1
|
Su Y, Zheng Q, Zhu L, Gu X, Lu J, Li L. Functions and underlying mechanisms of miR-650 in human cancers. Cancer Cell Int 2022; 22:132. [PMID: 35331235 PMCID: PMC8944108 DOI: 10.1186/s12935-022-02551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/13/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are one type of noncoding RNAs that interfere with mRNA translation to downregulate gene expression, which results in posttranscriptional gene silencing. Over the past two decades, miRNAs have been widely reported to impact the progression of malignant tumours by interfering with cancer initiation and progression; therefore, miRNAs represent potential new diagnostic and therapeutic tools. miR-650 is a newly identified miR, and increasing studies have demonstrated that miR-650 plays critical roles in cancer progression, such as mediating the Wnt signalling pathway/AXIN1 (axis inhibition protein 1) axis in hepatocellular carcinoma. Nevertheless, associations between the expression patterns and molecular mechanisms of miR-650 in cancer have not been comprehensively described. In this article, we review the existing evidence regarding the mechanisms by which miR-650 expression is altered and their relation to cancer. Moreover, the promising clinical application of miR-650 for diagnosis and treatment is highlighted.
Collapse
Affiliation(s)
- Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Lingxiao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Stage-Specific Non-Coding RNA Expression Patterns during In Vitro Human B Cell Differentiation into Antibody Secreting Plasma Cells. Noncoding RNA 2022; 8:ncrna8010015. [PMID: 35202088 PMCID: PMC8878715 DOI: 10.3390/ncrna8010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The differentiation of B cells into antibody secreting plasma cells (PCs) is governed by a strict regulatory network that results in expression of specific transcriptomes along the activation continuum. In vitro models yielding significant numbers of PCs phenotypically identical to the in vivo state enable investigation of pathways, metabolomes, and non-coding (ncRNAs) not previously identified. The objective of our study was to characterize ncRNA expression during human B cell activation and differentiation. To achieve this, we used an in vitro system and performed RNA-seq on resting and activated B cells and PCs. Characterization of coding gene transcripts, including immunoglobulin (Ig), validated our system and also demonstrated that memory B cells preferentially differentiated into PCs. Importantly, we identified more than 980 ncRNA transcripts that are differentially expressed across the stages of activation and differentiation, some of which are known to target transcription, proliferation, cytoskeletal, autophagy and proteasome pathways. Interestingly, ncRNAs located within Ig loci may be targeting both Ig and non-Ig-related transcripts. ncRNAs associated with B cell malignancies were also identified. Taken together, this system provides a platform to study the role of specific ncRNAs in B cell differentiation and altered expression of those ncRNAs involved in B cell malignancies.
Collapse
|
3
|
Pancsa R, Tompa P. Coding Regions of Intrinsic Disorder Accommodate Parallel Functions. Trends Biochem Sci 2016; 41:898-906. [DOI: 10.1016/j.tibs.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 02/01/2023]
|
4
|
Das S, Sutoh Y, Hirano M, Han Q, Li J, Cooper MD, Herrin BR. Characterization of Lamprey BAFF-like Gene: Evolutionary Implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2695-703. [PMID: 27543613 PMCID: PMC5026938 DOI: 10.4049/jimmunol.1600799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022]
Abstract
BAFF (TNF superfamily [TNFSF] 13B/Blys) and APRIL (TNFSF13) are important regulatory factors for lymphocyte activation and survival in mammals. A BAFF/APRIL-like relative called BAFF- and APRIL-like molecule (BALM) has also been identified in cartilaginous and bony fishes, and we report in this study a BAFF-like gene in lampreys. Our phylogenetic analysis of these genes and a related TNFSF12 gene called TNF-like weak inducer of apoptosis (TWEAK) suggest that, whereas an ancestral homolog of BAFF and APRIL was already present in a common ancestor of jawed and jawless vertebrates, TWEAK evolved early on in the jawed vertebrate lineage. Like mammalian BAFF and APRIL, the lamprey BAFF-like gene is expressed in T-like, B-like, and innate immune cells. The predicted protein encoded by this BAFF-like gene in lampreys exhibits higher sequence similarity with mammalian BAFF than APRIL. Correspondingly, we find BAFF orthologs in all of the jawed vertebrate representatives that we examined, although APRIL and/or BALM orthologs are not identifiable in certain jawed vertebrates. For example, BALM is not identifiable in tetrapods, and APRIL is not identifiable in several bony fishes or in birds, the latter of which also lack a TWEAK-like gene. Our analysis further suggests that a hybrid molecule called TWE-PRIL, which is a product of an in-genomic fusion between APRIL and TWEAK genes evolved early in mammalian evolution.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Yoichi Sutoh
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Qifeng Han
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Jianxu Li
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA 30322
| |
Collapse
|
5
|
MicroRNA-650 in a copy number-variable region regulates the production of interleukin 6 in human osteosarcoma cells. Oncol Lett 2015; 10:2603-2609. [PMID: 26622897 DOI: 10.3892/ol.2015.3581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/22/2015] [Indexed: 01/05/2023] Open
Abstract
Copy number variation is a well-known genetic variation. microRNAs (miRNAs/miRs) are non-coding RNAs that mediate gene expression by regulating target mRNAs. In the present study, copy number deletions encompassing miRNA coding regions were investigated to determine the association between the deletion of miRNA and its phenotypic effects. A total of 38 human miRNAs in copy number variants were identified and miR-650, which is functional in the human osteosarcoma MG-63 cell line, was selected. Overexpression of miR-650 decreased the expression of inhibitor of growth family member 4 (ING4) in the MG-63 cells and increased interleukin (IL)6 transcription, as well as IL6 secretion in IL1B-stimulated cells. Furthermore, miR-650 downregulated the amount of nuclear factor of κ light polypeptide gene enhancer in B cells inhibitor α and increased the transcriptional activity of nuclear factor (NF)κB. Downregulation of ING4 also increased the production of IL6, similar to miR-650 overexpression. Taken together, these data indicate that miR-650 plays a significant role in the production of IL6 by regulating ING4 expression and NFκB signaling in IL1B-stimulated MG-63 osteosarcoma cells.
Collapse
|
6
|
Organization of lamprey variable lymphocyte receptor C locus and repertoire development. Proc Natl Acad Sci U S A 2013; 110:6043-8. [PMID: 23487799 DOI: 10.1073/pnas.1302500110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Jawless vertebrates are pivotal representatives for studies of the evolution of adaptive immunity due to their unique position in chordate phylogeny. Lamprey and hagfish, the extant jawless vertebrates, have an alternative lymphocyte-based adaptive immune system that is based on somatically diversifying leucine-rich repeat (LRR)-based antigen receptors, termed variable lymphocyte receptors (VLRs). Lamprey T-like and B-like lymphocyte lineages have been shown to express VLRA and VLRB types of anticipatory receptors, respectively. An additional VLR type, termed VLRC, has recently been identified in arctic lamprey (Lethenteron camtschaticum), and our analysis indicates that VLRC sequences are well conserved in sea lamprey (Petromyzon marinus), L. camtschaticum, and European brook lamprey (Lampetra planeri). Genome sequences of P. marinus were analyzed to determine the organization of the VLRC-encoding locus. In addition to the incomplete germ-line VLRC gene, we have identified 182 flanking donor genomic sequences that could be used to complete the assembly of mature VLRC genes. Donor LRR cassettes were classifiable into five basic structural groups, the composition of which determines their order of use during VLRC assembly by virtue of sequence similarities to the incomplete germ-line gene and to one another. Bidirectional VLRC assembly was predicted by comparisons of mature VLRC genes with the sequences of donor LRR cassettes and verified by analysis of partially assembled intermediates. Biased and repetitive use of certain donor LRR cassettes was demonstrable in mature VLRCs. Our analysis provides insight into the unique molecular strategies used for VLRC gene assembly and repertoire diversification.
Collapse
|
7
|
Das S, Hirano M, Tako R, McCallister C, Nikolaidis N. Evolutionary genomics of immunoglobulin-encoding Loci in vertebrates. Curr Genomics 2012; 13:95-102. [PMID: 23024601 PMCID: PMC3308330 DOI: 10.2174/138920212799860652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/13/2011] [Accepted: 01/14/2012] [Indexed: 11/22/2022] Open
Abstract
Immunoglobulins (or antibodies) are an essential element of the jawed vertebrate adaptive immune response system. These molecules have evolved over the past 500 million years and generated highly specialized proteins that recognize an extraordinarily large number of diverse substances, collectively known as antigens. During vertebrate evolution the diversification of the immunoglobulin-encoding loci resulted in differences in the genomic organization, gene content, and ratio of functional genes and pseudogenes. The tinkering process in the immunoglobulin-encoding loci often gave rise to lineage-specific characteristics that were formed by selection to increase species adaptation and fitness. Immunoglobulin loci and their encoded antibodies have been shaped repeatedly by contrasting evolutionary forces, either to conserve the prototypic structure and mechanism of action or to generate alternative and diversified structures and modes of function. Moreover, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, which are used by different species to effectively generate an almost infinite collection of diverse antibody types. This review summarizes our current knowledge on the genomics and evolution of the immunoglobulin-encoding loci and their protein products in jawed vertebrates.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, USA
| | | | | | | | | |
Collapse
|
8
|
Mallick B, Ghosh Z. Probing Evolutionary Biography of MicroRNAs and Associated Factors. Curr Genomics 2012; 13:144-52. [PMID: 23024606 PMCID: PMC3308325 DOI: 10.2174/138920212799860634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/15/2011] [Accepted: 09/28/2011] [Indexed: 12/21/2022] Open
Abstract
Intergenic DNA, often described as “playground of evolution”, harbors a plethora of cis and trans regulatory elements in the form of non-coding RNAs (ncRNAs). The evolution of the silencing mechanism mediated by microRNAs (miRNAs), an important class of ncRNA, involves the proliferation of miRNA biogenesis and effector proteins, continuing innovation of novel families by the diversification of established families and spawning additional paralogous family members. Such evolving miRNA pathways for spatiotemporal regulation of the transcriptome have shaped the evolution of eukaryotic genomes and contributed to the complexity of multicellular organisms. Here, we focus on the emergence of new target specificity of the miRNAs along with the proliferation of core biogenesis and effector modules and show how this has contributed to generate diverse miRNA regulatory pathways.
Collapse
|
9
|
MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood 2012; 119:2110-3. [PMID: 22234685 DOI: 10.1182/blood-2011-11-394874] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play a key role in chronic lymphocytic leukemia as well as in normal B cells. Notably, miRNA gene encoding miR-650 and its homologs overlap with several variable (V) subgenes coding for lambda immunoglobulin (IgLλ). Recent studies describe the role of miR-650 in solid tumors, but its role in chronic lymphocytic leukemia (CLL) has not yet been studied. Our experiments demonstrate that miR-650 expression is regulated by coupled expression with its host gene for IgLλ. This coupling provides a unique yet unobserved mechanism for microRNA gene regulation. We determine that higher expression of miR-650 is associated with a favorable CLL prognosis and influences the proliferation capacity of B cells. We also establish that in B cells, miR-650 targets proteins important in cell proliferation and survival: cyclin dependent kinase 1 (CDK1), inhibitor of growth 4 (ING4), and early B-cell factor 3 (EBF3). This study underscores the importance of miR-650 in CLL biology and normal B-cell physiology.
Collapse
|
10
|
Tan Gana NH, Victoriano AFB, Okamoto T. Evaluation of online miRNA resources for biomedical applications. Genes Cells 2011; 17:11-27. [PMID: 22077698 DOI: 10.1111/j.1365-2443.2011.01564.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are endogenous single-stranded, 22-nt (nucleotide) RNAs which complement mRNA to initiate post-transcriptional regulation. This review presents updates and evaluations of the public domain resources available for miRNA identification and target prediction toward their utilization in the biomedical research approach. This study discusses the basic principles of miRNA computational studies based on the nature and mechanism of action of miRNAs. Furthermore, we have explored fifty-nine current online miRNA tools that can be categorized into three classes in this paper: (i) miRNA identification; (ii) miRNA target prediction; and (iii) specialized miRNA tools.
Collapse
Affiliation(s)
- Neil H Tan Gana
- Department of Molecular and Cell Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya City 467-8601, Japan
| | | | | |
Collapse
|
11
|
Co-expression of host and viral microRNAs in porcine dendritic cells infected by the pseudorabies virus. PLoS One 2011; 6:e17374. [PMID: 21408164 PMCID: PMC3050891 DOI: 10.1371/journal.pone.0017374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/01/2011] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs are small non-coding RNAs approximately 22 nt long that modulate gene expression in animals and plants. It has been recently demonstrated that herpesviruses encode miRNAs to control the post-transcriptional regulation of expression from their own genomes and possibly that of their host, thus adding an additional layer of complexity to the physiological cross-talk between host and pathogen. The present study focussed on the interactions between porcine dendritic cells (DCs) and the Pseudorabies virus (PRV), an alpha-herpesvirus causing Aujeszky's disease in pigs. A catalogue of porcine and viral miRNAs, expressed eight hours post-infection, was established by deep sequencing. An average of 2 million reads per sample with a size of 21–24 nucleotides was obtained from six libraries representing three biological replicates of infected and mock-infected DCs. Almost 95% of reads mapped to the draft pig genome sequence and pig miRNAs previously annotated in dedicated databases were detected by sequence alignment. In silico prediction allowed the identification of unknown porcine as well as of five miRNAs transcribed by the Large Latency Transcript (LLT) of PRV. The gene target prediction of the viral miRNAs and the Ingenuity Pathway Analysis of differentially expressed pig miRNAs were conducted to contextualize the identified small RNA molecules and functionally characterize their involvement in the post-transcriptional regulation of gene expression. The results support a role for PRV miRNAs in the maintenance of the host cell latency state through the down-regulation of immediate-early viral genes which is similar to other herpesviruses. The differentially expressed swine miRNAs identified a unique network of target genes with highly significant functions in the development and function of the nervous system and in infectious mechanisms, suggesting that the modulation of both host and viral miRNAs is necessary for the establishment of PRV latency.
Collapse
|
12
|
von Frowein J, Pagel P, Kappler R, von Schweinitz D, Roscher A, Schmid I. MicroRNA-492 is processed from the keratin 19 gene and up-regulated in metastatic hepatoblastoma. Hepatology 2011; 53:833-42. [PMID: 21319197 DOI: 10.1002/hep.24125] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 11/15/2010] [Indexed: 01/29/2023]
Abstract
UNLABELLED MicroRNAs (miRNAs) are well-known regulators of proliferation, apoptosis, and differentiation and are recognized to play an important role in the development of cancers. Here we aimed to identify the functional contribution of miRNAs to the biology of hepatoblastoma (HB), the most common malignant liver tumor in childhood. As overexpression of the oncogene PLAG1 (pleomorphic adenoma gene 1) is a characteristic phenomenon in HB, we used RNA interference and subsequent miRNA array analysis to identify miR-492 as most strongly influenced by PLAG1. We provide novel experimental evidence that miR-492 can originate from the coding sequence of the HB marker gene keratin 19 (KRT19). In agreement with these in vitro observations, significantly elevated levels of coexpressed KRT19 and miR-492 were particularly found in metastatic HB tumor samples. Stable overexpression of miR-492 in HB cell clones served to identify a broad range of differentially expressed transcripts, including several candidate targets of miR-492 predicted by computational algorithms. Among those the liver enzyme BAAT showed significant association with miR-492 expression in HB tumor samples. CONCLUSION A close functional relationship between KRT19 and miR-492 was identified that may play an important role in the progression of malignant embryonal liver tumors. Additionally, miR-492 and its associated targets might serve as new HB biomarkers of clinical utility and could assist to explore targeted therapies, especially in metastatic HB with a poor prognosis.
Collapse
Affiliation(s)
- Julia von Frowein
- Children's Research Center, Division of Pediatric Hematology and Oncology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Das S, Hirano M, McCallister C, Tako R, Nikolaidis N. Comparative genomics and evolution of immunoglobulin-encoding loci in tetrapods. Adv Immunol 2011; 111:143-78. [PMID: 21970954 DOI: 10.1016/b978-0-12-385991-4.00004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immunoglobulins (Igs or antibodies) as an integral part of the tetrapod adaptive immune response system have evolved toward producing highly diversified molecules that recognize a remarkably large number of different antigens. Antibodies and their respective encoding loci have been shaped by different and often contrasting evolutionary forces, some of which aim to conserve an established pattern or mechanism and others to generate alternative and diversified structural and functional configurations. The genomic organization, gene content, ratio between functional genes and pseudogenes, number and position of recombining genetic elements, and the different levels of divergence present at the germline of the Ig-encoding loci have been evolutionarily shaped and optimized in a lineage- and, in some cases, species-specific mode aiming to increase organismal fitness. Further, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, such as V(D)J recombination, class switch recombination, isotype exclusion, somatic hypermutation, and gene conversion. Diverse tetrapod species, based on their specific germline configurations, use these mechanisms in several different combinations to effectively generate a vast array of distinct antibody types and structures. This chapter summarizes our current knowledge on the Ig-encoding loci in tetrapods and discusses the different evolutionary mechanisms that shaped their diversification.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
14
|
Gururajan M, Haga CL, Das S, Leu CM, Hodson D, Josson S, Turner M, Cooper MD. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int Immunol 2010; 22:583-92. [PMID: 20497960 PMCID: PMC2892362 DOI: 10.1093/intimm/dxq042] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/09/2010] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs 125a and 125b are predicted to be able to bind to the B lymphocyte-induced maturation protein-1 (BLIMP-1) and IFN regulatory protein-4 (IRF-4) transcription factors, which are essential for plasma cell differentiation. A computational survey of the human and mouse genomes revealed that miR-125a and miR-125b are members of a multigene family located in paralogous clusters. The miR-125a cluster on chromosome 19 in humans includes miR-99b and let-7e, whereas the miR-125b cluster on chromosome 21 includes miR-99a and miR-let-7c. Our analysis of the expression profiles for these six miRs during B lineage differentiation indicated that mature miR-125a, miR-125b, miR-99b and let-7e transcripts are preferentially expressed by the actively dividing centroblasts in germinal centers (GC). However, miR-99b and let-7e are not predicted to bind BLIMP-1 or IRF-4 transcripts, and binding to the untranslated region of BLIMP-1 and IRF-4 messenger RNAs could be confirmed only for miR-125b. When the effect of miR-125b over-expression on terminal B cell differentiation was evaluated in an LPS-responsive B cell line, the induction of BLIMP-1 expression and IgM secretion was inhibited in this model system. Furthermore, miR-125b over-expression inhibited the differentiation of primary B cells and compromised the survival of cultured myeloma cells. These findings suggest that miR-125b promotes B lymphocyte diversification in GC by inhibiting premature utilization of essential transcription factors for plasma cell differentiation.
Collapse
Affiliation(s)
- Murali Gururajan
- Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road NE, DSB 403, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Das S, Nikolaidis N, Goto H, McCallister C, Li J, Hirano M, Cooper MD. Comparative genomics and evolution of the alpha-defensin multigene family in primates. Mol Biol Evol 2010; 27:2333-43. [PMID: 20457584 DOI: 10.1093/molbev/msq118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Defensin genes encode small cationic antimicrobial peptides that form an important part of the innate immune system. They are divided into three families, alpha (α), beta (β), and theta (), according to arrangement of the disulfide bonding pattern between cysteine residues. Considering the functional importance of defensins, investigators have studied the evolution and the genomic organization of defensin genes. However, these studies have been restricted mainly to β-defensins. To understand the evolutionary dynamics of α-defensin genes among primates, we identified the α-defensin repertoires in human, chimpanzee, orangutan, macaque, and marmoset. The α-defensin genes in primates can be classified into three phylogenetic classes (class I, II, and III). The presence of all three classes in the marmoset indicates that their divergence occurred before the separation of New World and Old World monkeys. Comparative analysis of the α-defensin genomic clusters suggests that the makeup of the α-defensin gene repertoires between primates is quite different, as their genes have undergone dramatic birth-and-death evolution. Analysis of the encoded peptides of the α-defensin genes indicates that despite the overall high level of sequence divergence, certain amino acid residues or motifs are conserved within and between the three phylogenetic classes. The evolution of α-defensins in primates, therefore, appears to be governed by two opposing evolutionary forces. One force stabilizes specific amino acid residues and motifs to preserve the functional and structural integrity of the molecules and the other diversifies the sequences generating molecules with a wide range of activities against a large number of pathogens.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hendrix D, Levine M, Shi W. miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 2010; 11:R39. [PMID: 20370911 PMCID: PMC2884542 DOI: 10.1186/gb-2010-11-4-r39] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/19/2010] [Accepted: 04/06/2010] [Indexed: 12/14/2022] Open
Abstract
A novel method for prediction of miRs from deep sequencing data. Its utility is demonstrated when applied to Ciona data. MicroRNAs (miRs) have been broadly implicated in animal development and disease. We developed a novel computational strategy for the systematic, whole-genome identification of miRs from high throughput sequencing information. This method, miRTRAP, incorporates the mechanisms of miR biogenesis and includes additional criteria regarding the prevalence and quality of small RNAs arising from the antisense strand and neighboring loci. This program was applied to the simple chordate Ciona intestinalis and identified nearly 400 putative miR loci.
Collapse
Affiliation(s)
- David Hendrix
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, 142 LSA#3200, Berkeley, CA 94720-3200, USA.
| | | | | |
Collapse
|
17
|
Das S, Mohamedy U, Hirano M, Nei M, Nikolaidis N. Analysis of the immunoglobulin light chain genes in zebra finch: evolutionary implications. Mol Biol Evol 2010; 27:113-20. [PMID: 19744999 DOI: 10.1093/molbev/msp212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
All jawed vertebrates produce immunoglobulins (IGs) as a defense mechanism against pathogens. Typically, IGs are composed of two identical heavy chains (IGH) and two identical light chains (IGL). Most tetrapod species encode more than one isotype of light chains. Chicken is the only representative of birds for which genomic information is currently available and is an exception to the above rule because it encodes only a single IGL isotype (i.e., lambda). Here, we show that the genome of zebra finch, another bird species, encodes a single IGL isotype, that is, lambda, like the chicken. These results strongly suggest that the second isotype (i.e., kappa) present in both reptiles and mammals was lost in a very early stage of bird evolution. Furthermore, we show that both chicken and zebra finch contain a single set of functional variable, joining, and constant region genes and multiple variable region pseudogenes. The latter finding suggests that this type of genomic organization was already present in the common ancestor of these bird species and remained unchanged over a long evolutionary time. This conservation is in contrast with the high levels of variation observed in the mammalian IGL loci. The presence of a single functional variable region gene followed by multiple variable pseudogenes in zebra finch suggest that this species may be generating antibody diversity by a gene conversion-like mechanism like the chicken.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, USA.
| | | | | | | | | |
Collapse
|
18
|
Lu J, Shen Y, Carthew RW, Wang SM, Wu CI. Reply to evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat Genet 2010; 42:9-10. [PMID: 25067898 DOI: 10.1038/ng0110-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jian Lu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Yang Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Richard W Carthew
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | - San Ming Wang
- Center for Functional Genomics, Division of Medical Genetics, Department of Medicine, Evanston Northwestern Healthcare Research Institute, Northwestern University Feinberg School of Medicine, Evanston, Illinois, USA
| | - Chung-I Wu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA ; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, China ; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
An Overview of the Introns-First Theory. J Mol Evol 2009; 69:527-40. [DOI: 10.1007/s00239-009-9279-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
|
20
|
Das S, Nikolaidis N, Nei M. Genomic organization and evolution of immunoglobulin kappa gene enhancers and kappa deleting element in mammals. Mol Immunol 2009; 46:3171-7. [PMID: 19560204 PMCID: PMC2736800 DOI: 10.1016/j.molimm.2009.05.180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/30/2009] [Indexed: 11/20/2022]
Abstract
We have studied the genomic structure and evolutionary pattern of immunoglobulin kappa deleting element (KDE) and three kappa enhancers (KE5', KE3'P, and KE3'D) in eleven mammalian genomic sequences. Our results show that the relative positions and the genomic organization of the KDE and the kappa enhancers are conserved in all mammals studied and have not been affected by the local rearrangements in the immunoglobulin kappa (IGK) light chain locus over a long evolutionary time ( approximately 120 million years of mammalian evolution). Our observations suggest that the sequence motifs in these regulatory elements have been conserved by purifying selection to achieve proper regulation of the expression of the IGK light chain genes. The conservation of the three enhancers in all mammals indicates that these species may use similar mechanisms to regulate IGK gene expression. However, some activities of the IGK enhancers might have evolved in the eutherian lineage. The presence of the three IGK enhancers, KDE, and other recombining elements (REs) in all mammals (including platypus) suggest that these genomic elements were in place before the mammalian radiation.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|