1
|
Srinivasan A, Magner D, Kozłowski P, Philips A, Kajdasz A, Wojciechowski P, Wojciechowska M. Global dysregulation of circular RNAs in frontal cortex and whole blood from DM1 and DM2. Hum Genet 2025; 144:417-432. [PMID: 39903274 PMCID: PMC12003446 DOI: 10.1007/s00439-025-02729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular disorders associated with expansions of microsatellites, respectively, in DMPK and CNBP. Their pathogenesis is linked to the global aberrant alternative splicing (AAS) of many genes and marks mostly muscular and neuronal tissues, while blood is the least affected. Recent data in DM1 skeletal muscles indicated that abnormalities in RNA metabolism also include global upregulation of circular RNAs (circRNAs). CircRNAs are a heterogeneous group considered splicing errors and by-products of canonical splicing. To elucidate whether circRNA dysregulation is an inherent feature of the myotonic environment, we perform their analysis in the frontal cortex and whole blood of DM1 and DM2 patients. We find a global elevation of circRNAs in both tissues, and its magnitude is neither correlated with the differences in their parental gene expression nor is associated with AAS published earlier. Aberrantly spliced cassette exons of linear transcripts affected in DM1 and DM2 are not among the circularized exons, which unique genomic features prerequisite back-splicing. However, the blueprint of the AAS of linear RNAs is found in a variety of circRNA isoforms. The heterogeneity of circRNAs also originates from the utilization of exonic and intronic cryptic donors/acceptors in back splice junctions, and intron-containing circRNAs are more characteristic of the blood. Overall, this study reveals circRNA dysregulation in various tissues from DM1 and DM2; however, their levels do not correlate with the AAS in linear RNAs, suggesting a potential independent regulatory mechanism underlying circRNA upregulation in myotonic dystrophy.
Collapse
Affiliation(s)
- Arvind Srinivasan
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dorota Magner
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland
| | - Piotr Kozłowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Department of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Arkadiusz Kajdasz
- Department of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
2
|
Grau-Bové X, Ruiz-Trillo I, Irimia M. Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol 2018; 19:135. [PMID: 30223879 PMCID: PMC6142364 DOI: 10.1186/s13059-018-1499-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022] Open
Abstract
Background Alternative splicing, particularly through intron retention and exon skipping, is a major layer of pre-translational regulation in eukaryotes. While intron retention is believed to be the most prevalent mode across non-animal eukaryotes, animals have unusually high rates of exon skipping. However, when and how this high prevalence of exon skipping evolved is unknown. Since exon skipping can greatly expand proteomes, answering these questions sheds light on the evolution of higher organismal complexity in metazoans. Results We used RNA-seq data to quantify exon skipping and intron retention frequencies across 65 eukaryotic species, with particular focus on early branching animals and unicellular holozoans. We found that only bilaterians have significantly increased their exon skipping frequencies compared to all other eukaryotic groups. Unlike in other eukaryotes, however, exon skipping in nearly all animals, including non-bilaterians, is strongly enriched for frame-preserving sequences, suggesting that exon skipping involvement in proteome expansion predated the increase in frequency. We also identified architectural features consistently associated with higher exon skipping rates within all studied eukaryotic genomes. Remarkably, these architectures became more prevalent during animal evolution, indicating co-evolution between genome architectures and exon skipping frequencies. Conclusion We suggest that the increase of exon skipping rates in animals followed a two-step process. First, exon skipping in early animals became enriched for frame-preserving events. Second, bilaterian ancestors dramatically increased their exon skipping frequencies, likely driven by the interplay between a shift in their genome architectures towards more exon definition and recruitment of frame-preserving exon skipping events to functionally diversify their cell-specific proteomes. Electronic supplementary material The online version of this article (10.1186/s13059-018-1499-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. .,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Catalonia, Spain.
| | - Manuel Irimia
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, 08002, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Glauser DA. The multiplicity of alternative splicing decisions in Caenorhabditis elegans is linked to specific intronic regulatory motifs and minisatellites. BMC Genomics 2014; 15:364. [PMID: 24884695 PMCID: PMC4039745 DOI: 10.1186/1471-2164-15-364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/15/2014] [Indexed: 11/28/2022] Open
Abstract
Background Alternative splicing diversifies the pool of messenger RNA molecules encoded by individual genes. This diversity is particularly high when multiple splicing decisions cause a combinatorial arrangement of several alternate exons. We know very little on how the multiple decisions occurring during the maturation of single transcripts are coordinated and whether specific sequence elements might be involved. Results Here, the Caenorhabditis elegans genome was surveyed in order to identify sequence elements that might play a specific role in the regulation of multiple splicing decisions. The introns flanking alternate exons in transcripts whose maturation involves multiple alternative splicing decisions were compared to those whose maturation involves a single decision. Fifty-eight penta-, hexa-, and hepta-meric elements, clustered in 17 groups, were significantly over-represented in genes subject to multiple alternative splicing decisions. Most of these motifs relate to known splicing regulatory elements and appear to be well conserved in the related species Caenorhabditis briggsae. The usage of specific motifs is not linked to the gene product function, but rather depends on the gene structure, since it is influenced by the distance separating the multiple splicing decision sites. Two of these motifs are part of the CeRep25B minisatellite, which is also over-represented at the vicinity of alternative splicing regions. Most of the remaining motifs are not part of repeated sequence elements, but tend to occur in specific heterologous pairs in genes subject to multiple alternative splicing decisions. Conclusions The existence of specific intronic sequence elements linked to multiple alternative splicing decisions is intriguing and suggests that these elements might have some specialized regulatory role during splicing. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-364) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dominique A Glauser
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
5
|
Abubucker S, McNulty SN, Rosa BA, Mitreva M. Identification and characterization of alternative splicing in parasitic nematode transcriptomes. Parasit Vectors 2014; 7:151. [PMID: 24690220 PMCID: PMC3997825 DOI: 10.1186/1756-3305-7-151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/14/2014] [Indexed: 12/05/2022] Open
Abstract
Background Alternative splicing (AS) of mRNA is a vital mechanism for enhancing genomic complexity in eukaryotes. Spliced isoforms of the same gene can have diverse molecular and biological functions and are often differentially expressed across various tissues, times, and conditions. Thus, AS has important implications in the study of parasitic nematodes with complex life cycles. Transcriptomic datasets are available from many species, but data must be revisited with splice-aware assembly protocols to facilitate the study of AS in helminthes. Methods We sequenced cDNA from the model worm Caenorhabditis elegans using 454/Roche technology for use as an experimental dataset. Reads were assembled with Newbler software, invoking the cDNA option. Several combinations of parameters were tested and assembled transcripts were verified by comparison with previously reported C. elegans genes and transcript isoforms and with Illumina RNAseq data. Results Thoughtful adjustment of program parameters increased the percentage of assembled transcripts that matched known C. elegans sequences, decreased mis-assembly rates (i.e., cis- and trans-chimeras), and improved the coverage of the geneset. The optimized protocol was used to update de novo transcriptome assemblies from nine parasitic nematode species, including important pathogens of humans and domestic animals. Our assemblies indicated AS rates in the range of 20-30%, typically with 2-3 transcripts per AS locus, depending on the species. Transcript isoforms from the nine species were translated and searched for similarity to known proteins and functional domains. Some 21 InterPro domains, including several involved in nucleotide and chromatin binding, were statistically correlated with AS genetic loci. In most cases, the Roche/454 data explored in this study are the only sequences available from the species in question; however, the recently published genome of the human hookworm Necator americanus provided an additional opportunity to validate our results. Conclusions Our optimized assembly parameters facilitated the first survey of AS among parasitic nematodes. The nine transcriptome assemblies, their protein translations, and basic annotations are available from Nematode.net as a resource for the research community. These should be useful for studies of specific genes and gene families of interest as well as for curating draft genome assemblies as they become available.
Collapse
Affiliation(s)
| | | | | | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St, Louis, MO 63108, USA.
| |
Collapse
|
6
|
Nagalski A, Irimia M, Szewczyk L, Ferran JL, Misztal K, Kuznicki J, Wisniewska MB. Postnatal isoform switch and protein localization of LEF1 and TCF7L2 transcription factors in cortical, thalamic, and mesencephalic regions of the adult mouse brain. Brain Struct Funct 2013; 218:1531-49. [PMID: 23152144 PMCID: PMC3825142 DOI: 10.1007/s00429-012-0474-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023]
Abstract
β-Catenin signaling, leading to the activation of lymphoid enhancer-binding factor 1/T cell factor (LEF1/TCF) transcription factors, plays a well-established role in transcription regulation during development and tissue homeostasis. In the adult organism, the activity of this pathway has been found in stem cell niches and postmitotic thalamic neurons. Recently, studies show that mutations in components of β-catenin signaling networks have been associated with several psychiatric disorders, indicating the involvement of β-catenin and LEF1/TCF proteins in the proper functioning of the brain. Here, we report a comprehensive analysis of LEF1/TCF protein localization and the expression profile of their isoforms in cortical, thalamic, and midbrain regions in mice. We detected LEF1 and TCF7L2 proteins in neurons of the thalamus and dorsal midbrain, i.e., subcortical regions specialized in the integration of diverse sources of sensory information. These neurons also exhibited nuclear localization of β-catenin, suggesting the involvement of β-catenin/LEF1/TCF7L2 in the regulation of gene expression in these regions. Analysis of alternative splicing and promoter usage identified brain-specific TCF7L2 isoforms and revealed a developmentally coordinated transition in the composition of LEF1 and TCF7L2 isoforms. In the case of TCF7L2, the typical brain isoforms lack the so-called C clamp; in addition, the dominant-negative isoforms are predominant in the embryonic thalamus but disappear postnatally. The present study provides a necessary framework to understand the role of LEF1/TCF factors in thalamic and midbrain development until adulthood and predicts that the regulatory role of these proteins in the adult brain is significantly different from their role in the embryonic brain or other non-neural tissues.
Collapse
Affiliation(s)
- A. Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - M. Irimia
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - L. Szewczyk
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - J. L. Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, E30071 Spain
| | - K. Misztal
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - J. Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - M. B. Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| |
Collapse
|
7
|
Maxwell CS, Antoshechkin I, Kurhanewicz N, Belsky JA, Baugh LR. Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans. Genome Res 2012; 22:1920-9. [PMID: 22539650 PMCID: PMC3460187 DOI: 10.1101/gr.133587.111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.
Collapse
Affiliation(s)
- Colin S Maxwell
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
8
|
Irimia M, Denuc A, Ferran JL, Pernaute B, Puelles L, Roy SW, Garcia-Fernàndez J, Marfany G. Evolutionarily conserved A-to-I editing increases protein stability of the alternative splicing factor Nova1. RNA Biol 2012; 9:12-21. [PMID: 22258141 DOI: 10.4161/rna.9.1.18387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The structural complexity of the vertebrate brain is mirrored by its unparalleled transcriptome complexity. In particular, two post-transcriptional processes, alternative splicing and RNA editing, greatly diversify brain transcriptomes. Here we report a close connection between these two processes: we show A-to-I RNA editing in Nova1, a key brain-specific regulator of alternative splicing. Nova1 editing levels increase during embryonic development in mouse and chicken brains and show significant variation across postnatal brain regions. Evolutionary conservation of both editing and editing-associated RNA secondary structure of the Nova1 mRNA for 300 million years attests to the functional importance of Nova1 editing. Using a combination of different assays in human HEK293T cell lines, we report a novel post-translational role for this RNA editing. Whereas functional assays showed no effect of RNA editing on the regulatory splicing activity of the encoded proteins, we found evidence that edited forms exhibit reduced proteasome targeting and increased protein half-life. In addition, we found evidence for similar regulation of protein half-life by an evolutionarily conserved alternative splicing event in Nova1. These results open new venues of research on the multi-level integration of gene expression by: (1) revealing the novel role of RNA editing in regulating protein stability, and (2) establishing protein stability as a new target of multifaceted regulation.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Irimia M, Maeso I, Burguera D, Hidalgo-Sánchez M, Puelles L, Roy SW, Garcia-Fernàndez J, Ferran JL. Contrasting 5' and 3' evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures. Genome Biol Evol 2011; 3:551-64. [PMID: 21680890 PMCID: PMC3140891 DOI: 10.1093/gbe/evr056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Organisms show striking differences in genome structure; however, the functional implications and fundamental forces that govern these differences remain obscure. The intron–exon organization of nuclear genes is involved in a particularly large variety of structures and functional roles. We performed a 22-species study of Meis/hth genes, intron-rich homeodomain-containing transcription factors involved in a wide range of developmental processes. Our study revealed three surprising results that suggest important and very different functions for Meis intron–exon structures. First, we find unexpected conservation across species of intron positions and lengths along most of the Meis locus. This contrasts with the high degree of structural divergence found in genome-wide studies and may attest to conserved regulatory elements residing within these conserved introns. Second, we find very different evolutionary histories for the 5′ and 3′ regions of the gene. The 5′-most 10 exons, which encode the highly conserved Meis domain and homeodomain, show striking conservation. By contrast, the 3′ of the gene, which encodes several domains implicated in transcriptional activation and response to cell signaling, shows a remarkably active evolutionary history, with diverse isoforms and frequent creation and loss of new exons and splice sites. This region-specific diversity suggests evolutionary “tinkering,” with alternative splicing allowing for more subtle regulation of protein function. Third, we find a large number of cases of convergent evolution in the 3′ region, including 1) parallel losses of ancestral coding sequence, 2) parallel gains of external and internal splice sites, and 3) recurrent truncation of C-terminal coding regions. These results attest to the importance of locus-specific splicing functions in differences in structural evolution across genes, as well as to commonalities of forces shaping the evolution of individual genes along different lineages.
Collapse
Affiliation(s)
- Manuel Irimia
- Department of Genetics, School of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sánchez-Guardado LÓ, Irimia M, Sánchez-Arrones L, Burguera D, Rodríguez-Gallardo L, Garcia-Fernández J, Puelles L, Ferran JL, Hidalgo-Sánchez M. Distinct and redundant expression and transcriptional diversity of MEIS gene paralogs during chicken development. Dev Dyn 2011; 240:1475-92. [PMID: 21465619 DOI: 10.1002/dvdy.22621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 01/20/2023] Open
|
11
|
Karp X, Hammell M, Ow MC, Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA (NEW YORK, N.Y.) 2011; 17:639-651. [PMID: 21343388 PMCID: PMC3062175 DOI: 10.1261/rna.2310111] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs after the second larval stage in response to environmental stimuli encountered during the first two larval stages. Dauer larvae are stress resistant and long lived, permitting survival in harsh conditions. When environmental conditions improve, dauer larvae re-enter development, and progress through two post-dauer larval stages to adulthood. Strikingly, all of these life history options (whether continuous or interrupted) involve an identical pattern and sequence of cell division and cell fates. To identify microRNAs with potential functions in buffering development in the context of C. elegans life history options, we used multiplex real-time PCR to assess the expression of 107 microRNAs throughout development in both continuous and interrupted life histories. We identified 17 microRNAs whose developmental profile of expression is affected by dauer life history and/or L1 diapause, compared to continuous development. Hence these microRNAs could function to regulate gene expression programs appropriate for different life history options in the developing worm.
Collapse
Affiliation(s)
- Xantha Karp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
12
|
Stepwise assembly of the Nova-regulated alternative splicing network in the vertebrate brain. Proc Natl Acad Sci U S A 2011; 108:5319-24. [PMID: 21389270 DOI: 10.1073/pnas.1012333108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel organismal structures in metazoans are often undergirded by complex gene regulatory networks; as such, understanding the emergence of new structures through evolution requires reconstructing the series of evolutionary steps leading to these underlying networks. Here, we reconstruct the step-by-step assembly of the vertebrate splicing network regulated by Nova, a splicing factor that modulates alternative splicing in the vertebrate central nervous system by binding to clusters of YCAY motifs on pre-RNA transcripts. Transfection of human HEK293T cells with Nova orthologs indicated vertebrate-like splicing regulatory activity in bilaterian invertebrates, thus Nova acquired the ability to bind YCAY clusters and perform vertebrate-like splicing modulation at least before the last common ancestor of bilaterians. In situ hybridization studies in several species showed that Nova expression became restricted to CNS later on, during chordate evolution. Finally, comparative genomics studies revealed a diverse history for Nova-regulated exons, with target exons arising through both de novo exon creation and acquisition of YCAY motifs by preexisting exons throughout chordate and vertebrate history. In addition, we find that tissue-specific Nova expression patterns emerged independently in other lineages, suggesting independent assembly of tissue-specific regulatory networks.
Collapse
|
13
|
Irimia M, Maeso I, Gunning PW, Garcia-Fernàndez J, Roy SW. Internal and external paralogy in the evolution of tropomyosin genes in metazoans. Mol Biol Evol 2010; 27:1504-17. [PMID: 20147436 DOI: 10.1093/molbev/msq018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nature contains a tremendous diversity of forms both at the organismal and genomic levels. This diversity motivates the twin central questions of molecular evolution: what are the molecular mechanisms of adaptation, and what are the functional consequences of genomic diversity. We report a 22-species comparative analysis of tropomyosin (PPM) genes, which exist in a variety of forms and are implicated in the emergence of a wealth of cellular functions, including the novel muscle functions integral to the functional diversification of bilateral animals. TPM genes encode either or both of long-form [284 amino acid (aa)] and short-form (approximately 248 aa) proteins. Consistent with a role of TPM diversification in the origins and radiation of bilaterians, we find evidence that the muscle-specific long-form protein arose in proximal bilaterian ancestors (the bilaterian 'stem'). Duplication of the 5' end of the gene led to alternative promoters encoding long- and short-form transcripts with distinct functions. This dual-function gene then underwent strikingly parallel evolution in different bilaterian lineages. In each case, recurrent tandem exon duplication and mutually exclusive alternative splicing of the duplicates, with further association between these alternatively spliced exons along the gene, led to long- and short-form-specific exons, allowing for gradual emergence of alternative "internal paralogs" within the same gene. We term these Mutually exclusively Alternatively spliced Tandemly duplicated Exon sets "MATEs". This emergence of internal paralogs in various bilaterians has employed every single TPM exon in at least one lineage and reaches striking levels of divergence with up to 77% of long- and short-form transcripts being transcribed from different genomic regions. Interestingly, in some lineages, these internal alternatively spliced paralogs have subsequently been "externalized" by full gene duplication and reciprocal retention/loss of the two transcript isoforms, a particularly clear case of evolution by subfunctionalization. This parallel evolution of TPM genes in diverse metazoans attests to common selective forces driving divergence of different gene transcripts and represents a striking case of emergence of evolutionary novelty by alternative splicing.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Kabat JL, Barberan-Soler S, Zahler AM. HRP-2, the Caenorhabditis elegans homolog of mammalian heterogeneous nuclear ribonucleoproteins Q and R, is an alternative splicing factor that binds to UCUAUC splicing regulatory elements. J Biol Chem 2009; 284:28490-7. [PMID: 19706616 DOI: 10.1074/jbc.m109.023101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.
Collapse
Affiliation(s)
- Jennifer L Kabat
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
15
|
Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates. PLoS One 2009; 4:e5800. [PMID: 19495418 PMCID: PMC2686173 DOI: 10.1371/journal.pone.0005800] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/12/2009] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5′ splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.
Collapse
|
16
|
Cutter AD, Dey A, Murray RL. Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 2009; 26:1199-234. [PMID: 19289596 DOI: 10.1093/molbev/msp048] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
17
|
Irimia M, Rukov JL, Roy SW, Vinther J, Garcia-Fernandez J. Quantitative regulation of alternative splicing in evolution and development. Bioessays 2009; 31:40-50. [DOI: 10.1002/bies.080092] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Barberan-Soler S, Zahler AM. Alternative splicing and the steady-state ratios of mRNA isoforms generated by it are under strong stabilizing selection in Caenorhabditis elegans. Mol Biol Evol 2008; 25:2431-7. [PMID: 18718918 DOI: 10.1093/molbev/msn181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolutionary studies indicate that a high proportion of alternative splicing (AS) events are species-specific; just 28% of minor-form alternatively spliced exons are conserved between mice and humans. We employed a splicing-sensitive microarray to study the evolution of allele-specific AS in nematodes. We compared splicing levels among five distinct Caenorhabditis elegans lines. Our results indicate that AS is less variable between natural isolates (NIs) from England, Hawaii, and Australia than when compared with mutation accumulation lines (6% vs. 21%, respectively, vary compared with N2). This suggests that strong stabilizing selection shapes the evolution of the ratios of isoforms generated by AS in C. elegans. When we analyzed some of the splicing changes between the NIs, we found examples of changes in both cis and trans that lead to alterations in gene-specific AS. This indicates that both these mechanisms for changing AS are employed along the path toward speciation in nematodes.
Collapse
Affiliation(s)
- Sergio Barberan-Soler
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, USA
| | | |
Collapse
|
19
|
Irimia M, Rukov JL, Penny D, Vinther J, Garcia-Fernandez J, Roy SW. Origin of introns by 'intronization' of exonic sequences. Trends Genet 2008; 24:378-81. [PMID: 18597887 DOI: 10.1016/j.tig.2008.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/24/2022]
Abstract
The mechanisms of spliceosomal intron creation have proved elusive. Here we describe a new mechanism: the recruitment of internal exonic sequences ('intronization') in Caenorhabditis species. The numbers of intronization events and introns gained by other mechanisms are similar, suggesting that intronization significantly contributes to recent intron creation in nematodes. Intronization is more common than the reverse process, loss of splicing of retained introns. Finally, these findings link alternative splicing with modern intron creation.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Hiller M, Szafranski K, Huse K, Backofen R, Platzer M. Selection against tandem splice sites affecting structured protein regions. BMC Evol Biol 2008; 8:89. [PMID: 18366714 PMCID: PMC2279118 DOI: 10.1186/1471-2148-8-89] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 03/21/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alternative selection of splice sites in tandem donors and acceptors is a major mode of alternative splicing. Here, we analyzed whether in-frame tandem sites leading to subtle mRNA insertions/deletions of 3, 6, or 9 nucleotides are under natural selection. RESULTS We found multiple lines of evidence that the human protein coding sequences are under selection against such in-frame tandem splice events, indicating that these events are often deleterious. The strength of selection is not homogeneous within the coding sequence as protein regions that fold into a fixed 3D structure (intrinsically ordered) are under stronger selection, especially against sites with a strong minor splice site. Investigating structures of functional protein domains, we found that tandem acceptors are preferentially located at the domain surface and outside structural elements such as helices and sheets. Using three-species comparisons, we estimate that more than half of all mutations that create NAGNAG acceptors in the coding region have been eliminated by selection. CONCLUSION We estimate that ~2,400 introns are under selection against possessing a tandem site.
Collapse
Affiliation(s)
- Michael Hiller
- Bioinformatics Group, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Barberan-Soler S, Zahler AM. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets. PLoS Genet 2008; 4:e1000001. [PMID: 18454200 PMCID: PMC2265522 DOI: 10.1371/journal.pgen.1000001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/15/2008] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation. Alternative splicing is a mechanism for generating more than one messenger RNA from a given gene. The alternative transcripts can encode different proteins that share some regions in common but have modified functions, thus increasing the number of proteins encoded by the genome. Alternative splicing can also lead to the production of mRNA isoforms that are then subject to degradation by the nonsense-mediated decay pathway, thus providing a mechanism to down-regulate gene expression without decreasing transcription. Examples of cell type-specific, hormone-responsive, and developmentally-regulated alternative splicing have been described. We decided to measure the extent of developmentally regulated alternative splicing in the nematode model organism Caenorhabditis elegans. We developed a DNA microarray that can measure the alternative splicing of 352 cassette exons simultaneously and used it to probe alternative splicing in RNA extracted from embryos, the four larval stages, and adults. We show that 18% of the alternatively spliced genes tested show >4-fold changes in alternative splicing during development. In addition, we show that one of the most regulated genes is itself a splicing factor, providing support for a model in which a cascade of alternative splicing regulation occurs during development.
Collapse
Affiliation(s)
- Sergio Barberan-Soler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan M. Zahler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Eukaryotes compensate for inefficient splicing by mechanisms that prevent the translation of mis-spliced or unspliced mRNAs. A recent report reveals widespread mis-splicing of RNA transcripts in eukaryotes, with mis-spliced RNA destroyed by nonsense-mediated mRNA decay. This striking inefficiency deepens the mystery of the proliferation and persistence of introns.
Collapse
Affiliation(s)
- Scott William Roy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, USA.
| | | |
Collapse
|
23
|
Ke S, Zhang XHF, Chasin LA. Positive selection acting on splicing motifs reflects compensatory evolution. Genome Res 2008; 18:533-43. [PMID: 18204002 DOI: 10.1101/gr.070268.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have used comparative genomics to characterize the evolutionary behavior of predicted splicing regulatory motifs. Using base substitution rates in intronic regions as a calibrator for neutral change, we found a strong avoidance of synonymous substitutions that disrupt predicted exonic splicing enhancers or create predicted exonic splicing silencers. These results attest to the functionality of the hexameric motif set used and suggest that they are subject to purifying selection. We also found that synonymous substitutions in constitutive exons tend to create exonic splicing enhancers and to disrupt exonic splicing silencers, implying positive selection for these splicing promoting events. We present evidence that this positive selection is the result of splicing-positive events compensating for splicing-negative events as well as for mutations that weaken splice-site sequences. Such compensatory events include nonsynonymous mutations, synonymous mutations, and mutations at splice sites. Compensation was also seen from the fact that orthologous exons tend to maintain the same number of predicted splicing motifs. Our data fit a splicing compensation model of exon evolution, in which selection for splicing-positive mutations takes place to counter the effect of an ongoing splicing-negative mutational process, with the exon as a whole being conserved as a unit of splicing. In the course of this analysis, we observed that synonymous positions in general are conserved relative to intronic sequences, suggesting that messenger RNA molecules are rich in sequence information for functions beyond protein coding and splicing.
Collapse
Affiliation(s)
- Shengdong Ke
- Department of Biological Sciences Columbia University New York, New York 10027, USA
| | | | | |
Collapse
|
24
|
Irimia M, Rukov JL, Penny D, Garcia-Fernandez J, Vinther J, Roy SW. Widespread evolutionary conservation of alternatively spliced exons in Caenorhabditis. Mol Biol Evol 2007; 25:375-82. [PMID: 18048400 DOI: 10.1093/molbev/msm262] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing (AS) contributes to increased transcriptome and proteome diversity in various eukaryotic lineages. Previous studies showed low levels of conservation of alternatively spliced (cassette) exons within mammals and within dipterans. We report a strikingly different pattern in Caenorhabditis nematodes-more than 92% of cassette exons from Caenorhabditis elegans are conserved in Caenorhabditis briggsae and/or Caenorhabditis remanei. High levels of conservation extend to minor-form exons (present in a minority of transcripts) and are particularly pronounced for exons showing complex patterns of splicing. The functionality of the vast majority of cassette exons is underscored by various other features. We suggest that differences in conservation between lineages reflect differences in levels of functionality and further suggest that these differences are due to differences in intron length and the strength of consensus boundaries across lineages. Finally, we demonstrate an inverse relationship between AS and gene duplication, suggesting that the latter may be primarily responsible for the emergence of new functional transcripts in nematodes.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Hughes AL, Friedman R. Alternative splicing, gene duplication and connectivity in the genetic interaction network of the nematode worm Caenorhabditis elegans. Genetica 2007; 134:181-6. [PMID: 18026854 DOI: 10.1007/s10709-007-9223-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 11/01/2007] [Indexed: 11/27/2022]
Abstract
We examined the relationship between gene duplication, alternative splicing, and connectedness in a predicted genetic interaction network using published data from the nematode worm Caenorhabditis elegans. Similar to previous results from mammals, genes belonging to families with only one member ("singletons") were significantly more likely to lack alternative splicing than were members of large multi-gene families. Genes belonging to multi-gene families lacking alternative splicing tended to have higher connectedness in the genetic interaction network than did genes in families that included one or more alternatively spliced members. Moreover, alternatively spliced genes were significantly more likely to interact with other alternatively spliced genes. These results support the hypothesis that certain key proteins with high degrees of network connectedness are subject to selection opposing the occurrence of alternatively spliced forms.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg., 700 Sumter St., Columbia, SC 29208, USA.
| | | |
Collapse
|
26
|
Irimia M, Rukov JL, Penny D, Roy SW. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evol Biol 2007; 7:188. [PMID: 17916237 PMCID: PMC2082043 DOI: 10.1186/1471-2148-7-188] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 10/04/2007] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.
Collapse
Affiliation(s)
- Manuel Irimia
- Allan Wilson Centre for Molecular Evolution and Ecology, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
27
|
Artamonova II, Gelfand MS. Comparative Genomics and Evolution of Alternative Splicing: The Pessimists' Science. Chem Rev 2007; 107:3407-30. [PMID: 17645315 DOI: 10.1021/cr068304c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irena I Artamonova
- Group of Bioinformatics, Vavilov Institute of General Genetics, RAS, Gubkina 3, Moscow 119991, Russia
| | | |
Collapse
|