1
|
Acharya A, Tripathi G, Bhat RAH. Structural and functional characterization of haemoglobin genes in Labeo catla: Insights into hypoxic adaptation and survival. Int J Biol Macromol 2024; 281:136235. [PMID: 39366609 DOI: 10.1016/j.ijbiomac.2024.136235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Haemoglobin (HB) protein comprises four subunits: two identical α-subunits (HBA) and two identical β-subunits (HBB), encoded by the HBA and HBB genes. In this investigation, 5'/3' RACE PCR (Rapid Amplification of cDNA Ends) was used to obtain complete coding sequences (CDSs) of both the genes from farmed Labeo catla. The resulting CDSs were 432 base pairs and 447 base pairs for HBA and HBB, respectively, corresponding to 143 and 148 amino acids. Phylogenetic analysis revealed close relationships with other cyprinids, with Labeo rohita being the closest relative. Functional analysis and protein structure prediction were conducted using bioinformatics tools. Expression profiling of both genes was checked in various tissues under control (C) and hypoxic (H) conditions. Notably, under hypoxia, HBA and HBB genes were significantly upregulated (P < 0.05) initially, followed by a return to normal expression levels. Similar trends were observed for Hif1α (Hypoxia-inducible factor one alpha) and EPO (Erythropoietin) genes. Additionally, haematological indices also significantly increased corresponding to the gene expressions. However, with the decrease in the expression of these genes an onset of mortality was observed in the hypoxia (H) treated groups. The results of the current study explored the role of haemoglobin genes in adaptation to the hypoxic condition.
Collapse
Affiliation(s)
- Arpit Acharya
- ICAR- Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India.
| | - Gayatri Tripathi
- ICAR- Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India.
| | | |
Collapse
|
2
|
Pu P, Niu Z, Ma M, Tang X, Chen Q. Convergent High O 2 Affinity but Distinct ATP-Mediated Allosteric Regulation of Hemoglobins in Oviparous and Viviparous Eremias Lizards from the Qinghai-Tibet Plateau. Animals (Basel) 2024; 14:1440. [PMID: 38791658 PMCID: PMC11117339 DOI: 10.3390/ani14101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The functional adaptation and underlying molecular mechanisms of hemoglobins (Hbs) have primarily concentrated on mammals and birds, with few reports on reptiles. This study aimed to investigate the convergent and species-specific high-altitude adaptation mechanisms of Hbs in two Eremias lizards from the Qinghai-Tibet Plateau. The Hbs of high-altitude E. argus and E. multiocellata were characterized by significantly high overall and intrinsic Hb-O2 affinity compared to their low-altitude populations. Despite the similarly low Cl- sensitivities, the Hbs of high-altitude E. argus exhibited higher ATP sensitivity and ATP-dependent Bohr effects than that of E. multiocellata, which could facilitate O2 unloading in respiring tissues. Eremias lizards Hbs exhibited similarly low temperature sensitivities and relatively high Bohr effects at lower temperatures, which could help to stably deliver and release O2 to cold extremities at low temperatures. The oxygenation properties of Hbs in high-altitude populations might be attributed to varying ratios of β2/β1 globin and substitutions on the β2-type globin. Notably, the Asn12Ala in lowland E. argus could cause localized destabilization of the E-helix in the tetrameric Hb by elimination of hydrogen bonds, thereby resulting in its lowest O2 affinity. This study provides a valuable reference for the high-altitude adaptation mechanisms of hemoglobins in reptiles.
Collapse
Affiliation(s)
- Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Ming Ma
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| |
Collapse
|
3
|
Zhao X, Huang Y, Bian C, You X, Zhang X, Chen J, Wang M, Hu C, Xu Y, Xu J, Shi Q. Whole genome sequencing of the fast-swimming Southern bluefin tuna ( Thunnus maccoyii). Front Genet 2022; 13:1020017. [PMID: 36406129 PMCID: PMC9670116 DOI: 10.3389/fgene.2022.1020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The economically important Southern bluefin tuna (Thunnus maccoyii) is a world-famous fast-swimming fish, but its genomic information is limited. Here, we performed whole genome sequencing and assembled a draft genome for Southern bluefin tuna, aiming to generate useful genetic data for comparative functional prediction. The final genome assembly is 806.54 Mb, with scaffold and contig N50 values of 3.31 Mb and 67.38 kb, respectively. Genome completeness was evaluated to be 95.8%. The assembled genome contained 23,403 protein-coding genes and 236.1 Mb of repeat sequences (accounting for 29.27% of the entire assembly). Comparative genomics analyses of this fast-swimming tuna revealed that it had more than twice as many hemoglobin genes (18) as other relatively slow-moving fishes (such as seahorse, sunfish, and tongue sole). These hemoglobin genes are mainly localized in two big clusters (termed as "MNˮ and "LAˮ respectively), which is consistent with other reported fishes. However, Thr39 of beta-hemoglobin in the MN cluster, conserved in other fishes, was mutated as cysteine in tunas including the Southern bluefin tuna. Since hemoglobins are reported to transport oxygen efficiently for aerobic respiration, our genomic data suggest that both high copy numbers of hemoglobin genes and an adjusted function of the beta-hemoglobin may support the fast-swimming activity of tunas. In summary, we produced a primary genome assembly and predicted hemoglobin-related roles for the fast-swimming Southern bluefin tuna.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- Aquatic Breeding Center, BGI Marine, Shenzhen, China
| | - Xinhui Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- Aquatic Breeding Center, BGI Marine, Shenzhen, China
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Min Wang
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Cancan Hu
- Aquatic Breeding Center, BGI Marine, Shenzhen, China
| | - Yun Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- Aquatic Breeding Center, BGI Marine, Shenzhen, China
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- Aquatic Breeding Center, BGI Marine, Shenzhen, China
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- Aquatic Breeding Center, BGI Marine, Shenzhen, China
| |
Collapse
|
4
|
Bautista NM, Petersen EE, Jensen RJ, Natarajan C, Storz JF, Crossley DA, Fago A. Changes in hemoglobin function and isoform expression during embryonic development in the American alligator, Alligator mississippiensis. Am J Physiol Regul Integr Comp Physiol 2021; 321:R869-R878. [PMID: 34704846 DOI: 10.1152/ajpregu.00047.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.
Collapse
Affiliation(s)
| | | | | | | | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
5
|
The rise and fall of globins in the amphibia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100759. [PMID: 33202310 DOI: 10.1016/j.cbd.2020.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
The globin gene repertoire of gnathostome vertebrates is dictated by differential retention and loss of nine paralogous genes: androglobin, neuroglobin, globin X, cytoglobin, globin Y, myoglobin, globin E, and the α- and β-globins. We report the globin gene repertoire of three orders of modern amphibians: Anura, Caudata, and Gymnophiona. Combining phylogenetic and conserved synteny analysis, we show that myoglobin and globin E were lost only in the Batrachia clade, but retained in Gymnophiona. The major amphibian groups also retained different paralogous copies of globin X. None of the amphibian presented αD-globin gene. Nevertheless, two clades of β-globins are present in all amphibians, indicating that the amphibian ancestor possessed two paralogous proto β-globins. We also show that orthologs of the gene coding for the monomeric hemoglobin found in the heart of Rana catesbeiana are present in Neobatrachia and Pelobatoidea species we analyzed. We suggest that these genes might perform myoglobin- and globin E-related functions. We conclude that the repertoire of globin genes in amphibians is dictated by both retention and loss of the paralogous genes cited above and the rise of a new globin gene through co-option of an α-globin, possibly facilitated by a prior event of transposition.
Collapse
|
6
|
Lei Y, Yang L, Jiang H, Chen J, Sun N, Lv W, He S. Recent genome duplications facilitate the phenotypic diversity of Hb repertoire in the Cyprinidae. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1149-1164. [PMID: 33051703 DOI: 10.1007/s11427-020-1809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Whole-genome duplications (WGDs) are an important contributor to phenotypic innovations in evolutionary history. The diversity of blood oxygen transport traits is the perfect reflection of physiological versatility for evolutionary success among vertebrates. In this study, the evolutionary changes of hemoglobin (Hb) repertoire driven by the recent genome duplications were detected in representative Cyprinidae fish, including eight diploid and four tetraploid species. Comparative genomic analysis revealed a substantial variation in both membership composition and intragenomic organization of Hb genes in these species. Phylogenetic reconstruction analyses were conducted to characterize the evolutionary history of these genes. Data were integrated with the expression profiles of the genes during ontogeny. Our results indicated that genome duplications facilitated the phenotypic diversity of the Hb gene family; each was associated with species-specific changes in gene content via gene loss and fusion after genome duplications. This led to repeated evolutionary transitions in the ontogenic regulation of Hb gene expression. Our results revealed that genome duplications helped to generate phenotypic changes in Cyprinidae Hb systems.
Collapse
Affiliation(s)
- Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
7
|
Pillai AS, Chandler SA, Liu Y, Signore AV, Cortez-Romero CR, Benesch JLP, Laganowsky A, Storz JF, Hochberg GKA, Thornton JW. Origin of complexity in haemoglobin evolution. Nature 2020; 581:480-485. [PMID: 32461643 PMCID: PMC8259614 DOI: 10.1038/s41586-020-2292-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/07/2020] [Indexed: 02/02/2023]
Abstract
Most proteins associate into multimeric complexes with specific architectures1,2, which often have functional properties such as cooperative ligand binding or allosteric regulation3. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous α- and β-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical 'missing link' through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and β-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein's structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.
Collapse
Affiliation(s)
- Arvind S Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Shane A Chandler
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Yang Liu
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Anthony V Signore
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | | | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Georg K A Hochberg
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Fago A, Natarajan C, Pettinati M, Hoffmann FG, Wang T, Weber RE, Drusin SI, Issoglio F, Martí MA, Estrin D, Storz JF. Structure and function of crocodilian hemoglobins and allosteric regulation by chloride, ATP, and CO 2. Am J Physiol Regul Integr Comp Physiol 2020; 318:R657-R667. [PMID: 32022587 DOI: 10.1152/ajpregu.00342.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO2. Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and β-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO2, which would permit effective O2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O2-affinities, there is considerable variation in sensitivity to Cl- ions and ATP, which appears to be at least partly attributable to variation in the extent of NH2-terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Martín Pettinati
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, Mississippi
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Salvador I Drusin
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Issoglio
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
9
|
Hoffmann FG, Vandewege MW, Storz JF, Opazo JC. Gene Turnover and Diversification of the α- and β-Globin Gene Families in Sauropsid Vertebrates. Genome Biol Evol 2018; 10:344-358. [PMID: 29340581 PMCID: PMC5786229 DOI: 10.1093/gbe/evy001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 11/24/2022] Open
Abstract
The genes that encode the α- and β-chain subunits of vertebrate hemoglobin have served as a model system for elucidating general principles of gene family evolution, but little is known about patterns of evolution in amniotes other than mammals and birds. Here, we report a comparative genomic analysis of the α- and β-globin gene clusters in sauropsids (archosaurs and nonavian reptiles). The objectives were to characterize changes in the size and membership composition of the α- and β-globin gene families within and among the major sauropsid lineages, to reconstruct the evolutionary history of the sauropsid α- and β-globin genes, to resolve orthologous relationships, and to reconstruct evolutionary changes in the developmental regulation of gene expression. Our comparisons revealed contrasting patterns of evolution in the unlinked α- and β-globin gene clusters. In the α-globin gene cluster, which has remained in the ancestral chromosomal location, evolutionary changes in gene content are attributable to the differential retention of paralogous gene copies that were present in the common ancestor of tetrapods. In the β-globin gene cluster, which was translocated to a new chromosomal location, evolutionary changes in gene content are attributable to differential gene gains (via lineage-specific duplication events) and gene losses (via lineage-specific deletions and inactivations). Consequently, all major groups of amniotes possess unique repertoires of embryonic and postnatally expressed β-type globin genes that diversified independently in each lineage. These independently derived β-type globins descend from a pair of tandemly linked paralogs in the most recent common ancestor of sauropsids.
Collapse
Affiliation(s)
- Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | | | - Jay F Storz
- School of Biological Sciences, University of Nebraska
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
10
|
Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc Natl Acad Sci U S A 2018; 115:1865-1870. [PMID: 29432191 DOI: 10.1073/pnas.1720487115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb-O2 affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb-O2 affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb-O2 affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb-O2 affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species.
Collapse
|
11
|
Kumar A, Natarajan C, Moriyama H, Witt CC, Weber RE, Fago A, Storz JF. Stability-Mediated Epistasis Restricts Accessible Mutational Pathways in the Functional Evolution of Avian Hemoglobin. Mol Biol Evol 2017; 34:1240-1251. [PMID: 28201714 PMCID: PMC5400398 DOI: 10.1093/molbev/msx085] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
If the fitness effects of amino acid mutations are conditional on genetic background, then mutations can have different effects depending on the sequential order in which they occur during evolutionary transitions in protein function. A key question concerns the fraction of possible mutational pathways connecting alternative functional states that involve transient reductions in fitness. Here we examine the functional effects of multiple amino acid substitutions that contributed to an evolutionary transition in the oxygenation properties of avian hemoglobin (Hb). The set of causative changes included mutations at intradimer interfaces of the Hb tetramer. Replacements at such sites may be especially likely to have epistatic effects on Hb function since residues at intersubunit interfaces are enmeshed in networks of salt bridges and hydrogen bonds between like and unlike subunits; mutational reconfigurations of these atomic contacts can affect allosteric transitions in quaternary structure and the propensity for tetramer-dimer dissociation. We used ancestral protein resurrection in conjunction with a combinatorial protein engineering approach to synthesize genotypes representing the complete set of mutational intermediates in all possible forward pathways that connect functionally distinct ancestral and descendent genotypes. The experiments revealed that 1/2 of all possible forward pathways included mutational intermediates with aberrant functional properties because particular combinations of mutations promoted tetramer-dimer dissociation. The subset of mutational pathways with unstable intermediates may be selectively inaccessible, representing evolutionary roads not taken. The experimental results also demonstrate how epistasis for particular functional properties of proteins may be mediated indirectly by mutational effects on quaternary structural stability.
Collapse
Affiliation(s)
- Amit Kumar
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| | | | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Christopher C. Witt
- Department of Biology, University of New Mexico, Albuquerque, NM
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM
| | - Roy E. Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| |
Collapse
|
12
|
Storz JF. Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport. Physiology (Bethesda) 2017; 31:223-32. [PMID: 27053736 DOI: 10.1152/physiol.00060.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional properties as well as the developmental timing of expression. For example, the subfamilies of genes that encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different developmental stages. In some vertebrate taxa, functional differentiation between co-expressed Hb isoforms may also contribute to physiologically important divisions of labor.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
13
|
Storz JF. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J Exp Biol 2016; 219:3190-3203. [PMID: 27802149 PMCID: PMC5091379 DOI: 10.1242/jeb.127134] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
14
|
Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Muñoz-Fuentes V, Green AJ, Kopuchian C, Tubaro PL, Alza L, Bulgarella M, Smith MM, Wilson RE, Fago A, McCracken KG, Storz JF. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level. PLoS Genet 2015; 11:e1005681. [PMID: 26637114 PMCID: PMC4670201 DOI: 10.1371/journal.pgen.1005681] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level. The convergent evolution of similar traits in different species could be due to repeated changes at the genetic level or different changes that produce the same phenotypic effect. To investigate the extent to which convergence in phenotype is caused by repeated mutations, we investigated the molecular basis of convergent changes in the oxygenation properties of hemoglobin (Hb) in eight pairs of high- and low-altitude waterfowl taxa from the Andes. The results revealed that convergent increases in Hb-O2 affinity in highland taxa involved a combination of unique and repeated amino acid replacements. However, convergent changes in Hb function generally did not involve parallel substitutions, indicating that repeatability in the evolution of protein function does not require repeatability at the sequence level.
Collapse
Affiliation(s)
- Chandrasekhar Natarajan
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Joana Projecto-Garcia
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Roy E. Weber
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Violeta Muñoz-Fuentes
- Estación Biológica de Doñana-CSIC, Sevilla, Spain
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | | | - Cecilia Kopuchian
- Centro de Ecología Aplicada del Litoral (CECOAL), Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Corrientes, Argentina
| | - Pablo L. Tubaro
- División Ornitología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Luis Alza
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Mariana Bulgarella
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Matthew M. Smith
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Robert E. Wilson
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Angela Fago
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Kevin G. McCracken
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, Florida, United States of America
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
15
|
Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens. Proc Natl Acad Sci U S A 2015; 112:13958-63. [PMID: 26460028 DOI: 10.1073/pnas.1507300112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A key question in evolutionary genetics is why certain mutations or certain types of mutation make disproportionate contributions to adaptive phenotypic evolution. In principle, the preferential fixation of particular mutations could stem directly from variation in the underlying rate of mutation to function-altering alleles. However, the influence of mutation bias on the genetic architecture of phenotypic evolution is difficult to evaluate because data on rates of mutation to function-altering alleles are seldom available. Here, we report the discovery that a single point mutation at a highly mutable site in the β(A)-globin gene has contributed to an evolutionary change in hemoglobin (Hb) function in high-altitude Andean house wrens (Troglodytes aedon). Results of experiments on native Hb variants and engineered, recombinant Hb mutants demonstrate that a nonsynonymous mutation at a CpG dinucleotide in the β(A)-globin gene is responsible for an evolved difference in Hb-O2 affinity between high- and low-altitude house wren populations. Moreover, patterns of genomic differentiation between high- and low-altitude populations suggest that altitudinal differentiation in allele frequencies at the causal amino acid polymorphism reflects a history of spatially varying selection. The experimental results highlight the influence of mutation rate on the genetic basis of phenotypic evolution by demonstrating that a large-effect allele at a highly mutable CpG site has promoted physiological differentiation in blood O2 transport capacity between house wren populations that are native to different elevations.
Collapse
|
16
|
Storz JF, Natarajan C, Moriyama H, Hoffmann FG, Wang T, Fago A, Malte H, Overgaard J, Weber RE. Oxygenation properties and isoform diversity of snake hemoglobins. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1178-91. [PMID: 26354849 DOI: 10.1152/ajpregu.00327.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | | | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Moleirinho A, Lopes AM, Seixas S, Morales-Hojas R, Prata MJ, Amorim A. Distinctive patterns of evolution of the δ-globin gene (HBD) in primates. PLoS One 2015; 10:e0123365. [PMID: 25853817 PMCID: PMC4390247 DOI: 10.1371/journal.pone.0123365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
In most vertebrates, hemoglobin (Hb) is a heterotetramer composed of two dissimilar globin chains, which change during development according to the patterns of expression of α- and β-globin family members. In placental mammals, the β-globin cluster includes three early-expressed genes, ε(HBE)-γ(HBG)-ψβ(HBBP1), and the late expressed genes, δ (HBD) and β (HBB). While HBB encodes the major adult β-globin chain, HBD is weakly expressed or totally silent. Paradoxically, in human populations HBD shows high levels of conservation typical of genes under strong evolutionary constraints, possibly due to a regulatory role in the fetal-to-adult switch unique of Anthropoid primates. In this study, we have performed a comprehensive phylogenetic and comparative analysis of the two adult β-like globin genes in a set of diverse mammalian taxa, focusing on the evolution and functional divergence of HBD in primates. Our analysis revealed that anthropoids are an exception to a general pattern of concerted evolution in placental mammals, showing a high level of sequence conservation at HBD, less frequent and shorter gene conversion events. Moreover, this lineage is unique in the retention of a functional GATA-1 motif, known to be involved in the control of the developmental expression of the β-like globin genes. We further show that not only the mode but also the rate of evolution of the δ-globin gene in higher primates are strictly associated with the fetal/adult β-cluster developmental switch. To gain further insight into the possible functional constraints that have been shaping the evolutionary history of HBD in primates, we calculated dN/dS (ω) ratios under alternative models of gene evolution. Although our results indicate that HBD might have experienced different selective pressures throughout primate evolution, as shown by different ω values between apes and Old World Monkeys + New World Monkeys (0.06 versus 0.43, respectively), these estimates corroborated a constrained evolution for HBD in Anthropoid lineages, which is unlikely to be related to protein function. Collectively, these findings suggest that sequence change at the δ-globin gene has been under strong selective constraints over 65 Myr of primate evolution, likely due to a regulatory role in ontogenic switches of gene expression.
Collapse
Affiliation(s)
- Ana Moleirinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- Genetics and Genomics Group, The Pirbright Institute, Compton Laboratory, Compton, Berkshire, United Kingdom
| | - Maria J. Prata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Opazo JC, Hoffmann FG, Natarajan C, Witt CC, Berenbrink M, Storz JF. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol Biol Evol 2015; 32:871-87. [PMID: 25502940 PMCID: PMC4379397 DOI: 10.1093/molbev/msu341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.
Collapse
Affiliation(s)
- Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | | | - Christopher C Witt
- Department of Biology, University of New Mexico Museum of Southwestern Biology, University of New Mexico
| | - Michael Berenbrink
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| |
Collapse
|
19
|
Iarovaia OV, Ioudinkova ES, Petrova NV, Dolgushin KV, Kovina AV, Nefedochkina AV, Vassetzky YS, Razin SV. Evolution of α- and β-globin genes and their regulatory systems in light of the hypothesis of domain organization of the genome. BIOCHEMISTRY (MOSCOW) 2014; 79:1141-50. [PMID: 25539999 DOI: 10.1134/s0006297914110017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The α- and β-globin gene domains are a traditional model for study of the domain organization of the eucaryotic genome because these genes encode hemoglobin, a physiologically important protein. The α-globin and β-globin gene domains are organized in completely different ways, while the expression of globin genes is tightly coordinated, which makes it extremely interesting to study the origin of these genes and the evolution of their regulatory systems. In this review, the organization of the α- and β-globin gene domains and their genomic environment in different taxonomic groups are comparatively analyzed. A new hypothesis of possible evolutionary pathways for segregated α- and β-globin gene domains of warm-blooded animals is proposed.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cheviron ZA, Natarajan C, Projecto-Garcia J, Eddy DK, Jones J, Carling MD, Witt CC, Moriyama H, Weber RE, Fago A, Storz JF. Integrating evolutionary and functional tests of adaptive hypotheses: a case study of altitudinal differentiation in hemoglobin function in an Andean Sparrow, Zonotrichia capensis. Mol Biol Evol 2014; 31:2948-62. [PMID: 25135942 PMCID: PMC4209134 DOI: 10.1093/molbev/msu234] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined by the prevailing partial pressure of atmospheric O2, the efficacy of pulmonary O2 transfer, and internal metabolic demands. Consequently, genetic variation in the oxygenation properties of hemoglobin (Hb) may be subject to spatially varying selection in species with broad elevational distributions. Here we report the results of a combined functional and evolutionary analysis of Hb polymorphism in the rufous-collared sparrow (Zonotrichia capensis), a species that is continuously distributed across a steep elevational gradient on the Pacific slope of the Peruvian Andes. We integrated a population genomic analysis that included all postnatally expressed Hb genes with functional studies of naturally occurring Hb variants, as well as recombinant Hb (rHb) mutants that were engineered through site-directed mutagenesis. We identified three clinally varying amino acid polymorphisms: Two in the α(A)-globin gene, which encodes the α-chain subunits of the major HbA isoform, and one in the α(D)-globin gene, which encodes the α-chain subunits of the minor HbD isoform. We then constructed and experimentally tested single- and double-mutant rHbs representing each of the alternative α(A)-globin genotypes that predominate at different elevations. Although the locus-specific patterns of altitudinal differentiation suggested a history of spatially varying selection acting on Hb polymorphism, the experimental tests demonstrated that the observed amino acid mutations have no discernible effect on respiratory properties of the HbA or HbD isoforms. These results highlight the importance of experimentally validating the hypothesized effects of genetic changes in protein function to avoid the pitfalls of adaptive storytelling.
Collapse
Affiliation(s)
- Zachary A Cheviron
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign School of Biological Sciences, University of Nebraska, Lincoln
| | | | | | - Douglas K Eddy
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign
| | - Jennifer Jones
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign
| | | | - Christopher C Witt
- Department of Biology, University of New Mexico Museum of Southwestern Biology, University of New Mexico
| | | | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| |
Collapse
|
21
|
Burmester T, Hankeln T. Function and evolution of vertebrate globins. Acta Physiol (Oxf) 2014; 211:501-14. [PMID: 24811692 DOI: 10.1111/apha.12312] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Globins are haem-proteins that bind O2 and thus play an important role in the animal's respiration and oxidative energy production. However, globins may also have other functions such as the decomposition or production of NO, the detoxification of reactive oxygen species or intracellular signalling. In addition to the well-investigated haemoglobins and myoglobins, genome sequence analyses have led to the identification of six further globin types in vertebrates: androglobin, cytoglobin, globin E, globin X, globin Y and neuroglobin. Here, we review the present state of knowledge on the functions, the taxonomic distribution and evolution of vertebrate globins, drawing conclusions about the functional changes underlying present-day globin diversity.
Collapse
Affiliation(s)
- T. Burmester
- Institute of Zoology and Zoological Museum; University of Hamburg; Hamburg Germany
| | - T. Hankeln
- Institute of Molecular Genetics; Johannes Gutenberg-University Mainz; Mainz Germany
| |
Collapse
|
22
|
Gaudry MJ, Storz JF, Butts GT, Campbell KL, Hoffmann FG. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals. Genome Biol Evol 2014; 6:1219-34. [PMID: 24814285 PMCID: PMC4041002 DOI: 10.1093/gbe/evu097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/13/2022] Open
Abstract
The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| | - Gary Tyler Butts
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State UniversityInstitute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| |
Collapse
|
23
|
Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents. Heredity (Edinb) 2014; 113:64-73. [PMID: 24595364 DOI: 10.1038/hdy.2014.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 01/13/2023] Open
Abstract
Gene duplication plays an important role in the origin of evolutionary novelties, but the mechanisms responsible for the retention and functional divergence of the duplicated copy are not fully understood. The α-globin genes provide an example of a gene family with different numbers of gene duplicates among rodents. Whereas Rattus and Peromyscus each have three adult α-globin genes (HBA-T1, HBA-T2 and HBA-T3), Mus has only two copies. High rates of amino acid evolution in the independently derived HBA-T3 genes of Peromyscus and Rattus have been attributed to positive selection. Using RACE PCR, reverse transcription-PCR (RT-PCR) and RNA-seq, we show that another rodent, the bank vole Clethrionomys glareolus, possesses three transcriptionally active α-globin genes. The bank vole HBA-T3 gene is distinguished from each HBA-T1 and HBA-T2 by 20 amino acids and is transcribed 23- and 4-fold lower than HBA-T1 and HBA-T2, respectively. Polypeptides corresponding to all three genes are detected by electrophoresis, demonstrating that the translated products of HBA-T3 are present in adult erythrocytes. Patterns of codon substitution and the presence of low-frequency null alleles suggest a postduplication relaxation of purifying selection on bank vole HBA-T3.
Collapse
|
24
|
Feng J, Liu S, Wang X, Wang R, Zhang J, Jiang Y, Li C, Kaltenboeck L, Li J, Liu Z. Channel catfish hemoglobin genes: Identification, phylogenetic and syntenic analysis, and specific induction in response to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 9:11-22. [DOI: 10.1016/j.cbd.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 01/28/2023]
|
25
|
Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc Natl Acad Sci U S A 2013; 110:20669-74. [PMID: 24297909 DOI: 10.1073/pnas.1315456110] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that fly at high altitude) face the physiological challenge of jointly optimizing blood-O2 affinity for O2 loading in the pulmonary circulation and O2 unloading in the systemic circulation. At high altitude, this challenge is especially acute for small endotherms like hummingbirds that have exceedingly high mass-specific metabolic rates. Here we report an experimental analysis of hemoglobin (Hb) function in South American hummingbirds that revealed a positive correlation between Hb-O2 affinity and native elevation. Protein engineering experiments and ancestral-state reconstructions revealed that this correlation is attributable to derived increases in Hb-O2 affinity in highland lineages, as well as derived reductions in Hb-O2 affinity in lowland lineages. Site-directed mutagenesis experiments demonstrated that repeated evolutionary transitions in biochemical phenotype are mainly attributable to repeated amino acid replacements at two epistatically interacting sites that alter the allosteric regulation of Hb-O2 affinity. These results demonstrate that repeated changes in biochemical phenotype involve parallelism at the molecular level, and that mutations with indirect, second-order effects on Hb allostery play key roles in biochemical adaptation.
Collapse
|
26
|
Damsgaard C, Storz JF, Hoffmann FG, Fago A. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta. Am J Physiol Regul Integr Comp Physiol 2013; 305:R961-7. [PMID: 23986362 PMCID: PMC3798770 DOI: 10.1152/ajpregu.00284.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023]
Abstract
When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia.
Collapse
|
27
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Grispo MT, Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Storz JF. Gene duplication and the evolution of hemoglobin isoform differentiation in birds. J Biol Chem 2012; 287:37647-58. [PMID: 22962007 PMCID: PMC3488042 DOI: 10.1074/jbc.m112.375600] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/06/2012] [Indexed: 11/06/2022] Open
Abstract
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.
Collapse
MESH Headings
- Algorithms
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Binding, Competitive
- Birds/blood
- Birds/classification
- Birds/genetics
- Cloning, Molecular
- Evolution, Molecular
- Gene Duplication
- Genetic Variation
- Hemoglobin A/chemistry
- Hemoglobin A/genetics
- Hemoglobin A/metabolism
- Hemoglobins/chemistry
- Hemoglobins/genetics
- Hemoglobins/metabolism
- Hemoglobins, Abnormal/chemistry
- Hemoglobins, Abnormal/genetics
- Hemoglobins, Abnormal/metabolism
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Oxygen/chemistry
- Oxygen/metabolism
- Protein Binding
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Michael T. Grispo
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| | | | - Joana Projecto-Garcia
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| | - Hideaki Moriyama
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| | - Roy E. Weber
- Zoophysiology, Institute for Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jay F. Storz
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| |
Collapse
|
29
|
Storz JF, Hoffmann FG, Opazo JC, Sanger TJ, Moriyama H. Developmental regulation of hemoglobin synthesis in the green anole lizard Anolis carolinensis. ACTA ACUST UNITED AC 2011; 214:575-81. [PMID: 21270305 DOI: 10.1242/jeb.050443] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tetrapod vertebrates possess multiple α- and β-like globin genes that are ontogenetically regulated, such that functionally distinct hemoglobin (Hb) isoforms are synthesized during different stages of development. The α- and β-like globin genes of amphibians, birds and mammals are differentially expressed during embryonic development and postnatal life, but little is known about the developmental regulation of globin gene expression in non-avian reptiles. Here we report an investigation into the developmental regulation of Hb synthesis in the green anole lizard Anolis carolinensis. We tested two hypotheses derived from comparative genomic studies of the globin gene clusters in tetrapod vertebrates. First, we tested whether the product of the Anolis α(D)-globin gene is incorporated into embryonic Hb, thereby performing the role that would normally be performed by the embyronic α(E)-globin gene (which has been deleted from the green anole genome). Second, we tested whether two 'lizard-specific' β-globin paralogs have independently evolved a division of labor between an early-expressed embryonic gene and a later-expressed adult gene. Results of a proteomic analysis revealed that α- and β-like globin genes of the anole are differentially expressed during embryonic development. However, the same repertoire of α- and β-chain Hb isoforms was expressed during all stages of development and postnatal life, and the ontogenetic shifts in isoform composition were relatively subtle. In contrast to the pattern that has been documented in other tetrapod vertebrates, it appears that the developmental regulation of Hb synthesis in the green anole lizard does not involve discrete, stage-specific switches in gene activation and gene silencing.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | | | | | |
Collapse
|
30
|
Storz JF, Opazo JC, Hoffmann FG. Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life 2011; 63:313-22. [PMID: 21557448 PMCID: PMC4399706 DOI: 10.1002/iub.482] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/30/2011] [Indexed: 11/11/2022]
Abstract
Phylogenetic reconstructions provide a means of inferring the branching relationships among members of multigene families that have diversified via successive rounds of gene duplication and divergence. Such reconstructions can illuminate the pathways by which particular expression patterns and protein functions evolved. For example, phylogenetic analyses can reveal cases in which similar expression patterns or functional properties evolved independently in different lineages, either through convergence, parallelism, or evolutionary reversals. The purpose of this article is to provide a robust phylogenetic framework for interpreting experimental data and for generating hypotheses about the functional evolution of globin proteins in chordate animals. To do this, we present a consensus phylogeny of the chordate globin gene superfamily. We document the relative roles of gene duplication and whole-genome duplication in fueling the functional diversification of vertebrate globins, and we unravel patterns of shared ancestry among globin genes from representatives of the three chordate subphyla (Craniata, Urochordata, and Cephalochordata). Our results demonstrate the value of integrating phylogenetic analyses with genomic analyses of conserved synteny to infer the duplicative origins and evolutionary histories of globin genes. We also discuss a number of case studies that illustrate the importance of phylogenetic information when making inferences about the evolution of globin gene expression and protein function. Finally, we discuss why the globin gene superfamily presents special challenges for phylogenetic analysis, and we describe methodological approaches that can be used to meet those challenges.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE.
| | | | | |
Collapse
|
31
|
Rana MS, Riggs AF. Indefinite noncooperative self-association of chicken deoxy hemoglobin D. Proteins 2011; 79:1499-512. [PMID: 21337627 DOI: 10.1002/prot.22978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/04/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022]
Abstract
The minor tetrameric hemoglobin (Hb), Hb D, of chicken red blood cells self-associates upon deoxygenation. This self-association enhances the cooperativity of oxygen binding. The maximal Hill coefficient is greater than 4 at high Hb concentrations. Previous measurements at low Hb concentrations were consistent with a monomer-to-dimer equilibrium and an association constant of ∼1.3-1.6 × 10(4) M(-1). Here, the Hb tetramer is considered as the monomer. However, new results indicate that the association extends beyond the dimer. We show by combination of Hb oligomer modeling and sedimentation velocity analyses that the data can be well described by an indefinite noncooperative or isodesmic association model. In this model, the deoxy Hb D associates noncooperatively to give a linear oligomeric chain with an equilibrium association constant of 1.42 × 10(4) M(-1) at 20°C for each step. The data are also well described by a monomer-dimer-tetramer equilibrium model with monomer-to-dimer and dimer-to-tetramer association constants of 1.87 and 1.03 × 10(4) M(-1) at 20°C, respectively. A hybrid recombinant Hb D was prepared with recombinant α(D)-globin and native β-globin to give a Hb D tetramer (α(2)(D)β(2)). This rHb D undergoes decreased deoxygenation-dependent self-association compared with the native Hb D. Residue glutamate 138 has previously been proposed to influence intertetramer interactions. Our results with recombinant Hb D show that Glu138 plays no role in deoxy Hb D intertetramer interactions.
Collapse
Affiliation(s)
- Mitra S Rana
- Section of Neurobiology, School of Biological Sciences, University of Texas, Austin, Texas 78712-0252, USA
| | | |
Collapse
|
32
|
Patel VS, Ezaz T, Deakin JE, Graves JAM. Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution. Chromosome Res 2010; 18:897-907. [PMID: 21116705 DOI: 10.1007/s10577-010-9164-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.
Collapse
Affiliation(s)
- Vidushi S Patel
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
33
|
Quinn NL, Boroevich KA, Lubieniecki KP, Chow W, Davidson EA, Phillips RB, Koop BF, Davidson WS. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire. BMC Genomics 2010; 11:539. [PMID: 20923558 PMCID: PMC3091688 DOI: 10.1186/1471-2164-11-539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/05/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. RESULTS We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. CONCLUSIONS We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr β hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters.Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank GQ898924; BACs S0055H05 and S0014B03 (fps1046): GenBank GQ898925.
Collapse
Affiliation(s)
- Nicole L Quinn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Keith A Boroevich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Krzysztof P Lubieniecki
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - William Chow
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Evelyn A Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ruth B Phillips
- Department of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
34
|
McCracken KG, Barger CP, Sorenson MD. Phylogenetic and structural analysis of the HbA (αA/βA) and HbD (αD/βA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera). Mol Phylogenet Evol 2010; 56:649-58. [DOI: 10.1016/j.ympev.2010.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/17/2010] [Accepted: 04/22/2010] [Indexed: 11/24/2022]
|
35
|
Hoffmann FG, Storz JF, Gorr TA, Opazo JC. Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates. Mol Biol Evol 2010; 27:1126-38. [PMID: 20047955 DOI: 10.1093/molbev/msp325] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The alpha- and beta-globin gene families of jawed vertebrates have diversified with respect to both gene function and the developmental timing of gene expression. Phylogenetic reconstructions of globin gene family evolution have provided suggestive evidence that the developmental regulation of hemoglobin synthesis has evolved independently in multiple vertebrate lineages. For example, the embryonic beta-like globin genes of birds and placental mammals are not 1:1 orthologs. Despite the similarity in developmental expression profiles, the genes are independently derived from lineage-specific duplications of a beta-globin pro-ortholog. This suggests the possibility that other vertebrate taxa may also possess distinct repertoires of globin genes that were produced by repeated rounds of lineage-specific gene duplication and divergence. Until recently, investigations into this possibility have been hindered by the dearth of genomic sequence data from nonmammalian vertebrates. Here, we report new insights into globin gene family evolution that were provided by a phylogenetic analysis of vertebrate globins combined with a comparative genomic analysis of three key sauropsid taxa: a squamate reptile (anole lizard, Anolis carolinensis), a passeriform bird (zebra finch, Taeniopygia guttata), and a galliform bird (chicken, Gallus gallus). The main objectives of this study were 1) to characterize evolutionary changes in the size and membership composition of the alpha- and beta-globin gene families of tetrapod vertebrates and 2) to test whether functional diversification of the globin gene clusters occurred independently in different tetrapod lineages. Results of our comparative genomic analysis revealed several intriguing patterns of gene turnover in the globin gene clusters of different taxa. Lineage-specific differences in gene content were especially pronounced in the beta-globin gene family, as phylogenetic reconstructions revealed that amphibians, lepidosaurs (as represented by anole lizard), archosaurs (as represented by zebra finch and chicken), and mammals each possess a distinct independently derived repertoire of beta-like globin genes. In contrast to the ancient functional diversification of the alpha-globin gene cluster in the stem lineage of tetrapods, the physiological division of labor between early- and late-expressed genes in the beta-globin gene cluster appears to have evolved independently in several tetrapod lineages.
Collapse
|
36
|
McCracken K, Barger C, Bulgarella M, Johnson K, Kuhner M, Moore A, Peters J, Trucco J, Valqui T, Winker K, Wilson R. Signatures of High‐Altitude Adaptation in the Major Hemoglobin of Five Species of Andean Dabbling Ducks. Am Nat 2009; 174:631-50. [DOI: 10.1086/606020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Alev C, Shinmyozu K, McIntyre BAS, Sheng G. Genomic organization of zebra finch alpha and beta globin genes and their expression in primitive and definitive blood in comparison with globins in chicken. Dev Genes Evol 2009; 219:353-60. [DOI: 10.1007/s00427-009-0294-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
38
|
Differential loss of embryonic globin genes during the radiation of placental mammals. Proc Natl Acad Sci U S A 2008; 105:12950-5. [PMID: 18755893 DOI: 10.1073/pnas.0804392105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The differential gain and loss of genes from homologous gene families represents an important source of functional variation among the genomes of different species. Differences in gene content between species are primarily attributable to lineage-specific gene gains via duplication and lineage-specific losses via deletion or inactivation. Here, we use a comparative genomic approach to investigate this process of gene turnover in the beta-globin gene family of placental mammals. By analyzing genomic sequence data from representatives of each of the main superordinal clades of placental mammals, we were able to reconstruct pathways of gene family evolution during the basal radiation of this physiologically and morphologically diverse vertebrate group. Our analysis revealed that an initial expansion of the nonadult portion of the beta-globin gene cluster in the ancestor of placental mammals was followed by the differential loss and retention of ancestral gene lineages, thereby generating variation in the complement of embryonic globin genes among contemporary species. The sorting of epsilon-, gamma-, and eta-globin gene lineages among the basal clades of placental mammals has produced species differences in the functional types of hemoglobin isoforms that can be synthesized during the course of embryonic development.
Collapse
|
39
|
Patel VS, Cooper SJB, Deakin JE, Fulton B, Graves T, Warren WC, Wilson RK, Graves JAM. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals. BMC Biol 2008; 6:34. [PMID: 18657265 PMCID: PMC2529266 DOI: 10.1186/1741-7007-6-34] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. RESULTS The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. CONCLUSION We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.
Collapse
Affiliation(s)
- Vidushi S Patel
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Steven JB Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia
| | - Janine E Deakin
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Bob Fulton
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Tina Graves
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Richard K Wilson
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Jennifer AM Graves
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
40
|
Storz JF, Hoffmann FG, Opazo JC, Moriyama H. Adaptive functional divergence among triplicated alpha-globin genes in rodents. Genetics 2008; 178:1623-38. [PMID: 18245844 PMCID: PMC2278084 DOI: 10.1534/genetics.107.080903] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/05/2008] [Indexed: 11/18/2022] Open
Abstract
The functional divergence of duplicated genes is thought to play an important role in the evolution of new developmental and physiological pathways, but the role of positive selection in driving this process remains controversial. The objective of this study was to test whether amino acid differences among triplicated alpha-globin paralogs of the Norway rat (Rattus norvegicus) and the deer mouse (Peromyscus maniculatus) are attributable to a relaxation of purifying selection or to a history of positive selection that has adapted the gene products to new or modified physiological tasks. In each rodent species, the two paralogs at the 5'-end of the alpha-globin gene cluster (HBA-T1 and HBA-T2) are evolving in concert and are therefore identical or nearly identical in sequence. However, in each case, the HBA-T1 and HBA-T2 paralogs are distinguished from the third paralog at the 3'-end of the gene cluster (HBA-T3) by multiple amino acid substitutions. An analysis of genomic sequence data from several rodent species revealed that the HBA-T3 genes of Rattus and Peromyscus originated via independent, lineage-specific duplication events. In the independently derived HBA-T3 genes of both species, a likelihood analysis based on a codon-substitution model revealed that accelerated rates of amino acid substitution are attributable to positive directional selection, not to a relaxation of purifying selection. As a result of functional divergence among the triplicated alpha-globin genes in Rattus and Peromyscus, the red blood cells of both rodent species contain a mixture of functionally distinct alpha-chain hemoglobin isoforms that are predicted to have different oxygen-binding affinities. In P. maniculatus, a species that is able to sustain physiological function under conditions of chronic hypoxia at high altitude, the coexpression of distinct hemoglobin isoforms with graded oxygen affinities is expected to broaden the permissible range of arterial oxygen tensions for pulmonary/tissue oxygen transport.
Collapse
Affiliation(s)
- Jay F Storz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA.
| | | | | | | |
Collapse
|
41
|
Hoffmann FG, Opazo JC, Storz JF. Rapid rates of lineage-specific gene duplication and deletion in the alpha-globin gene family. Mol Biol Evol 2008; 25:591-602. [PMID: 18178968 DOI: 10.1093/molbev/msn004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phylogeny reconstructions of the globin gene families have revealed that paralogous genes within species are often more similar to one another than they are to their orthologous counterparts in closely related species. This pattern has been previously attributed to mechanisms of concerted evolution such as interparalog gene conversion that homogenize sequence variation between tandemly duplicated genes and therefore create the appearance of recent common ancestry. Here we report a comparative genomic analysis of the alpha-globin gene family in mammals that reveal a surprisingly high rate of lineage-specific gene duplication and deletion via unequal crossing-over. Results of our analysis reveal that patterns of sequence similarity between paralogous alpha-like globin genes from the same species are only partly explained by concerted evolution between preexisting gene duplicates. In a number of cases, sequence similarity between paralogous sequences from the same species is attributable to recent ancestry between the products of de novo gene duplications. As a result of this surprisingly rapid rate of gene gain and loss, many mammals possess alpha-like globin genes that have no orthologous counterparts in closely related species. The resultant variation in gene copy number among species may represent an important source of regulatory variation that affects physiologically important aspects of blood oxygen transport and aerobic energy metabolism.
Collapse
|
42
|
Rana MS, Knapp JE, Holland RAB, Riggs AF. Component D of chicken hemoglobin and the hemoglobin of the embryonic Tammar wallaby (Macropus eugenii) self-associate upon deoxygenation: Effect on oxygen binding. Proteins 2007; 70:553-61. [DOI: 10.1002/prot.21793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|