1
|
Wang X, Ingvarsson PK. Quantifying adaptive evolution and the effects of natural selection across the Norway spruce genome. Mol Ecol 2023; 32:5288-5304. [PMID: 37622583 DOI: 10.1111/mec.17106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Detecting natural selection is one of the major goals of evolutionary genomics. Here, we sequenced the whole genome of 25 Picea abies individuals and quantified the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we showed that both negative selection and the rate of positively selected substitutions are very limited in coding regions. We found a positive correlation between the rate of adaptive substitutions and recombination rate and a negative correlation between the rate of adaptive substitutions and gene density, suggesting a widespread influence from Hill-Robertson interference on the efficiency of protein adaptation in P. abies. Finally, the distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicated the impact of natural selection on the genomic architecture of Norway spruce. Further gene ontology enrichment analysis for genes located in regions identified as undergoing either positive or long-term balancing selection also highlighted the specific molecular functions and biological processes that appear to be targets of selection in Norway spruce.
Collapse
Affiliation(s)
- Xi Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Abstract
It is known that methods to estimate the rate of adaptive evolution, which are based on the McDonald–Kreitman test, can be biased by changes in effective population size. Here, we demonstrate theoretically that changes in population size can also generate an artifactual correlation between the rate of adaptive evolution and any factor that is correlated to the strength of selection acting against deleterious mutations. In this context, we have investigated whether several site-level factors influence the rate of adaptive evolution in the divergence of humans and chimpanzees, two species that have been inferred to have undergone population size contraction since they diverged. We find that the rate of adaptive evolution, relative to the rate of mutation, is higher for more exposed amino acids, lower for amino acid pairs that are more dissimilar in terms of their polarity, volume, and lower for amino acid pairs that are subject to stronger purifying selection, as measured by the ratio of the numbers of nonsynonymous to synonymous polymorphisms (pN/pS). All of these correlations are opposite to the artifactual correlations expected under contracting population size. We therefore conclude that these correlations are genuine.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Ana Filipa Moutinho
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plon, Germany
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
3
|
Recent Apareiodon species evolutionary divergence (Characiformes: Parodontidae) evidenced by chromosomal and molecular inference. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Termolino P, Falque M, Aiese Cigliano R, Cremona G, Paparo R, Ederveen A, Martin OC, Consiglio FM, Conicella C. Recombination suppression in heterozygotes for a pericentric inversion induces the interchromosomal effect on crossovers in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1163-1175. [PMID: 31436858 PMCID: PMC6973161 DOI: 10.1111/tpj.14505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 05/02/2023]
Abstract
During meiosis, recombination ensures allelic exchanges through crossovers (COs) between the homologous chromosomes. Advances in our understanding of the rules of COs have come from studies of mutations including structural chromosomal rearrangements that, when heterozygous, are known to impair COs in various organisms. In this work, we investigate the effect of a large heterozygous pericentric inversion on male and female recombination in Arabidopsis. The inversion was discovered in the Atmcc1 mutant background and was characterized through genetic and next-generation sequencing analysis. Reciprocal backcross populations, each consisting of over 400 individuals, obtained from the mutant and the wild type, both crossed with Landsberg erecta, were analyzed genome-wide by 143 single-nucleotide polymorphisms. The negative impact of inversion became evident in terms of CO loss in the rearranged chromosome in both male and female meiosis. No single-CO event was detected within the inversion, consistent with a post-meiotic selection operating against unbalanced gametes. Cytological analysis of chiasmata in F1 plants confirmed that COs were reduced in male meiosis in the chromosome with inversion. Crossover suppression on the rearranged chromosome is associated with a significant increase of COs in the other chromosomes, thereby maintaining unchanged the number of COs per cell. The CO pattern observed in our study is consistent with the interchromosomal (IC) effect as first described in Drosophila. In contrast to male meiosis, in female meiosis no IC effect is visible. This may be related to the greater strength of interference that constrains the CO number in excess of the minimum value imposed by CO assurance in Arabidopsis female meiosis.
Collapse
Affiliation(s)
- Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Matthieu Falque
- Génétique Quantitative et Evolution‐Le MoulonInstitut National de la Recherche AgronomiqueUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐Saclay91190Gif‐sur‐YvetteFrance
| | | | - Gaetana Cremona
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Rosa Paparo
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Antoine Ederveen
- Department of Molecular Plant PhysiologyInstitute for Water and Wetland Research (IWWR)Radboud University Nijmegen9102 6500Nijmegenthe Netherlands
| | - Olivier C. Martin
- Génétique Quantitative et Evolution‐Le MoulonInstitut National de la Recherche AgronomiqueUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐Saclay91190Gif‐sur‐YvetteFrance
| | - Federica M. Consiglio
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Clara Conicella
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| |
Collapse
|
5
|
Qiu F, Baack EJ, Whitney KD, Bock DG, Tetreault HM, Rieseberg LH, Ungerer MC. Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. THE NEW PHYTOLOGIST 2019; 221:1609-1618. [PMID: 30368824 DOI: 10.1111/nph.15465] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Flowering plants serve as a powerful model for studying the evolution of nuclear genome size (GS) given the tremendous GS variation that exists both within and across angiosperm lineages. Helianthus sunflowers consist of c. 50 species native to North America that occupy diverse habitats and vary in ploidy level. In the current study, we generated a comprehensive GS database for 49 Helianthus species using flow cytometric approaches. We examined variability across the genus and present a comparative phylogenetic analysis of GS evolution in diploid Helianthus species. Results demonstrated that different clades of diploid Helianthus species showed evolutionary patterns of GS contraction, expansion and relative stasis, with annual diploid species evolving smaller GS with the highest rate of evolution. Phylogenetic comparative analyses of diploids revealed significant negative associations of GS with temperature seasonality and cell production rate, indicating that the evolution of larger GS in Helianthus diploids may be more permissible in habitats with longer growing seasons where selection for more rapid growth may be relaxed. The Helianthus GS database presented here and corresponding analyses of environmental and phenotypic correlates will facilitate ongoing and future research on the ultimate drivers of GS evolution in this well-studied North American plant genus.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Eric J Baack
- Department of Biology, Luther College, Decorah, IA, 52101, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Dan G Bock
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
6
|
Luo W, Qin N, Mu Y, Tang H, Deng M, Liu Y, Chen G, Jiang Q, Chen G, Wei Y, Zheng Y, Lan X, Ma J. Variation and diversity of the breakpoint sequences on 4AL for the 4AL/5AL translocation in Triticum. Genome 2018; 61:635-641. [PMID: 29962237 DOI: 10.1139/gen-2018-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The translocation of 4AL/5AL in Triticum, which occurred before the differentiation of T. urartu and einkorn, is an important chromosomal rearrangement. Recently, the first identification of breakpoint sequence on 4AL for this translocation provides the opportunity to analyze the variation and diversity of breakpoints in Triticum. In this study, the breakpoint regions of 52 accessions from 21 species were isolated and further characterized. The sequences were divided into 12 types based on their lengths, which ranged from 2009 to 2552 bp. Cluster analysis showed that they were further divided into three groups. Interesting evolutionary relationships among a few of the species were observed and discussed. Multiple sequence alignment of the 52 sequences made it possible to detect 13 insertion and deletion length polymorphisms (InDels) and 101 single nucleotide polymorphisms (SNPs). Furthermore, several species- or accession-specific SNPs or InDels were also identified. Based on BLAST analysis of the conserved sequences, the breakpoint was narrowed down to a 125 bp fragment. Taken together, the results obtained in this study enrich our understanding of chromosomal breakpoints and will be useful for the identification of other breakpoints in wheat.
Collapse
Affiliation(s)
- Wei Luo
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Nana Qin
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Mu
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaping Tang
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mei Deng
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yaxi Liu
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangdeng Chen
- b Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Qiantao Jiang
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guoyue Chen
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuming Wei
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Youliang Zheng
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiujin Lan
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jian Ma
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
7
|
Romero ML, Colombo PC, Remis MI. Microsatellite DNA analysis of population structure in Cornops aquaticum (Orthoptera: Acrididae), over a cline for three Robertsonian translocations. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9915-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Kang J, Ma X, He S. Population genetics analysis of the Nujiang catfish Creteuchiloglanis macropterus through a genome-wide single nucleotide polymorphisms resource generated by RAD-seq. Sci Rep 2017; 7:2813. [PMID: 28588195 PMCID: PMC5460224 DOI: 10.1038/s41598-017-02853-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Advances in genome scanning using high-throughput sequencing technologies has led to a revolution in studies of non-model organisms. The glyptosternoid fish Creteuchiloglanis macropterus, is widely distributed in the main stem and tributaries of the Nujiang River basin. Here, we analyzed IIB restriction-site-associated DNA (2b-RAD) sequences and mitochondrial DNA sequences, to assess the genomic signature of adaptation by detecting and estimating the degree of genetic differentiation among ten Creteuchiloglanis macropterus populations from the Nujiang River. The analyses revealed significant population differentiation among the up-tributaries, main stem, mid-tributary and low-tributary. Annotation of contigs containing outlier SNPs revealed that the candidate genes showed significant enrichment in several important biological process terms between up-tributaries and low-tributary, and exhibited prominent enrichment in the term macromolecular metabolic process between all tributaries and the main stem. Population dynamics analyses indicated that the Late Pleistocene glaciations strongly influenced the demographic history of C. macropterus. Our results provide strong evidence for the utility of RAD-seq in population genetics studies, and our generated SNP resource should provide a valuable tool for population genomics studies of C. macropterus in the future.
Collapse
Affiliation(s)
- Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuhui Ma
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
9
|
Recurrence of Chromosome Rearrangements and Reuse of DNA Breakpoints in the Evolution of the Triticeae Genomes. G3-GENES GENOMES GENETICS 2016; 6:3837-3847. [PMID: 27729435 PMCID: PMC5144955 DOI: 10.1534/g3.116.035089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chromosomal rearrangements (CRs) play important roles in karyotype diversity and speciation. While many CR breakpoints have been characterized at the sequence level in yeast, insects, and primates, little is known about the structure of evolutionary CR breakpoints in plant genomes, which are much more dynamic in genome size and sequence organization. Here, we report identification of breakpoints of a translocation between chromosome arms 4L and 5L of Triticeae, which is fixed in several species, including diploid wheat and rye, by comparative mapping and analysis of the draft genome and chromosome survey sequences of the Triticeae species. The wheat translocation joined the ends of breakpoints downstream of a WD40 gene on 4AL and a gene of the PMEI family on 5AL. A basic helix-loop-helix transcription factor gene in 5AL junction was significantly restructured. Rye and wheat share the same position for the 4L breakpoint, but the 5L breakpoint positions are not identical, although very close in these two species, indicating the recurrence of 4L/5L translocations in the Triticeae. Although barley does not carry the translocation, collinearity across the breakpoints was violated by putative inversions and/or transpositions. Alignment with model grass genomes indicated that the translocation breakpoints coincided with ancient inversion junctions in the Triticeae ancestor. Our results show that the 4L/5L translocation breakpoints represent two CR hotspots reused during Triticeae evolution, and support breakpoint reuse as a widespread mechanism in all eukaryotes. The mechanisms of the recurrent translocation and its role in Triticeae evolution are also discussed.
Collapse
|
10
|
Moyers BT, Rieseberg LH. Remarkable life history polymorphism may be evolving under divergent selection in the silverleaf sunflower. Mol Ecol 2016; 25:3817-30. [DOI: 10.1111/mec.13723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Brook T. Moyers
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver British Columbia Canada V6T 1Z4
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver British Columbia Canada V6T 1Z4
- Department of Biology; Indiana University; 1001 E 3rd St Bloomington IN 47405 USA
| |
Collapse
|
11
|
Willett CS, Lima TG, Kovaleva I, Hatfield L. Chromosome-Wide Impacts on the Expression of Incompatibilities in Hybrids of Tigriopus californicus. G3 (BETHESDA, MD.) 2016; 6:1739-49. [PMID: 27172190 PMCID: PMC4889669 DOI: 10.1534/g3.116.028050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
Chromosome rearrangements such as inversions have been recognized previously as contributing to reproductive isolation by maintaining alleles together that jointly contribute to deleterious genetic interactions and postzygotic reproductive isolation. In this study, an impact of potential incompatibilities merely residing on the same chromosome was found in crosses of populations of the copepod Tigriopus californicus When genetically divergent populations of this copepod are crossed, hybrids show reduced fitness, and deviations from expected genotypic ratios can be used to determine regions of the genome involved in deleterious interactions. In this study, a set of markers was genotyped for a cross of two populations of T. californicus, and these markers show widespread deviations from Mendelian expectations, with entire chromosomes showing marked skew. Despite the importance of mtDNA/nuclear interactions in incompatibilities in this system in previous studies, in these crosses the expected patterns stemming from these interactions are not widely apparent. Females lack recombination in this species, and a striking difference is observed between male and female backcrosses. This suggests that the maintenance of multiple loci on individual chromosomes can enable some incompatibilities, perhaps playing a similar role in the initial rounds of hybridization to chromosomal rearrangements in preserving sets of alleles together that contribute to incompatibilities. Finally, it was observed that candidate pairs of incompatibility regions are not consistently interacting across replicates or subsets of these crosses, despite the repeatability of the deviations at many of the single loci themselves, suggesting that more complicated models of Dobzhansky-Muller incompatibilities may need to be considered.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Thiago G Lima
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Inna Kovaleva
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Lydia Hatfield
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
12
|
Liu BJ, Zhang BD, Xue DX, Gao TX, Liu JX. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis). PLoS One 2016; 11:e0154020. [PMID: 27100462 PMCID: PMC4839715 DOI: 10.1371/journal.pone.0154020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource.
Collapse
Affiliation(s)
- Bing-Jian Liu
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bai-Dong Zhang
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Xiu Xue
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tian-Xiang Gao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jin-Xian Liu
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
13
|
Ortiz-Barrientos D, Engelstädter J, Rieseberg LH. Recombination Rate Evolution and the Origin of Species. Trends Ecol Evol 2016; 31:226-236. [PMID: 26831635 DOI: 10.1016/j.tree.2015.12.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
A recipe for dissolving incipient species into a continuum of phenotypes is to recombine their genetic material. Therefore, students of speciation have become increasingly interested in the mechanisms by which recombination between locally adapted lineages is reduced. Evidence abounds that chromosomal rearrangements, via their suppression of recombination during meiosis in hybrids, play a major role in adaptation and speciation. By contrast, genic modifiers of recombination rates have been largely ignored in studies of speciation. We show how both types of reduction in recombination rates facilitate divergence in the face of gene flow, including the early stages of adaptive divergence, the persistence of species after secondary contact, and reinforcement.
Collapse
Affiliation(s)
- Daniel Ortiz-Barrientos
- The University of Queensland, School of Biological Sciences, St. Lucia, Queensland, Australia.
| | - Jan Engelstädter
- The University of Queensland, School of Biological Sciences, St. Lucia, Queensland, Australia
| | - Loren H Rieseberg
- University of British Columbia, Department of Botany, Vancouver, British Columbia, Canada; Indiana University, Biology Department, Bloomington, IN 47405-7005, USA
| |
Collapse
|
14
|
Zhang BD, Xue DX, Wang J, Li YL, Liu BJ, Liu JX. Development and preliminary evaluation of a genomewide single nucleotide polymorphisms resource generated by RAD-seq for the small yellow croaker (Larimichthys polyactis). Mol Ecol Resour 2015; 16:755-68. [PMID: 26439680 DOI: 10.1111/1755-0998.12476] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/30/2023]
Abstract
Recent advances in high-throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction-site-associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long-term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST -based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.
Collapse
Affiliation(s)
- Bai-Dong Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Xiu Xue
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Juan Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yu-Long Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Jian Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Xian Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
15
|
Wadsworth CB, Li X, Dopman EB. A recombination suppressor contributes to ecological speciation in OSTRINIA moths. Heredity (Edinb) 2015; 114:593-600. [PMID: 25626887 DOI: 10.1038/hdy.2014.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023] Open
Abstract
Despite unparalleled access to species' genomes in our post-genomic age, we often lack adequate biological explanations for a major hallmark of the speciation process-genetic divergence. In the presence of gene flow, chromosomal rearrangements such as inversions are thought to promote divergence and facilitate speciation by suppressing recombination. Using a combination of genetic crosses, phenotyping of a trait underlying ecological isolation, and population genetic analysis of wild populations, we set out to determine whether evidence supports a role for recombination suppressors during speciation between the Z and E strains of European corn borer moth (Ostrinia nubilalis). Our results are consistent with the presence of an inversion that has contributed to accumulation of ecologically adaptive alleles and genetic differentiation across roughly 20% of the Ostrinia sex chromosome (~4 Mb). Patterns in Ostrinia suggest that chromosomal divergence may involve two separate phases-one driving its transient origin through local adaptation and one determining its stable persistence through differential introgression. As the evolutionary rate of rearrangements in lepidopteran genomes appears to be one of the fastest among eukaryotes, structural mutations may have had a disproportionate role during adaptive divergence and speciation in Ostrinia and in other moths and butterflies.
Collapse
Affiliation(s)
- C B Wadsworth
- Department of Biology, Tufts University, Medford, MA, USA
| | - X Li
- Department of Biology, Tufts University, Medford, MA, USA
| | - E B Dopman
- Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
16
|
Huang CL, Ho CW, Chiang YC, Shigemoto Y, Hsu TW, Hwang CC, Ge XJ, Chen C, Wu TH, Chou CH, Huang HJ, Gojobori T, Osada N, Chiang TY. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus/sinensis complex (Poaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:834-847. [PMID: 25237766 DOI: 10.1111/tpj.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.
Collapse
Affiliation(s)
- Chao-Li Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol 2014; 27:2573-84. [PMID: 25290698 DOI: 10.1111/jeb.12513] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
Abstract
A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process.
Collapse
Affiliation(s)
- A Belyayev
- Institute of Botany, Czech Academy of Sciences, Pruhonice near Prague, Czech Republic
| |
Collapse
|
18
|
Feder JL, Nosil P, Flaxman SM. Assessing when chromosomal rearrangements affect the dynamics of speciation: implications from computer simulations. Front Genet 2014; 5:295. [PMID: 25206365 PMCID: PMC4144205 DOI: 10.3389/fgene.2014.00295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/08/2014] [Indexed: 12/03/2022] Open
Abstract
Many hypotheses have been put forth to explain the origin and spread of inversions, and their significance for speciation. Several recent genic models have proposed that inversions promote speciation with gene flow due to the adaptive significance of the genes contained within them and because of the effects inversions have on suppressing recombination. However, the consequences of inversions for the dynamics of genome wide divergence across the speciation continuum remain unclear, an issue we examine here. We review a framework for the genomics of speciation involving the congealing of the genome into alternate adaptive states representing species (“genome wide congealing”). We then place inversions in this context as examples of how genetic hitchhiking can potentially hasten genome wide congealing. Specifically, we use simulation models to (i) examine the conditions under which inversions may speed genome congealing and (ii) quantify predicted magnitudes of these effects. Effects of inversions on promoting speciation were most common and pronounced when inversions were initially fixed between populations before secondary contact and adaptation involved many genes with small fitness effects. Further work is required on the role of underdominance and epistasis between a few loci of major effect within inversions. The results highlight five important aspects of the roles of inversions in speciation: (i) the geographic context of the origins and spread of inversions, (ii) the conditions under which inversions can facilitate divergence, (iii) the magnitude of that facilitation, (iv) the extent to which the buildup of divergence is likely to be biased within vs. outside of inversions, and (v) the dynamics of the appearance and disappearance of exceptional divergence within inversions. We conclude by discussing the empirical challenges in showing that inversions play a central role in facilitating speciation with gene flow.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, UK
| | - Samuel M Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO, USA
| |
Collapse
|
19
|
Harrison RG, Larson EL. Hybridization, Introgression, and the Nature of Species Boundaries. J Hered 2014; 105 Suppl 1:795-809. [DOI: 10.1093/jhered/esu033] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Abstract
Knowledge of the nature and extent of karyotypic differences between species provides insight into the evolutionary history of the genomes in question and, in the case of closely related species, the potential for genetic exchange between taxa. We constructed high-density genetic maps of the silverleaf sunflower (Helianthus argophyllus) and Algodones Dune sunflower (H. niveus ssp. tephrodes) genomes and compared them to a consensus map of cultivated sunflower (H. annuus) to identify chromosomal rearrangements between species. The genetic maps of H. argophyllus and H. niveus ssp. tephrodes included 17 linkage groups each and spanned 1337 and 1478 cM, respectively. Comparative analyses revealed greater divergence between H. annuus and H. niveus ssp. tephrodes (13 inverted segments, 18 translocated segments) than between H. annuus and H. argophyllus (10 inverted segments, 8 translocated segments), consistent with their known phylogenetic relationships. Marker order was conserved across much of the genome, with 83 and 64% of the H. argophyllus and H. niveus ssp. tephrodes genomes, respectively, being syntenic with H. annuus. Population genomic analyses between H. annuus and H. argophyllus, which are sympatric across a portion of the natural range of H. annuus, revealed significantly elevated genetic structure in rearranged portions of the genome, indicating that such rearrangements are associated with restricted gene flow between these two species.
Collapse
|
21
|
Kantar MB, Baute GJ, Bock DG, Rieseberg LH. Genomic variation in Helianthus: learning from the past and looking to the future. Brief Funct Genomics 2014; 13:328-40. [DOI: 10.1093/bfgp/elu004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
22
|
Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat Commun 2013; 4:1827. [PMID: 23652015 DOI: 10.1038/ncomms2833] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/04/2013] [Indexed: 01/28/2023] Open
Abstract
Genomic studies of speciation often report the presence of highly differentiated genomic regions interspersed within a milieu of weakly diverged loci. The formation of these speciation islands is generally attributed to reduced inter-population gene flow near loci under divergent selection, but few studies have critically evaluated this hypothesis. Here, we report on transcriptome scans among four recently diverged pairs of sunflower (Helianthus) species that vary in the geographical context of speciation. We find that genetic divergence is lower in sympatric and parapatric comparisons, consistent with a role for gene flow in eroding neutral differences. However, genomic islands of divergence are numerous and small in all comparisons, and contrary to expectations, island number and size are not significantly affected by levels of interspecific gene flow. Rather, island formation is strongly associated with reduced recombination rates. Overall, our results indicate that the functional architecture of genomes plays a larger role in shaping genomic divergence than does the geography of speciation.
Collapse
|
23
|
Feder JL, Flaxman SM, Egan SP, Comeault AA, Nosil P. Geographic Mode of Speciation and Genomic Divergence. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135825] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey L. Feder
- Department of Biological Sciences,
- Environmental Change Initiative, and
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556; ,
| | - Samuel M. Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309;
| | - Scott P. Egan
- Department of Biological Sciences,
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556; ,
| | - Aaron A. Comeault
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom; ,
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom; ,
| |
Collapse
|
24
|
Eckert AJ, Bower AD, Jermstad KD, Wegrzyn JL, Knaus BJ, Syring JV, Neale DB. Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus). Mol Ecol 2013; 22:5635-50. [PMID: 24134614 DOI: 10.1111/mec.12514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne ). Ample variation for these estimates, however, remains even when comparisons are made across species with similar values of Ne . An open question thus remains as to why the large disparity for estimates of adaptive evolution exists among plant species. Here, we have estimated the distribution of deleterious fitness effects (DFE) and the fraction of adaptive nonsynonymous substitutions (α) for 11 species of soft pines (subgenus Strobus) using DNA sequence data from 167 orthologous nuclear gene fragments. Most newly arising nonsynonymous mutations were inferred to be so strongly deleterious that they would rarely become fixed. Little evidence for long-term adaptive evolution was detected, as all 11 estimates for α were not significantly different from zero. Nucleotide diversity at synonymous sites, moreover, was strongly correlated with attributes of the DFE across species, thus illustrating a strong consistency with the expectations from the Nearly Neutral Theory of molecular evolution. Application of these patterns to genome-wide expectations for these species, however, was difficult as the loci chosen for the analysis were a biased set of conserved loci, which greatly influenced the estimates of the DFE and α. This implies that genome-wide parameter estimates will need truly genome-wide data, so that many of the existing patterns documented previously for forest trees (e.g. little evidence for signature of selection) may need revision.
Collapse
Affiliation(s)
- Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Nosil P, Feder JL. GENOME EVOLUTION AND SPECIATION: TOWARD QUANTITATIVE DESCRIPTIONS OF PATTERN AND PROCESS. Evolution 2013; 67:2461-7. [DOI: 10.1111/evo.12191] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 05/30/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield; S10 2TN; United Kingdom
| | - Jeffrey L. Feder
- Department of Biological Sciences; 290C Galvin Life Sciences Building; University of Notre Dame; Notre Dame; Indiana; 46556
| |
Collapse
|
26
|
Paape T, Bataillon T, Zhou P, J Y Kono T, Briskine R, Young ND, Tiffin P. Selection, genome-wide fitness effects and evolutionary rates in the model legume Medicago truncatula. Mol Ecol 2013; 22:3525-38. [PMID: 23773281 DOI: 10.1111/mec.12329] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/22/2013] [Accepted: 03/12/2013] [Indexed: 12/15/2022]
Abstract
Sequence data for >20 000 annotated genes from 56 accessions of Medicago truncatula were used to identify potential targets of positive selection, the determinants of evolutionary rate variation and the relative importance of positive and purifying selection in shaping nucleotide diversity. Based upon patterns of intraspecific diversity and interspecific divergence, c. 50-75% of nonsynonymous polymorphisms are subject to strong purifying selection and 1% of the sampled genes harbour a signature of positive selection. Combining polymorphism with expression data, we estimated the distribution of fitness effects and found that the proportion of deleterious mutations is significantly greater for expressed genes than for genes with undetected transcripts (nonexpressed) in a previous RNA-seq experiment and greater for broadly expressed genes than those expressed in only a single tissue. Expression level is the strongest correlate of evolutionary rates at nonsynonymous sites, and despite multiple genomic features being significantly correlated with evolutionary rates, they explain less than 20% of the variation in nonsynonymous rates (dN) and <15% of the variation in either synonymous rates (dS) or dN:dS. Among putative targets of selection were genes involved in defence against pathogens and herbivores, genes with roles in mediating the relationship with rhizobial symbionts and one-third of annotated histone-lysine methyltransferases. Adaptive evolution of the methyltransferases suggests that positive selection in gene expression may have occurred through evolution of enzymes involved in epigenetic modification.
Collapse
Affiliation(s)
- Timothy Paape
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Catchen J, Bassham S, Wilson T, Currey M, O’Brien C, Yeates Q, Cresko WA. The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol Ecol 2013; 22:2864-83. [PMID: 23718143 PMCID: PMC3712868 DOI: 10.1111/mec.12330] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 02/11/2013] [Accepted: 02/27/2013] [Indexed: 12/16/2022]
Abstract
Understanding how genetic variation is partitioned across genomes within and among populations is a fundamental problem in ecological and evolutionary genetics. To address this problem, we studied the threespine stickleback fish, which has repeatedly undergone parallel phenotypic and genetic differentiation when oceanic fish have invaded freshwater habitats. While significant evolutionary genetic research has been performed using stickleback from geographic regions that have been deglaciated in the last 20 000 years, less research has focused on freshwater populations that predate the last glacial maximum. We performed restriction-site associated DNA-sequencing (RAD-seq) based population genomic analyses on stickleback from across Oregon, which was not glaciated during the last maximum. We sampled stickleback from coastal, Willamette Basin and central Oregon sites, analysed their genetic diversity using RAD-seq, performed structure analyses, reconstructed their phylogeographic history and tested the hypothesis of recent stickleback introduction into central Oregon, where incidence of this species was only recently documented. Our results showed a clear phylogeographic break between coastal and inland populations, with oceanic populations exhibiting the lowest levels of divergence from one another. Willamette Basin and central Oregon populations formed a clade of closely related populations, a finding consistent with a recent introduction of stickleback into central Oregon. Finally, genome-wide analysis of genetic diversity (π) and correlations of alleles within individuals in subpopulations (FIS) supported a role for introgressive hybridization in coastal populations and a recent expansion in central Oregon. Our results exhibit the power of next-generation sequencing genomic approaches such as RAD-seq to identify both historical population structure and recent colonization history.
Collapse
Affiliation(s)
- Julian Catchen
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 97403
| | - Taylor Wilson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 97403
| | - Mark Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 97403
| | - Conor O’Brien
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 97403
| | - Quick Yeates
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 97403
| |
Collapse
|
28
|
Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc Natl Acad Sci U S A 2013; 110:E1743-51. [PMID: 23610436 DOI: 10.1073/pnas.1219381110] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Numerous studies of ecological genetics have found that alleles contributing to local adaptation sometimes cluster together, forming "genomic islands of divergence." Divergence hitchhiking theory posits that these clusters evolve by the preferential establishment of tightly linked locally adapted mutations, because such linkage reduces the rate that recombination breaks up locally favorable combinations of alleles. Here, I use calculations based on previously developed analytical models of divergence hitchhiking to show that very few clustered mutations should be expected in a single bout of adaptation, relative to the number of unlinked mutations, suggesting that divergence hitchhiking theory alone may often be insufficient to explain empirical observations. Using individual-based simulations that allow for the transposition of a single genetic locus from one position on a chromosome to another, I then show that tight clustering of the loci involved in local adaptation tends to evolve on biologically realistic time scales. These results suggest that genomic rearrangements may often be an important component of local adaptation and the evolution of genomic islands of divergence. More generally, these results suggest that genomic architecture and functional neighborhoods of genes may be actively shaped by natural selection in heterogeneous environments. Because small-scale changes in gene order are relatively common in some taxa, comparative genomic studies could be coupled with studies of adaptation to explore how commonly such rearrangements are involved in local adaptation.
Collapse
|
29
|
Andrew RL, Rieseberg LH. DIVERGENCE IS FOCUSED ON FEW GENOMIC REGIONS EARLY IN SPECIATION: INCIPIENT SPECIATION OF SUNFLOWER ECOTYPES. Evolution 2013; 67:2468-82. [DOI: 10.1111/evo.12106] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/20/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany, University of British Columbia, 3529-6270 University Blvd; Vancouver; British Columbia; V6T 1Z4; Canada
| | | |
Collapse
|
30
|
Belyayev A, Raskina O. Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences. ANNALS OF BOTANY 2013; 111:531-8. [PMID: 23393097 PMCID: PMC3605956 DOI: 10.1093/aob/mct023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/20/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Genome restructuring is an ongoing process in natural plant populations. The influence of environmental changes on the genome is crucial, especially during periods of extreme climatic fluctuations. Interactions between the environment and the organism manifest to the greatest extent at the limits of the species' ecological niche. Thus, marginal populations are expected to exhibit lower genetic diversity and higher genetic differentiation than central populations, and some models assume that marginal populations play an important role in the maintenance and generation of biological diversity. SCOPE In this review, long-term data on the cytogenetic characteristics of diploid Aegilops speltoides Tauch populations are summarized and discussed. This species is distributed in and around the Fertile Crescent and is proposed to be the wild progenitor of a number of diploid and polyploid wheat species. In marginal populations of Ae. speltoides, numerical chromosomal aberrations, spontaneous aneuploidy, B-chromosomes, rDNA cluster repatterning and reduction in the species-specific and tribe-specific tandem repeats have been detected. Significant changes were observed and occurred in parallel with changes in plant morphology and physiology. CONCLUSIONS Considerable genomic variation at the chromosomal level was found in the marginal populations of Ae. speltoides. It is likely that a specific combination of gene mutations and chromosomal repatterning has produced the evolutionary trend in each specific case, i.e. for a particular species or group of related species in a given period of time and in a certain habitat. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.
Collapse
|
31
|
Feder JL, Flaxman SM, Egan SP, Nosil P. Hybridization and the build-up of genomic divergence during speciation. J Evol Biol 2013; 26:261-6. [PMID: 23324002 DOI: 10.1111/jeb.12009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 01/18/2023]
Affiliation(s)
- J L Feder
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA.
| | | | | | | |
Collapse
|
32
|
Flaxman SM, Feder JL, Nosil P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution 2013; 67:2577-91. [PMID: 24033168 DOI: 10.1111/evo.12055] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022]
Abstract
A major issue in evolutionary biology is explaining patterns of differentiation observed in population genomic data, as divergence can be due to both direct selection on a locus and genetic hitchhiking. "Divergence hitchhiking" (DH) theory postulates that divergent selection on a locus reduces gene flow at physically linked sites, facilitating the formation of localized clusters of tightly linked, diverged loci. "Genome hitchhiking" (GH) theory emphasizes genome-wide effects of divergent selection. Past theoretical investigations of DH and GH focused on static snapshots of divergence. Here, we used simulations assessing a variety of strengths of selection, migration rates, population sizes, and mutation rates to investigate the relative importance of direct selection, GH, and DH in facilitating the dynamic buildup of genomic divergence as speciation proceeds through time. When divergently selected mutations were limiting, GH promoted divergence, but DH had little measurable effect. When populations were small and divergently selected mutations were common, DH enhanced the accumulation of weakly selected mutations, but this contributed little to reproductive isolation. In general, GH promoted reproductive isolation by reducing effective migration rates below that due to direct selection alone, and was important for genome-wide "congealing" or "coupling" of differentiation (F(ST)) across loci as speciation progressed.
Collapse
Affiliation(s)
- Samuel M Flaxman
- Department of Ecology and Evolutionary Biology, N211 Ramaley Hall, University of Colorado, Boulder, Colorado.
| | | | | |
Collapse
|
33
|
Abstract
Genetic differentiation during adaptive divergence and speciation is heterogeneous among genomic regions. Some regions can be highly differentiated between populations, for example, because they harbour genes under divergent selection or those causing reproductive isolation and thus are resistant to gene flow. Other regions might be homogenized by gene flow and thus weakly differentiated. Debates persist about the number of differentiated regions expected under divergence with gene flow, and their causes, size, and genomic distribution. In this issue of Molecular Ecology, a study of freshwater stickleback used next-generation sequencing to shed novel insight into these issues (Roesti et al. 2012). Many genomic regions distributed across the genome were strongly differentiated, indicating divergence with gene flow can involve a greater number of loci than often thought. Nonetheless, differentiation of some regions, such as those near the centre of chromosomes where recombination is reduced, was strongly accentuated over others. Thus, divergence was widespread yet highly heterogeneous across the genome. Moreover, different population pairs varied in patterns of differentiation, illustrating how genomic divergence builds up across stages of the speciation process. The study demonstrates how variation in different evolutionary processes, such as selection and recombination rate, can combine to result in similar genomic patterns. Future work could focus on teasing apart the contributions of different processes for causing differentiation, a task facilitated by experimental manipulations.
Collapse
Affiliation(s)
- Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
34
|
Guo Y, Khanal S, Tang S, Bowers JE, Heesacker AF, Khalilian N, Nagy ED, Zhang D, Taylor CA, Stalker HT, Ozias-Akins P, Knapp SJ. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut. BMC Genomics 2012; 13:608. [PMID: 23140574 PMCID: PMC3532320 DOI: 10.1186/1471-2164-13-608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. RESULTS A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A- and B-genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution. CONCLUSIONS Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut.
Collapse
Affiliation(s)
- Yufang Guo
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
- Department of Horticulture, The University of Georgia, Tifton, GA, 31973, USA
| | - Sameer Khanal
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Shunxue Tang
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - John E Bowers
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Adam F Heesacker
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Nelly Khalilian
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Ervin D Nagy
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Dong Zhang
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Christopher A Taylor
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - H Thomas Stalker
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Peggy Ozias-Akins
- Department of Horticulture, The University of Georgia, Tifton, GA, 31973, USA
| | - Steven J Knapp
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
35
|
Affiliation(s)
- Donald A Levin
- Section of Integrative Biology, University of Texas, Austin, TX, 78713, USA
| |
Collapse
|
36
|
Andrew RL, Kane NC, Baute GJ, Grassa CJ, Rieseberg LH. Recent nonhybrid origin of sunflower ecotypes in a novel habitat. Mol Ecol 2012; 22:799-813. [DOI: 10.1111/mec.12038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 02/04/2023]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd; Vancouver; BC; Canada; V6T 1Z4
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd; Vancouver; BC; Canada; V6T 1Z4
| | - Greg J. Baute
- Department of Botany; University of British Columbia; 3529-6270 University Blvd; Vancouver; BC; Canada; V6T 1Z4
| | - Christopher J. Grassa
- Department of Botany; University of British Columbia; 3529-6270 University Blvd; Vancouver; BC; Canada; V6T 1Z4
| | | |
Collapse
|
37
|
Campitelli BE, Stinchcombe JR. Natural selection maintains a single-locus leaf shape cline in Ivyleaf morning glory,Ipomoea hederacea. Mol Ecol 2012; 22:552-64. [DOI: 10.1111/mec.12057] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/13/2012] [Accepted: 07/25/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Brandon E. Campitelli
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street; Toronto; ON; M5S 3B2; Canada
| | | |
Collapse
|
38
|
Kane NC, Burke JM, Marek L, Seiler G, Vear F, Baute G, Knapp SJ, Vincourt P, Rieseberg LH. Sunflower genetic, genomic and ecological resources. Mol Ecol Resour 2012; 13:10-20. [PMID: 23039950 DOI: 10.1111/1755-0998.12023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022]
Abstract
Long a major focus of genetic research and breeding, sunflowers (Helianthus) are emerging as an increasingly important experimental system for ecological and evolutionary studies. Here, we review the various attributes of wild and domesticated sunflowers that make them valuable for ecological experimentation and describe the numerous publicly available resources that have enabled rapid advances in ecological and evolutionary genetics. Resources include seed collections available from germplasm centres at the USDA and INRA, genomic and EST sequences, mapping populations, genetic markers, genetic and physical maps and other forward- and reverse-genetic tools. We also discuss some of the key evolutionary, genetic and ecological questions being addressed in sunflowers, as well as gaps in our knowledge and promising areas for future research.
Collapse
Affiliation(s)
- Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Moody ML, Rieseberg LH. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus). Mol Phylogenet Evol 2012; 64:145-55. [PMID: 22724134 DOI: 10.1016/j.ympev.2012.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.
Collapse
Affiliation(s)
- Michael L Moody
- School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia.
| | | |
Collapse
|
40
|
Guerrero RF, Rousset F, Kirkpatrick M. Coalescent patterns for chromosomal inversions in divergent populations. Philos Trans R Soc Lond B Biol Sci 2012; 367:430-8. [PMID: 22201172 DOI: 10.1098/rstb.2011.0246] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation.
Collapse
Affiliation(s)
- Rafael F Guerrero
- Section of Integrative Biology, University of Texas, Austin, TX 78712, USA.
| | | | | |
Collapse
|
41
|
Nosil P, Feder JL. Genomic divergence during speciation: causes and consequences. Philos Trans R Soc Lond B Biol Sci 2012; 367:332-42. [PMID: 22201163 DOI: 10.1098/rstb.2011.0263] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Speciation is a fundamental process responsible for the diversity of life. Progress has been made in detecting individual 'speciation genes' that cause reproductive isolation. In contrast, until recently, less attention has been given to genome-wide patterns of divergence during speciation. Thus, major questions remain concerning how individual speciation genes are arrayed within the genome, and how this affects speciation. This theme issue is dedicated to exploring this genomic perspective of speciation. Given recent sequencing and computational advances that now allow genomic analyses in most organisms, the goal is to help move the field towards a more integrative approach. This issue draws upon empirical studies in plants and animals, and theoretical work, to review and further document patterns of genomic divergence. In turn, these studies begin to disentangle the role that different processes, such as natural selection, gene flow and recombination rate, play in generating observed patterns. These factors are considered in the context of how genomes diverge as speciation unfolds, from beginning to end. The collective results point to how experimental work is now required, in conjunction with theory and sequencing studies, to move the field from descriptive studies of patterns of divergence towards a predictive framework that tackles the causes and consequences of genome-wide patterns.
Collapse
Affiliation(s)
- Patrik Nosil
- Department of Ecology and Evolutionary Biology, University of Boulder, Boulder, CO 80309, USA.
| | | |
Collapse
|
42
|
Via S. Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philos Trans R Soc Lond B Biol Sci 2012; 367:451-60. [PMID: 22201174 DOI: 10.1098/rstb.2011.0260] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In allopatric populations, geographical separation simultaneously isolates the entire genome, allowing genetic divergence to accumulate virtually anywhere in the genome. In sympatric populations, however, the strong divergent selection required to overcome migration produces a genetic mosaic of divergent and non-divergent genomic regions. In some recent genome scans, each divergent genomic region has been interpreted as an independent incidence of migration/selection balance, such that the reduction of gene exchange is restricted to a few kilobases around each divergently selected gene. I propose an alternative mechanism, 'divergence hitchhiking' (DH), in which divergent selection can reduce gene exchange for several megabases around a gene under strong divergent selection. Not all genes/markers within a DH region are divergently selected, yet the entire region is protected to some degree from gene exchange, permitting genetic divergence from mechanisms other than divergent selection to accumulate secondarily. After contrasting DH and multilocus migration/selection balance (MM/SB), I outline a model in which genomic isolation at a given genomic location is jointly determined by DH and genome-wide effects of the progressive reduction in realized migration, then illustrate DH using data from several pairs of incipient species in the wild.
Collapse
Affiliation(s)
- Sara Via
- Departments of Biology and Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
43
|
McGaugh SE, Noor MAF. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Philos Trans R Soc Lond B Biol Sci 2012; 367:422-9. [PMID: 22201171 DOI: 10.1098/rstb.2011.0250] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chromosomal inversions impact genetic variation and facilitate speciation in part by reducing recombination in heterokaryotypes. We generated multiple whole-genome shotgun sequences of the parapatric species pair Drosophila pseudoobscura and Drosophila persimilis and their sympatric outgroup (Drosophila miranda) and compared the average pairwise differences for neutral sites within, just outside and far outside of the three large inversions. Divergence between D. pseudoobscura and D. persimilis is high inside the inversions and in the suppressed recombination regions extending 2.5 Mb outside of inversions, but significantly lower in collinear regions further from the inversions. We observe little evidence of decreased divergence predicted to exist in the centre of inversions, suggesting that gene flow through double crossovers or gene conversion is limited within the inversion, or selection is acting within the inversion to maintain divergence in the face of gene flow. In combination with past studies, we provide evidence that inversions in this system maintain areas of high divergence in the face of hybridization, and have done so for a substantial period of time. The left arm of the X chromosome and chromosome 2 inversions appear to have arisen in the lineage leading to D. persimilis approximately 2 Ma, near the time of the split of D. persimilis-D. pseudoobscura-D. miranda, but likely fixed within D. persimilis much more recently, as diversity within D. persimilis is substantially reduced inside and near these two inversions. We also hypothesize that the inversions in D. persimilis may provide an empirical example of the 'mixed geographical mode' theory of inversion origin and fixation, whereby allopatry and secondary contact both play a role.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Biology Department, Duke University, Box 90388, Durham, NC 27708, USA.
| | | |
Collapse
|
44
|
BURGARELLA C, NAVASCUÉS M, ZABAL-AGUIRRE M, BERGANZO E, RIBA M, MAYOL M, VENDRAMIN GG, GONZÁLEZ-MARTÍNEZ SC. Recent population decline and selection shape diversity of taxol-related genes. Mol Ecol 2012; 21:3006-21. [DOI: 10.1111/j.1365-294x.2012.05532.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Strasburg JL, Sherman NA, Wright KM, Moyle LC, Willis JH, Rieseberg LH. What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philos Trans R Soc Lond B Biol Sci 2012; 367:364-73. [PMID: 22201166 DOI: 10.1098/rstb.2011.0199] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome scans have become a common approach to identify genomic signatures of natural selection and reproductive isolation, as well as the genomic bases of ecologically relevant phenotypes, based on patterns of polymorphism and differentiation among populations or species. Here, we review the results of studies taking genome scan approaches in plants, consider the patterns of genomic differentiation documented and their possible causes, discuss the results in light of recent models of genomic differentiation during divergent adaptation and speciation, and consider assumptions and caveats in their interpretation. We find that genomic regions of high divergence generally appear quite small in comparisons of both closely and more distantly related populations, and for the most part, these differentiated regions are spread throughout the genome rather than strongly clustered. Thus, the genome scan approach appears well-suited for identifying genomic regions or even candidate genes that underlie adaptive divergence and/or reproductive barriers. We consider other methodologies that may be used in conjunction with genome scan approaches, and suggest further developments that would be valuable. These include broader use of sequence-based markers of known genomic location, greater attention to sampling strategies to make use of parallel environmental or phenotypic transitions, more integration with approaches such as quantitative trait loci mapping and measures of gene flow across the genome, and additional theoretical and simulation work on processes related to divergent adaptation and speciation.
Collapse
Affiliation(s)
- Jared L Strasburg
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
46
|
LUTTIKHUIZEN PC, DRENT J, PEIJNENBURG KTCA, Van Der VEER HW, JOHANNESSON K. Genetic architecture in a marine hybrid zone: comparing outlier detection and genomic clines analysis in the bivalveMacoma balthica. Mol Ecol 2012; 21:3048-61. [DOI: 10.1111/j.1365-294x.2012.05586.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet 2012; 28:342-50. [PMID: 22520730 DOI: 10.1016/j.tig.2012.03.009] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
The emerging field of speciation genomics is advancing our understanding of the evolution of reproductive isolation from the individual gene to a whole-genome perspective. In this new view it is important to understand the conditions under which 'divergence hitchhiking' associated with the physical linkage of gene regions, versus 'genome hitchhiking' associated with reductions in genome-wide rates of gene flow caused by selection, can enhance speciation-with-gene-flow. We describe here a theory predicting four phases of speciation, defined by changes in the relative effectiveness of divergence and genome hitchhiking, and review empirical data in light of the theory. We outline future directions, emphasizing the need to couple next-generation sequencing with selection, transplant, functional genomics, and mapping studies. This will permit a natural history of speciation genomics that will help to elucidate the factors responsible for population divergence and the roles that genome structure and different forms of hitchhiking play in facilitating the genesis of new biodiversity.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
48
|
Carneiro M, Albert FW, Melo-Ferreira J, Galtier N, Gayral P, Blanco-Aguiar JA, Villafuerte R, Nachman MW, Ferrand N. Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome. Mol Biol Evol 2012; 29:1837-49. [PMID: 22319161 DOI: 10.1093/molbev/mss025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (N(e)) of a species. Under this theory, the efficacy of natural selection should increase with N(e). Here, we tested this simple prediction by surveying ~1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and N(e) estimates for each subspecies on the order of 1 × 10(6). When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that >60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (<4%) are effectively neutral (defined as 0 < N(e)s < 1) and that this fraction was negatively correlated with a gene's expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome-autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome compared with the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in N(e) among taxa play a substantial role in determining rates and patterns of protein evolution.
Collapse
Affiliation(s)
- Miguel Carneiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ometto L, Li M, Bresadola L, Varotto C. Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages. BMC Evol Biol 2012; 12:7. [PMID: 22257588 PMCID: PMC3398273 DOI: 10.1186/1471-2148-12-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 01/18/2012] [Indexed: 12/04/2022] Open
Abstract
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response.
Collapse
Affiliation(s)
- Lino Ometto
- Department of Biodiversity and Molecular Ecology, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E, Mach 1, 38010 San Michele all'Adige (TN), Italy
| | | | | | | |
Collapse
|
50
|
Sambatti JB, Strasburg JL, Ortiz-Barrientos D, Baack EJ, Rieseberg LH. RECONCILING EXTREMELY STRONG BARRIERS WITH HIGH LEVELS OF GENE EXCHANGE IN ANNUAL SUNFLOWERS. Evolution 2012; 66:1459-73. [DOI: 10.1111/j.1558-5646.2011.01537.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|