructed from the genomes of 488 sequenced prokaryotes. Results Amongst free-living prokaryotes most Bacteria possess, as expected, genes encoding a complete shikimic acid pathway, whereas of the culturable Archaea, only one was found to have a complete complement of recognisable enzymes in its predicted proteome. It may be that in the Archaea, the primary amino-acid sequences of enzymes of the pathway are highly divergent and so are not detected by HMM profiles. Alternatively, structurally unrelated (non-orthologous) proteins might be performing the same biochemical functions as those encoding recognized genes of the shikimate pathway. Most surprisingly, 30% of host-associated (mutualistic, commensal and pathogenic) bacteria likewise do not possess a complete shikimic acid pathway. Many of these microbes show some degree of genome reduction, suggesting that these host-associated bacteria might sequester essential aromatic compounds from a parasitised host, as a 'shared metabolic adaptation' in mutualistic symbiosis, or obtain them from other consorts having the complete biosynthetic pathway. The HMM results gave 84% agreement when compared against data in the highly curated BioCyc reference database of genomes and metabolic pathways. Conclusions These results challenge the conventional belief that the shikimic acid pathway is universal and essential in prokaryotes. The possibilities that non-orthologous enzymes catalyse reactions in this pathway (especially in the Archaea), or that there exist specific uptake mechanisms for the acquisition of shikimate intermediates or essential pathway products, warrant further examination to better understand the precise metabolic attributes of host-beneficial and pathogenic bacteria.
Collapse
Affiliation(s)
- Jurica Zucko
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Muro EM, Mah N, Moreno-Hagelsieb G, Andrade-Navarro MA. The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons. Nucleic Acids Res 2010; 39:1732-8. [PMID: 21051341 PMCID: PMC3061063 DOI: 10.1093/nar/gkq1067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae’s genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M. leprae’s pseudogenes to represent dispensable genes, we have studied the position of these pseudogenes in the operons of M. leprae and of their orthologs in M. tuberculosis. We observed that both tend to be located in the 3′ (downstream) half of the operon (P-values of 0.03 and 0.18, respectively). Analysis of pseudogenes in all available prokaryotic genomes confirms this trend (P-value of 7.1 × 10−7). In a complementary analysis, we found a significant tendency for essential genes to be located at the 5′ (upstream) half of the operon (P-value of 0.006). Our work provides an indication that, in prokarya, functionally less important genes have a tendency to be located at the end of operons, while more relevant genes tend to be located toward operon starts.
Collapse
Affiliation(s)
- Enrique M Muro
- Computational Biology and Data Mining Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13125, Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Röske K, Foecking MF, Yooseph S, Glass JI, Calcutt MJ, Wise KS. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes. BMC Genomics 2010; 11:430. [PMID: 20626840 PMCID: PMC2996958 DOI: 10.1186/1471-2164-11-430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/13/2010] [Indexed: 01/07/2023] Open
Abstract
Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling. Conclusions We describe novel features of PARCELs (Palindromic Amphipathic Repeat Coding ELements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches.
Collapse
Affiliation(s)
- Kerstin Röske
- Saxony Academy of Sciences Leipzig, D-04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Bacterial gene content variation during the course of evolution has been widely acknowledged and its pattern has been actively modeled in recent years. Gene truncation or gene pseudogenization also plays an important role in shaping bacterial genome content. Truncated genes could also arise from small-scale lateral gene transfer events. Unfortunately, the information of truncated genes has not been considered in any existing mathematical models on gene content variation. In this study, we developed a model to incorporate truncated genes. Maximum-likelihood estimates (MLEs) of the new model reveal fast rates of gene insertions/deletions on recent branches, suggesting a fast turnover of many recently transferred genes. The estimates also suggest that many truncated genes are in the process of being eliminated from the genome. Furthermore, we demonstrate that the ignorance of truncated genes in the estimation does not lead to a systematic bias but rather has a more complicated effect. Analysis using the new model not only provides more accurate estimates on gene gains/losses (or insertions/deletions), but also reduces any concern of a systematic bias from applying simplified models to bacterial genome evolution. Although not a primary purpose, the model incorporating truncated genes could be potentially used for phylogeny reconstruction using gene family content.
Collapse
|
40
|
Brinza L, Viñuelas J, Cottret L, Calevro F, Rahbé Y, Febvay G, Duport G, Colella S, Rabatel A, Gautier C, Fayard JM, Sagot MF, Charles H. Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. C R Biol 2009; 332:1034-49. [PMID: 19909925 DOI: 10.1016/j.crvi.2009.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Buchnera aphidicola is the primary obligate intracellular symbiont of most aphid species. B. aphidicola and aphids have been evolving in parallel since their association started, about 150 Myr ago. Both partners have lost their autonomy, and aphid diversification has been confined to smaller ecological niches by this co-evolution. B. aphidicola has undergone major genomic and biochemical changes as a result of adapting to intracellular life. Several genomes of B. aphidicola from different aphid species have been sequenced in the last decade, making it possible to carry out analyses and comparative studies using system-level in silico methods. This review attempts to provide a systemic description of the symbiotic function of aphid endosymbionts, particularly of B. aphidicola from the pea aphid Acyrthosiphon pisum, by analyzing their structural genomic properties, as well as their genetic and metabolic networks.
Collapse
Affiliation(s)
- Lilia Brinza
- UMR203 BF2I, Biologie fonctionnelle insectes et interactions, Université de Lyon, INRA, INSA-Lyon, IFR41, 20, avenue A. Einstein, 69621 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol 2009; 191:3569-79. [PMID: 19346311 DOI: 10.1128/jb.01767-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host.
Collapse
|
42
|
Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 2009; 4:e4982. [PMID: 19319196 PMCID: PMC2656620 DOI: 10.1371/journal.pone.0004982] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 01/31/2009] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae is found in the environment and as a harmless commensal, but is also a frequent nosocomial pathogen (causing urinary, respiratory and blood infections) and the agent of specific human infections including Friedländer's pneumonia, rhinoscleroma and the emerging disease pyogenic liver abscess (PLA). The identification and precise definition of virulent clones, i.e. groups of strains with a single ancestor that are associated with particular infections, is critical to understand the evolution of pathogenicity from commensalism and for a better control of infections. We analyzed 235 K. pneumoniae isolates of diverse environmental and clinical origins by multilocus sequence typing, virulence gene content, biochemical and capsular profiling and virulence to mice. Phylogenetic analysis of housekeeping genes clearly defined clones that differ sharply by their clinical source and biological features. First, two clones comprising isolates of capsular type K1, clone CC23K1 and clone CC82K1, were strongly associated with PLA and respiratory infection, respectively. Second, only one of the two major disclosed K2 clones was highly virulent to mice. Third, strains associated with the human infections ozena and rhinoscleroma each corresponded to one monomorphic clone. Therefore, K. pneumoniae subsp. ozaenae and K. pneumoniae subsp. rhinoscleromatis should be regarded as virulent clones derived from K. pneumoniae. The lack of strict association of virulent capsular types with clones was explained by horizontal transfer of the cps operon, responsible for the synthesis of the capsular polysaccharide. Finally, the reduction of metabolic versatility observed in clones Rhinoscleromatis, Ozaenae and CC82K1 indicates an evolutionary process of specialization to a pathogenic lifestyle. In contrast, clone CC23K1 remains metabolically versatile, suggesting recent acquisition of invasive potential. In conclusion, our results reveal the existence of important virulent clones associated with specific infections and provide an evolutionary framework for research into the links between clones, virulence and other genomic features in K. pneumoniae.
Collapse
|
43
|
Cubillos-Ruiz A, Morales J, Zambrano MM. Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments. BMC Res Notes 2008; 1:110. [PMID: 18992142 PMCID: PMC2590607 DOI: 10.1186/1756-0500-1-110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 11/07/2008] [Indexed: 11/20/2022] Open
Abstract
Background The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB) genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C), along with the genomes of laboratory strains (H37Rv and H37Ra), provides new insights on the mechanisms of adaptation of this bacterium to the human host. Findings The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms. Conclusion The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.
Collapse
|
44
|
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688-719. [PMID: 18948295 PMCID: PMC2588523 DOI: 10.1093/nar/gkn668] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
45
|
Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 2008; 6:387-94. [PMID: 18392032 DOI: 10.1038/nrmicro1889] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing availability of DNA-sequence information for multiple pathogenic and non-pathogenic variants of individual bacterial species has indicated that both DNA acquisition and genome reduction have important roles in genome evolution. Such genomic fluidity, which is found in human pathogens such as Escherichia coli, Helicobacter pylori and Mycobacterium tuberculosis, has important consequences for the clinical management of the diseases that are caused by these pathogens and for the development of diagnostics and new molecular epidemiological methods.
Collapse
|
46
|
Rohmer L, Fong C, Abmayr S, Wasnick M, Larson Freeman TJ, Radey M, Guina T, Svensson K, Hayden HS, Jacobs M, Gallagher LA, Manoil C, Ernst RK, Drees B, Buckley D, Haugen E, Bovee D, Zhou Y, Chang J, Levy R, Lim R, Gillett W, Guenthener D, Kang A, Shaffer SA, Taylor G, Chen J, Gallis B, D'Argenio DA, Forsman M, Olson MV, Goodlett DR, Kaul R, Miller SI, Brittnacher MJ. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 2008; 8:R102. [PMID: 17550600 PMCID: PMC2394750 DOI: 10.1186/gb-2007-8-6-r102] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/02/2007] [Accepted: 06/05/2007] [Indexed: 01/04/2023] Open
Abstract
.Sequencing of the non-pathogenic Francisella tularensis sub-species novicida U112, and comparison with two pathogenic sub-species, provides insights into the evolution of pathogenicity in these species. Background Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans. Results Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation. Conclusion The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.
Collapse
Affiliation(s)
- Laurence Rohmer
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Christine Fong
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Simone Abmayr
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Michael Wasnick
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Theodore J Larson Freeman
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Matthew Radey
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Tina Guina
- Department of Pediatrics, Division of Infectious Diseases, University of Washington, Campus Box 357710, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Kerstin Svensson
- NBC Analysis, Division of NBC Defence, Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, SE-901 85 Umeå, Sweden
| | - Hillary S Hayden
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Michael Jacobs
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Larry A Gallagher
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Robert K Ernst
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Becky Drees
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Danielle Buckley
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Eric Haugen
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Donald Bovee
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Yang Zhou
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Jean Chang
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Ruth Levy
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Regina Lim
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Will Gillett
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Don Guenthener
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Allison Kang
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Scott A Shaffer
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Greg Taylor
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Jinzhi Chen
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Byron Gallis
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - David A D'Argenio
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Mats Forsman
- NBC Analysis, Division of NBC Defence, Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
| | - Maynard V Olson
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - David R Goodlett
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Rajinder Kaul
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Samuel I Miller
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Mitchell J Brittnacher
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| |
Collapse
|
47
|
Kneip C, Voβ C, Lockhart PJ, Maier UG. The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 2008; 8:30. [PMID: 18226230 PMCID: PMC2246100 DOI: 10.1186/1471-2148-8-30] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria occur in facultative association and intracellular symbiosis with a diversity of eukaryotic hosts. Recently, we have helped to characterise an intracellular nitrogen fixing bacterium, the so-called spheroid body, located within the diatom Rhopalodia gibba. Spheroid bodies are of cyanobacterial origin and exhibit features that suggest physiological adaptation to their intracellular life style. To investigate the genome modifications that have accompanied the process of endosymbiosis, here we compare gene structure, content and organisation in spheroid body and cyanobacterial genomes. RESULTS Comparison of the spheroid body's genome sequence with corresponding regions of near free-living relatives indicates that multiple modifications have occurred in the endosymbiont's genome. These include localised changes that have led to elimination of some genes. This gene loss has been accompanied either by deletion of the respective DNA region or replacement with non-coding DNA that is AT rich in composition. In addition, genome modifications have led to the fusion and truncation of genes. We also report that in the spheroid body's genome there is an accumulation of deleterious mutations in genes for cell wall biosynthesis and processes controlled by transposases. Interestingly, the formation of pseudogenes in the spheroid body has occurred in the presence of intact, and presumably functional, recA and recF genes. This is in contrast to the situation in most investigated obligate intracellular bacterium-eukaryote symbioses, where at least either recA or recF has been eliminated. CONCLUSION Our analyses suggest highly specific targeting/loss of individual genes during the process of genome reduction and establishment of a cyanobacterial endosymbiont inside a eukaryotic cell. Our findings confirm, at the genome level, earlier speculation on the obligate intracellular status of the spheroid body in Rhopalodia gibba. This association is the first example of an obligate cyanobacterial symbiosis involving nitrogen fixation for which genomic data are available. It represents a new model system to study molecular adaptations of genome evolution that accompany a switch from free-living to intracellular existence.
Collapse
Affiliation(s)
- Christoph Kneip
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
- Present address: Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Christine Voβ
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter J Lockhart
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Uwe G Maier
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
48
|
O'Fallon B. Population structure, levels of selection, and the evolution of intracellular symbionts. Evolution 2007; 62:361-73. [PMID: 18070083 DOI: 10.1111/j.1558-5646.2007.00289.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many obligately intracellular symbionts exhibit a characteristic set of genetic changes that include an increase in substitution rates, loss of many genes, and apparent destabilization of many proteins and structural RNAs. Authors have suggested that these changes are due to increased mutation rates, or, more commonly, decreased effective population size due to population bottlenecks at the symbiont or, perhaps, host level. I propose that the increase in substitution rates and accumulation of deleterious mutations is a consequence of the population structure imposed on the endosymbionts by strict host association, loss of horizontal transmission and potentially conflicting levels of selection. I analyze a population genetic model of endosymbiont evolution, and demonstrate that substitution rates will increase, and the effect of those substitutions on endosymbiont fitness will become more deleterious as horizontal transmission among hosts decreases. Additionally, I find that there is a critical level of horizontal transmission below which natural selection cannot effectively purge deleterious mutations, leading to an expected loss of fitness over time. This critical level varies across loci with the degree of correlation between host and endosymbiont fitness, and may help explain differential retention and loss of certain genes.
Collapse
Affiliation(s)
- Brendan O'Fallon
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
49
|
Mutation rate and genome reduction in endosymbiotic and free-living bacteria. Genetica 2007; 134:205-10. [DOI: 10.1007/s10709-007-9226-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
|
50
|
Ahmed N, Saini V, Raghuvanshi S, Khurana JP, Tyagi AK, Tyagi AK, Hasnain SE. Molecular analysis of a leprosy immunotherapeutic bacillus provides insights into Mycobacterium evolution. PLoS One 2007; 2:e968. [PMID: 17912347 PMCID: PMC1989137 DOI: 10.1371/journal.pone.0000968] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 09/10/2007] [Indexed: 11/18/2022] Open
Abstract
Background Evolutionary dynamics plays a central role in facilitating the mechanisms of species divergence among pathogenic and saprophytic mycobacteria. The ability of mycobacteria to colonize hosts, to proliferate and to cause diseases has evolved due to its predisposition to various evolutionary forces acting over a period of time. Mycobacterium indicus pranii (MIP), a taxonomically unknown ‘generalist’ mycobacterium, acts as an immunotherapeutic against leprosy and is approved for use as a vaccine against it. The large-scale field trials of this MIP based leprosy vaccine coupled with its demonstrated immunomodulatory and adjuvant property has led to human clinical evaluations of MIP in interventions against HIV-AIDS, psoriasis and bladder cancer. MIP, commercially available as ‘Immuvac’, is currently the focus of advanced phase III clinical trials for its antituberculosis efficacy. Thus a comprehensive analysis of MIP vis-à-vis evolutionary path, underpinning its immanent immunomodulating properties is of the highest desiderata. Principal Findings Genome wide comparisons together with molecular phylogenetic analyses by fluorescent amplified fragment length polymorphism (FAFLP), enterobacterial repetitive intergenic consensus (ERIC) based genotyping and candidate orthologues sequencing revealed that MIP has been the predecessor of highly pathogenic Mycobacterium avium intracellulare complex (MAIC) that did not resort to parasitic adaptation by reductional gene evolution and therefore, preferred a free living life-style. Further analysis suggested a shared aquatic phase of MAIC bacilli with the early pathogenic forms of Mycobacterium, well before the latter diverged as ‘specialists’. Conclusions/Significance This evolutionary paradigm possibly affirms to marshal our understanding about the acquisition and optimization of virulence in mycobacteria and determinants of boundaries therein.
Collapse
Affiliation(s)
- Niyaz Ahmed
- Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Vikram Saini
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi, New Delhi, India
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Jitendra P. Khurana
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K. Tyagi
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Seyed E. Hasnain
- University of Hyderabad, Hyderabad, India
- Institute of Life Sciences, University of Hyderabad, Hyderabad, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|