1
|
Dong P, Fan Y, Huo YX, Sun L, Guo S. Pathway-Adapted Biosensor for High-Throughput Screening of O-Methyltransferase and its Application in Vanillin Synthesis. ACS Synth Biol 2024; 13:2873-2886. [PMID: 39208264 DOI: 10.1021/acssynbio.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vanillin is a widely used flavoring compound in the food, pharmaceutical, and cosmetics area. However, the biosynthesis of vanillin from low-cost shikimic acid is significantly hindered by the low activity of the rate-limiting enzyme, caffeate O-methyltransferase (COMT). To screen COMT variants with improved conversion rates, we designed a biosensing system that is adaptable to the COMT-mediated vanillin synthetic pathway. Through the evolution of aldehyde transcriptional factor YqhC, we obtained a dual-responsive variant, MuYqhC, which positively responds to the product and negatively responds to the substrate, with no response to intermediates. Using the MuYqhC-based vanillin biosensor, we successfully identified a COMT variant, Mu176, that displayed a 7-fold increase in the conversion rate compared to the wild-type COMT. This variant produced 2.38 mM vanillin from 3 mM protocatechuic acid, achieving a conversion rate of 79.33%. The enhanced activity of Mu176 was attributed to an enlarged binding pocket and strengthened substrate interaction. Applying Mu176 to Bacillus subtilis increased the level of vanillin production from shikimic acid by 2.39-fold. Further optimization of the production chassis, increasing the S-adenosylmethionine supply and the precursor concentration, elevated the vanillin titer to 1 mM, marking the highest level of vanillin production from shikimic acid in Bacillus. Our work highlights the significance of the MuYqhC-based biosensing system and the Mu176 variant in vanillin production.
Collapse
Affiliation(s)
- Pengyu Dong
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yunjuan Fan
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Tangshan, Hebei, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Tangshan, Hebei, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
2
|
Bujdoš D, Popelářová B, Volke DC, Nikel PI, Sonnenschein N, Dvořák P. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Metab Eng 2023; 75:29-46. [PMID: 36343876 DOI: 10.1016/j.ymben.2022.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous β-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| |
Collapse
|
3
|
The 5-Ketofructose Reductase of Gluconobacter sp. Strain CHM43 Is a Novel Class in the Shikimate Dehydrogenase Family. J Bacteriol 2021; 203:e0055820. [PMID: 34309403 DOI: 10.1128/jb.00558-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconobacter sp. strain CHM43 oxidizes mannitol to fructose and then oxidizes fructose to 5-keto-d-fructose (5KF) in the periplasmic space. Since NADPH-dependent 5KF reductase was found in the soluble fraction of Gluconobacter spp., 5KF might be transported into the cytoplasm and metabolized. Here, we identified the GLF_2050 gene as the kfr gene encoding 5KF reductase (KFR). A mutant strain devoid of the kfr gene showed lower KFR activity and no 5KF consumption. The crystal structure revealed that KFR is similar to NADP+-dependent shikimate dehydrogenase (SDH), which catalyzes the reversible NADP+-dependent oxidation of shikimate to 3-dehydroshikimate. We found that several amino acid residues in the putative substrate-binding site of KFR were different from those of SDH. Phylogenetic analyses revealed that only a subclass in the SDH family containing KFR conserved such a unique substrate-binding site. We constructed KFR derivatives with amino acid substitutions, including replacement of Asn21 in the substrate-binding site with Ser that is found in SDH. The KFR-N21S derivative showed a strong increase in the Km value for 5KF but a higher shikimate oxidation activity than wild-type KFR, suggesting that Asn21 is important for 5KF binding. In addition, the conserved catalytic dyad Lys72 and Asp108 were individually substituted for Asn. The K72N and D108N derivatives showed only negligible activities without a dramatic change in the Km value for 5KF, suggesting a catalytic mechanism similar to that of SDH. With these data taken together, we suggest that KFR is a new member of the SDH family. IMPORTANCE A limited number of species of acetic acid bacteria, such as Gluconobacter sp. strain CHM43, produce 5-ketofructose, a potential low-calorie sweetener, at a high yield. Here, we show that an NADPH-dependent 5-ketofructose reductase (KFR) is involved in 5-ketofructose degradation, and we characterize this enzyme with respect to its structure, phylogeny, and function. The crystal structure of KFR was similar to that of shikimate dehydrogenase, which is functionally crucial in the shikimate pathway in bacteria and plants. Phylogenetic analysis suggested that KFR is positioned in a small subgroup of the shikimate dehydrogenase family. Catalytically important amino acid residues were also conserved, and their relevance was experimentally validated. Thus, we propose KFR as a new member of shikimate dehydrogenase family.
Collapse
|
4
|
Gritsunov A, Peek J, Diaz Caballero J, Guttman D, Christendat D. Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:812-822. [PMID: 29890023 DOI: 10.1111/tpj.13989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 05/23/2023]
Abstract
Quinate is produced and used by many plants in the biosynthesis of chlorogenic acids (CGAs). Chlorogenic acids are astringent and serve to deter herbivory. They also function as antifungal agents and have potent antioxidant properties. Quinate is produced at a branch point of shikimate biosynthesis by the enzyme quinate dehydrogenase (QDH). However, little information exists on the identity and biochemical properties of plant QDHs. In this study, we utilized structural and bioinformatics approaches to establish a QDH-specific primary sequence motif. Using this motif, we identified QDHs from diverse plants and confirmed their activity by recombinant protein production and kinetic assays. Through a detailed phylogenetic analysis, we show that plant QDHs arose directly from bifunctional dehydroquinate dehydratase-shikimate dehydrogenases (DHQD-SDHs) through different convergent evolutionary events, illustrated by our findings that eudicot and conifer QDHs arose early in vascular plant evolution whereas Brassicaceae QDHs emerged later. This process of recurrent evolution of QDH is further demonstrated by the fact that this family of proteins independently evolved NAD+ and NADP+ specificity in eudicots. The acquisition of QDH activity by these proteins was accompanied by the inactivation or functional evolution of the DHQD domain, as verified by enzyme activity assays and as reflected in the loss of key DHQD active site residues. The implications of QDH activity and evolution are discussed in terms of plant growth and development.
Collapse
Affiliation(s)
- Artyom Gritsunov
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - James Peek
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Julio Diaz Caballero
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - David Guttman
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
5
|
García S, Flores N, De Anda R, Hernández G, Gosset G, Bolívar F, Escalante A. The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS - Strain of Escherichia coli. J Mol Microbiol Biotechnol 2016; 27:11-21. [DOI: 10.1159/000450611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
The culture of engineered <i>Escherichia coli</i> for shikimic acid (SA) production results in the synthesis of quinic acid (QA) and dehydroshikimic acid (DHS), reducing SA yield and impairing downstream processes. The synthesis of QA by quinate/shikimate dehydrogenase (YdiB, <i>ydiB</i>) has been previously proposed; however, the precise role for this enzyme in the production of QA in engineered strains of <i>E. coli</i> for SA production remains unclear. We report the effect of the inactivation or the overexpression of <i>ydiB</i> in <i>E. coli</i> strain PB12.SA22 on SA, QA, and DHS production in batch fermentor cultures. The results showed that the inactivation of <i>ydiB </i>resulted in a 75% decrease in the molar yield of QA and a 6.17% reduction in the yield of QA (mol/mol) relative to SA with respect to the parental strain. The overexpression of <i>ydiB</i> caused a 500% increase in the molar yield of QA and resulted in a 152% increase in QA (mol/mol) relative to SA, with a sharp decrease in SA production. Production of SA, QA, and DHS in parental and derivative <i>ydiB </i>strains suggests that the synthesis of QA results from the reduction of 3-dehydroquinate by YdiB before its conversion to DHS.
Collapse
|
6
|
Peek J, Roman J, Moran GR, Christendat D. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism. Mol Microbiol 2016; 103:39-54. [DOI: 10.1111/mmi.13542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- James Peek
- Department of Cell and Systems BiologyUniversity of Toronto25 Willcocks StreetToronto, Ontario CanadaM5S 3B2
| | - Joseph Roman
- Department of Chemistry and BiochemistryUniversity of Wisconsin‐Milwaukee3210 North Cramer StreetMilwaukee WI53211‐3209 USA
| | - Graham R. Moran
- Department of Chemistry and BiochemistryUniversity of Wisconsin‐Milwaukee3210 North Cramer StreetMilwaukee WI53211‐3209 USA
| | - Dinesh Christendat
- Department of Cell and Systems BiologyUniversity of Toronto25 Willcocks StreetToronto, Ontario CanadaM5S 3B2
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoToronto, Ontario CanadaM5S 3B2
| |
Collapse
|
7
|
Bontpart T, Marlin T, Vialet S, Guiraud JL, Pinasseau L, Meudec E, Sommerer N, Cheynier V, Terrier N. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3537-50. [PMID: 27241494 PMCID: PMC4892741 DOI: 10.1093/jxb/erw184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites.
Collapse
Affiliation(s)
- Thibaut Bontpart
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Thérèse Marlin
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Sandrine Vialet
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Jean-Luc Guiraud
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Lucie Pinasseau
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Emmanuelle Meudec
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Nicolas Sommerer
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Véronique Cheynier
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| | - Nancy Terrier
- INRA, UMR 1083 Sciences pour l'œnologie, 2 place Pierre Viala, F-34060 Montpellier cedex 1, France
| |
Collapse
|
8
|
Peek J, Christendat D. The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework. Arch Biochem Biophys 2014; 566:85-99. [PMID: 25524738 DOI: 10.1016/j.abb.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/19/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022]
Abstract
Shikimate dehydrogenase (SDH) catalyzes the NADPH-dependent reduction of 3-deydroshikimate to shikimate, an essential reaction in the biosynthesis of the aromatic amino acids and a large number of other secondary metabolites in plants and microbes. The indispensible nature of this enzyme makes it a potential target for herbicides and antimicrobials. SDH is the archetypal member of a large protein family, which contains at least four additional functional classes with diverse metabolic roles. The different members of the SDH family share a highly similar three-dimensional structure and utilize a conserved catalytic mechanism, but exhibit distinct substrate preferences, making the family a particularly interesting system for studying modes of substrate recognition used by enzymes. Here, we review our current understanding of the biochemical and structural properties of each of the five previously identified SDH family functional classes.
Collapse
Affiliation(s)
- James Peek
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada.
| |
Collapse
|
9
|
Peek J, Shi T, Christendat D. Identification of Novel Polyphenolic Inhibitors of Shikimate Dehydrogenase (AroE). ACTA ACUST UNITED AC 2014; 19:1090-8. [DOI: 10.1177/1087057114527127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/17/2014] [Indexed: 11/15/2022]
Abstract
Shikimate dehydrogenase (AroE) is an attractive target for herbicides and antimicrobial agents due to its conserved and essential nature in plants, fungi, and bacteria. Here, we have performed an in vitro screen using a collection of more than 5500 compounds and identified 24 novel inhibitors of AroE from Pseudomonas putida. The IC50 values for the two most potent inhibitors we identified, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG), were 3.0 ± 0.2 µM and 3.7 ± 0.5 µM, respectively. Based on the high level of structural conservation between AroE orthologs, we predicted that the identified compounds would also inhibit AroE enzymes from other organisms. Consistent with this hypothesis, we found that EGCG and ECG inhibit the AroE domain of the bifunctional dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) from Arabidopsis thaliana with IC50 values of 2.1 ± 0.3 µM and 2.0 ± 0.2 µM, respectively.
Collapse
Affiliation(s)
- James Peek
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Thomas Shi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Höppner A, Schomburg D, Niefind K. Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination. Biol Chem 2014; 394:1505-16. [PMID: 23929881 DOI: 10.1515/hsz-2013-0170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/05/2013] [Indexed: 11/15/2022]
Abstract
Quinate dehydrogenase (QDH) catalyzes the reversible oxidation of quinate to 3-dehydroquinate by nicotineamide adenine dinucleotide (NADH) and is involved in the catabolic quinate metabolism required for the degradation of lignin. The enzyme is a member of the family of shikimate/quinate dehydrogenases (SDH/QDH) occurring in bacteria and plants. We characterized the dual-substrate quinate/shikimate dehydrogenase (QSDH) from Corynebacterium glutamicum (CglQSDH) kinetically and revealed a clear substrate preference of CglQSDH for quinate compared with shikimate both at the pH optimum and in a physiological pH range, which is a remarkable contrast to closely related SDH/QDH enzymes. With respect to the cosubstrate, CglQSDH is strictly NAD(H) dependent. These substrate and cosubstrate profiles correlate well with the details of three atomic resolution crystal structures of CglQSDH in different functional states we report here: with bound NAD+ (binary complex) and as ternary complexes with NADH plus either shikimate or quinate. The CglQSDH-NADH-quinate structure is the first complex structure of any member of the SDH/QDH family with quinate. Based on this novel structural information and systematic sequence and structure comparisons with closely related enzymes, we can explain the strict NAD(H) dependency of CglQSDH as well as its discrimination between shikimate and quinate.
Collapse
|
11
|
Kubota T, Tanaka Y, Hiraga K, Inui M, Yukawa H. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2013; 97:8139-49. [DOI: 10.1007/s00253-012-4659-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
12
|
Choorapoikayil S, Schoepe J, Buchinger S, Schomburg D. Analysis of in vivo Function of Predicted Isoenzymes—A Metabolomic Approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:668-80. [DOI: 10.1089/omi.2012.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Jan Schoepe
- Institute of Biochemistry, University of Cologne, Köln, Germany
| | - Sebastian Buchinger
- Institute of Biochemistry, University of Cologne, Köln, Germany
- Current address: German Federal Institute of Hydrology, Koblenz 56068, Germany
| | - Dietmar Schomburg
- Institute of Biochemistry, University of Cologne, Köln, Germany
- Current address: Department of Bioinformatics & Biochemistry, TU Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
13
|
Insights into the function of RifI2: structural and biochemical investigation of a new shikimate dehydrogenase family protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:516-23. [PMID: 23142411 DOI: 10.1016/j.bbapap.2012.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
Abstract
The shikimate dehydrogenase (SDH) family consists of enzymes with diverse roles in secondary metabolism. The two most widespread members of the family, AroE and YdiB, function in amino acid biosynthesis and quinate catabolism, respectively. Here, we have determined the crystal structure of an SDH homolog belonging to the RifI class, a group of enzymes with proposed roles in antibiotic biosynthesis. The structure of RifI2 from Pseudomonas putida exhibits a number of distinctive features, including a substantial C-terminal truncation and an atypical mode of oligomerization. The active site of the enzyme contains substrate- and cofactor-binding motifs that are significantly different from those of any previously characterized member of the SDH family. These features are reflected in the novel kinetic properties of the enzyme. RifI2 exhibits much lower activity using shikimate as a substrate than AroE, and a strong preference for NAD(+) instead of NADP(+) as a cofactor. Moreover, the enzyme has only trace activity using quinate, unlike YdiB. Cocrystallization of RifI2 with NAD(+) provided the opportunity to determine the mode of cofactor selectivity employed by the enzyme. We complemented this analysis by probing the role of a strictly conserved residue in the cofactor-binding domain, Asn193, by site directed mutagenesis. This study presents the first crystal structure and formal kinetic characterization of a new NAD(+)-dependent member of the SDH family.
Collapse
|
14
|
Peek J, Lee J, Hu S, Senisterra G, Christendat D. Structural and Mechanistic Analysis of a Novel Class of Shikimate Dehydrogenases: Evidence for a Conserved Catalytic Mechanism in the Shikimate Dehydrogenase Family. Biochemistry 2011; 50:8616-27. [DOI: 10.1021/bi200586y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James Peek
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - John Lee
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Shi Hu
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Dinesh Christendat
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
15
|
Rodrigues VS, Breda A, Santos DS, Basso LA. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase. BMC Res Notes 2009; 2:227. [PMID: 19917104 PMCID: PMC2789096 DOI: 10.1186/1756-0500-2-227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/16/2009] [Indexed: 11/17/2022] Open
Abstract
Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1) is 68-fold larger than that for the mutant K69A (0.73 s-1). There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM) and NADPH (K69A = 30 μM; wild-type = 11 μM). The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4) μM and 134 (± 21), respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.
Collapse
Affiliation(s)
- Valnês S Rodrigues
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
16
|
Abstract
Natural products researchers are increasingly employing evolutionary analyses of genes and gene products that rely on phylogenetic trees. The field of phylogenetic inference and of evolutionary analyses based on phylogenies is growing at an amazing rate, making it difficult to keep up with the latest methodologies. Here, we summarize phylogenetic applications in natural products research, and review methods and software useful for carrying out analyses inferring or using phylogenetic trees. We include an updated overview of available alignment methods and programs, as well as a selection of some useful phylogenetic analysis tools. This review covers primarily the period 2000-2009 for applications of phylogenetic methods in natural product research, and 1990-2009 for phylogenetic methods, with some references going back to the 1960s.
Collapse
Affiliation(s)
- Imke Schmitt
- Department of Plant Biology and Bell Museum of Natural History, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108, USA.
| | | |
Collapse
|
17
|
Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl Environ Microbiol 2009; 75:3461-8. [PMID: 19376919 DOI: 10.1128/aem.00163-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The utilization of the hydroaromatic compounds quinate and shikimate by Corynebacterium glutamicum was investigated. C. glutamicum grew well with either quinate or shikimate as the sole carbon source. The disruption of qsuD, encoding quinate/shikimate dehydrogenase, completely suppressed growth with either substrate but did not affect growth with glucose, indicating that the enzyme encoded by qsuD catalyzes the first step of the catabolism of quinate/shikimate but is not involved in the shikimate pathway required for the biosynthesis of various aromatic compounds. On the chromosome of C. glutamicum, the qsuD gene is located in a gene cluster also containing qsuA, qsuB, and qsuC genes, which are probably involved in the quinate/shikimate utilization pathway to form protocatechuate. Reverse transcriptase PCR analyses revealed that the expression of the qsuABCD genes was markedly induced during growth with either quinate or shikimate relative to expression during growth with glucose. The induction level by shikimate was significantly decreased by the disruption of qsuR, which is located immediately upstream of qsuA in the opposite direction and encodes a LysR-type transcriptional regulator, suggesting that QsuR acts as an activator of the qsuABCD genes. The high level of induction of qsuABCD genes by shikimate was still observed in the presence of glucose, and simultaneous consumption of glucose and shikimate during growth was observed.
Collapse
|