1
|
Shegelski VA, Evenden ML, Huber DPW, Sperling FAH. Identification of genes and gene expression associated with dispersal capacity in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). PeerJ 2021; 9:e12382. [PMID: 34754626 PMCID: PMC8555496 DOI: 10.7717/peerj.12382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Dispersal flights by the mountain pine beetle have allowed range expansion and major damage to pine stands in western Canada. We asked what the genetic and transcriptional basis of mountain pine beetle dispersal capacity is. Using flight mills, RNA-seq and a targeted association study, we compared strong-flying, weak-flying, and non-flying female beetles from the recently colonized northern end of their range. Nearly 3,000 genes were differentially expressed between strong and weak flying beetles, while weak fliers and nonfliers did not significantly differ. The differentially expressed genes were mainly associated with lipid metabolism, muscle maintenance, oxidative stress response, detoxification, endocrine function, and flight behavior. Three variant loci, two in the coding region of genes, were significantly associated with flight capacity but these genes had no known functional link to flight. Several differentially expressed gene systems may be important for sustained flight, while other systems are downregulated during dispersal and likely to conserve energy before host colonization. The candidate genes and SNPs identified here will inform further studies and management of mountain pine beetle, as well as contribute to understanding the mechanisms of insect dispersal flights.
Collapse
Affiliation(s)
- Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Ferris KG, Chavez AS, Suzuki TA, Beckman EJ, Phifer-Rixey M, Bi K, Nachman MW. The genomics of rapid climatic adaptation and parallel evolution in North American house mice. PLoS Genet 2021; 17:e1009495. [PMID: 33914747 PMCID: PMC8084166 DOI: 10.1371/journal.pgen.1009495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Parallel changes in genotype and phenotype in response to similar selection pressures in different populations provide compelling evidence of adaptation. House mice (Mus musculus domesticus) have recently colonized North America and are found in a wide range of environments. Here we measure phenotypic and genotypic differentiation among house mice from five populations sampled across 21° of latitude in western North America, and we compare our results to a parallel latitudinal cline in eastern North America. First, we show that mice are genetically differentiated between transects, indicating that they have independently colonized similar environments in eastern and western North America. Next, we find genetically-based differences in body weight and nest building behavior between mice from the ends of the western transect which mirror differences seen in the eastern transect, demonstrating parallel phenotypic change. We then conduct genome-wide scans for selection and a genome-wide association study to identify targets of selection and candidate genes for body weight. We find some genomic signatures that are unique to each transect, indicating population-specific responses to selection. However, there is significant overlap between genes under selection in eastern and western house mouse transects, providing evidence of parallel genetic evolution in response to similar selection pressures across North America.
Collapse
Affiliation(s)
- Kathleen G. Ferris
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Andreas S. Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Taichi A. Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Elizabeth J. Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Michael W. Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
3
|
Marden JH, Langford EA, Robertson MA, Fescemyer HW. Alleles in metabolic and oxygen-sensing genes are associated with antagonistic pleiotropic effects on life history traits and population fitness in an ecological model insect. Evolution 2020; 75:116-129. [PMID: 32895932 DOI: 10.1111/evo.14095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023]
Abstract
Genes with opposing effects on fitness at different life stages are the mechanistic basis for evolutionary theories of aging and life history. Examples come from studies of mutations in model organisms, but there is little knowledge of genetic bases of life history tradeoffs in natural populations. Here, we test the hypothesis that alleles affecting oxygen sensing in Glanville fritillary butterflies have opposing effects on larval versus adult fitness-related traits. Intermediate-frequency alleles in Succinate dehydrogenase d, and to a lesser extent Hypoxia inducible factor 1α, are associated in larvae with variation in metabolic rate and activation of the hypoxia inducible factor (HIF) pathway, which affects tracheal development and delivery of oxygen to adult flight muscles. A dominant Sdhd allele is likely to cause antagonistic pleiotropy for fitness through its opposing effects on larval metabolic and growth rate versus adult flight and dispersal, and may have additional effects arising from sensitivity to low-iron host plants. Prior results in Glanville fritillaries indicate that fitness of alleles in Sdhd and another antagonistically pleiotropic metabolic gene, Phosphoglucose isomerase, depend strongly on the size and distribution of host plant patches. Hence, these intermediate-frequency alleles are involved in ecoevolutionary dynamics involving life history tradeoffs.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University.,Huck Institutes of the Life Sciences, Pennsylvania State University
| | | | | | | |
Collapse
|
4
|
Siewert KM, Voight BF. BetaScan2: Standardized Statistics to Detect Balancing Selection Utilizing Substitution Data. Genome Biol Evol 2020; 12:3873-3877. [PMID: 32011695 PMCID: PMC7058154 DOI: 10.1093/gbe/evaa013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2020] [Indexed: 12/24/2022] Open
Abstract
Long-term balancing selection results in a build-up of alleles at similar frequencies and a deficit of substitutions when compared with an outgroup at a locus. The previously published β(1) statistics detect balancing selection using only polymorphism data. We now propose the β(2) statistic which detects balancing selection using both polymorphism and substitution data. In addition, we derive the variance of all β statistics, allowing for their standardization and thereby reducing the influence of parameters which can confound other selection tests. The standardized β statistics outperform existing summary statistics in simulations, indicating β is a well-powered and widely applicable approach for detecting balancing selection. We apply the β(2) statistic to 1000 Genomes data and report two missense mutations with high β scores in the ACSBG2 gene. An implementation of all β statistics and their standardization are available in the BetaScan2 software package at https://github.com/ksiewert/BetaScan.
Collapse
Affiliation(s)
- Katherine M Siewert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
5
|
DiLeo MF, Husby A, Saastamoinen M. Landscape permeability and individual variation in a dispersal-linked gene jointly determine genetic structure in the Glanville fritillary butterfly. Evol Lett 2018; 2:544-556. [PMID: 30564438 PMCID: PMC6292703 DOI: 10.1002/evl3.90] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
There is now clear evidence that species across a broad range of taxa harbor extensive heritable variation in dispersal. While studies suggest that this variation can facilitate demographic outcomes such as range expansion and invasions, few have considered the consequences of intraspecific variation in dispersal for the maintenance and distribution of genetic variation across fragmented landscapes. Here, we examine how landscape characteristics and individual variation in dispersal combine to predict genetic structure using genomic and spatial data from the Glanville fritillary butterfly. We used linear and latent factor mixed models to identify the landscape features that best predict spatial sorting of alleles in the dispersal-related gene phosphoglucose isomerase (Pgi). We next used structural equation modeling to test if variation in Pgi mediated gene flow as measured by Fst at putatively neutral loci. In a year when the population was recovering following a large decline, individuals with a genotype associated with greater dispersal ability were found at significantly higher frequencies in populations isolated by water and forest, and these populations showed lower levels of genetic differentiation at neutral loci. These relationships disappeared in the next year when metapopulation density was high, suggesting that the effects of individual variation are context dependent. Together our results highlight that (1) more complex aspects of landscape structure beyond just the configuration of habitat can be important for maintaining spatial variation in dispersal traits and (2) that individual variation in dispersal plays a key role in maintaining genetic variation across fragmented landscapes.
Collapse
Affiliation(s)
- Michelle F. DiLeo
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 6500014Finland
| | - Arild Husby
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 6500014Finland
- Department of Evolutionary Biology, EBCUppsala UniversityNorbyvägen 18D75236UppsalaSweden
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 6500014Finland
| |
Collapse
|
6
|
Ovaskainen O, Saastamoinen M. Frontiers in Metapopulation Biology: The Legacy of Ilkka Hanski. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review of metapopulation biology has a special focus on Professor Ilkka Hanski's (1953–2016) research. Hanski made seminal contributions to both empirical and theoretical metapopulation biology throughout his scientific career. Hanski's early research focused on ecological aspects of metapopulation biology, in particular how the spatial structure of a landscape influences extinction thresholds and how habitat loss and fragmentation can result in extinction debt. Hanski then used the Glanville fritillary system as a natural laboratory within which he studied genetic and evolutionary processes, such as the influence of inbreeding on extinction risk and variation in selection for dispersal traits generated by landscape variation. During the last years of his career, Hanski's work was in the forefront of the rapidly developing field of eco-evolutionary dynamics. Hanski was a pioneer in showing how molecular-level underpinnings of trait variation can explain why evolutionary change can occur rapidly in natural populations and how these changes can subsequently influence ecological dynamics.
Collapse
Affiliation(s)
- Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, FI-00014 Helsinki, Finland;,
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, FI-00014 Helsinki, Finland;,
| |
Collapse
|
7
|
Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F, Wheat CW, Fronhofer EA, Garcia C, Henry R, Husby A, Baguette M, Bonte D, Coulon A, Kokko H, Matthysen E, Niitepõld K, Nonaka E, Stevens VM, Travis JMJ, Donohue K, Bullock JM, Del Mar Delgado M. Genetics of dispersal. Biol Rev Camb Philos Soc 2017; 93:574-599. [PMID: 28776950 PMCID: PMC5811798 DOI: 10.1111/brv.12356] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique UMR5174, CNRS, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Cristina Garcia
- CIBIO-InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Roslyn Henry
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.,School of GeoSciences, University of Edinburgh, Edinburgh EH89XP, U.K
| | - Arild Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France.,Museum National d'Histoire Naturelle, Institut Systématique, Evolution, Biodiversité, UMR 7205, F-75005 Paris, France
| | - Dries Bonte
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Coulon
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des Vertébrés, 34293 Montpellier, France.,CESCO UMR 7204, Bases écologiques de la conservation, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kristjan Niitepõld
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | | | - James M Bullock
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, U.K
| | | |
Collapse
|
8
|
Li Y, Hansson B, Ghatnekar L, Prentice HC. Contrasting patterns of nucleotide polymorphism suggest different selective regimes within different parts of the PgiC1 gene in Festuca ovina L. Hereditas 2017; 154:11. [PMID: 28529468 PMCID: PMC5437402 DOI: 10.1186/s41065-017-0032-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/13/2017] [Indexed: 01/11/2023] Open
Abstract
Background Phosphoglucose isomerase (PGI, EC 5.3.1.9) is an essential metabolic enzyme in all eukaryotes. An earlier study of the PgiC1 gene, which encodes cytosolic PGI in the grass Festuca ovina L., revealed a marked difference in the levels of nucleotide polymorphism between the 5’ and 3’ portions of the gene. Methods In the present study, we characterized the sequence polymorphism in F. ovina PgiC1 in more detail and examined possible explanations for the non-uniform pattern of nucleotide polymorphism across the gene. Results Our study confirms that the two portions of the PgiC1 gene show substantially different levels of DNA polymorphism and also suggests that the peptide encoded by the 3’ portion of PgiC1 is functionally and structurally more important than that encoded by the 5’ portion. Although there was some evidence of purifying selection (dN/dS test) on the 5’ portion of the gene, the signature of purifying selection was considerably stronger on the 3’ portion of the gene (dN/dS and McDonald–Kreitman tests). Several tests support the action of balancing selection within the 5’ portion of the gene. Wall’s B and Q tests were significant only for the 5’ portion of the gene. There were also marked peaks of nucleotide diversity, Tajima’s D and the dN/dS ratio at or around a PgiC1 codon site (within the 5’ portion of the gene) that a previous study had suggested was subject to positive diversifying selection. Conclusions Our results suggest that the two portions of the gene have been subject to different selective regimes. Purifying selection appears to have been the main force contributing to the relatively low level of polymorphism within the 3’ portion of the sequence. In contrast, it is possible that balancing selection has contributed to the maintenance of the polymorphism within the 5’ portion of the gene. Electronic supplementary material The online version of this article (doi:10.1186/s41065-017-0032-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
9
|
Insights into evolution in Andean Polystichum (Dryopteridaceae) from expanded understanding of the cytosolic phosphoglucose isomerase gene. Mol Phylogenet Evol 2017; 112:36-46. [PMID: 28411162 DOI: 10.1016/j.ympev.2017.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/08/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Cytosolic phosphoglucose isomerase (pgiC) is an enzyme essential to glycolysis found universally in eukaryotes, but broad understanding of variation in the gene coding for pgiC is lacking for ferns. We used a substantially expanded representation of the gene for Andean species of the fern genus Polystichum to characterize pgiC in ferns relative to angiosperms, insects, and an amoebozoan; assess the impact of selection versus neutral evolutionary processes on pgiC; and explore evolutionary relationships of selected Andean species. The dataset of complete sequences comprised nine accessions representing seven species and one hybrid from the Andes and Serra do Mar. The aligned sequences of the full data set comprised 3376 base pairs (70% of the entire gene) including 17 exons and 15 introns from two central areas of the gene. The exons are highly conserved relative to angiosperms and retain substantial homology to insect pgiC, but intron length and structure are unique to the ferns. Average intron size is similar to angiosperms; intron number and location in insects are unlike those of the plants we considered. The introns included an array of indels and, in intron 7, an extensive microsatellite array with potential utility in analyzing population-level histories. Bayesian and maximum-parsimony analysis of 129 variable nucleotides in the Andean polystichums revealed that 59 (1.7% of the 3376 total) were phylogenetically informative; most of these united sister accessions. The phylogenetic trees for the Andean polystichums were incongruent with previously published cpDNA trees for the same taxa, likely the result of rapid evolutionary change in the introns and contrasting stability in the exons. The exons code a total of seven amino-acid substitutions. Comparison of non-synonymous to synonymous substitutions did not suggest that the pgiC gene is under selection in the Andes. Variation in pgiC including two additional accessions represented by incomplete sequences provided new insights into reticulate relationships among Andean taxa.
Collapse
|
10
|
Li Y, Andersson S. The 3-D Structural Basis for the Pgi Genotypic Differences in the Performance of the Butterfly Melitaea cinxia at Different Temperatures. PLoS One 2016; 11:e0160191. [PMID: 27462709 PMCID: PMC4962976 DOI: 10.1371/journal.pone.0160191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Although genotype-by-environment interaction has long been used to unveil the genetic variation that affects Darwinian fitness, the mechanisms underlying the interaction usually remain unknown. Genetic variation at the dimeric glycolytic enzyme phosphoglucoisomerase (Pgi) has been observed to interact with temperature to explain the variation in the individual performance of the butterfly Melitaea cinxia. At relatively high temperature, individuals with Pgi-non-f genotypes generally surpass those with Pgi-f genotypes, while the opposite applies at relatively low temperature. In this study, we did protein structure predictions and BlastP homology searches with the aim to understand the structural basis for this temperature-dependent difference in the performance of M. cinxia. Our results show that, at amino acid (AA) site 372, one of the two sites that distinguish Pgi-f (the translated polypeptide of the Pgi-f allele) from Pgi-non-f (the translated polypeptide of the Pgi-non-f allele), the Pgi-non-f-related residue strengthens an electrostatic attraction between a pair of residues (Glu373-Lys472) that are from different monomers, compared to the Pgi-f-related residue. Further, BlastP searches of animal protein sequences reveal a dramatic excess of electrostatically attractive combinations of the residues at the Pgi AA sites equivalent to sites 373 and 472 in M. cinxia. This suggests that factors enhancing the inter-monomer interaction between these two sites, and therefore helping the tight association of two Pgi monomers, are favourable. Our homology-modelling results also show that, at the second AA site that distinguishes Pgi-f from Pgi-non-f in M. cinxia, the Pgi-non-f-related residue is more entropy-favourable (leading to higher structural stability) than the Pgi-f-related residue. To sum up, this study suggests a higher structural stability of the protein products of the Pgi-non-f genotypes than those of the Pgi-f genotypes, which may explain why individuals carrying Pgi-non-f genotypes outperform those carrying Pgi-f genotypes at stressful high temerature.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | | |
Collapse
|
11
|
Predictable allele frequency changes due to habitat fragmentation in the Glanville fritillary butterfly. Proc Natl Acad Sci U S A 2016; 113:2678-83. [PMID: 26903642 DOI: 10.1073/pnas.1600951113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Describing the evolutionary dynamics of now extinct populations is challenging, as their genetic composition before extinction is generally unknown. The Glanville fritillary butterfly has a large extant metapopulation in the Åland Islands in Finland, but declined to extinction in the nearby fragmented southwestern (SW) Finnish archipelago in the 20th century. We genotyped museum samples for 222 SNPs across the genome, including SNPs from candidate genes and neutral regions. SW Finnish populations had significantly reduced genetic diversity before extinction, and their allele frequencies gradually diverged from those in contemporary Åland populations over 80 y. We identified 15 outlier loci among candidate SNPs, mostly related to flight, in which allele frequencies have changed more than the neutral expectation. At outlier loci, allele frequencies in SW Finland shifted in the same direction as newly established populations deviated from old local populations in contemporary Åland. Moreover, outlier allele frequencies in SW Finland resemble those in fragmented landscapes as opposed to continuous landscapes in the Baltic region. These results indicate selection for genotypes associated with good colonization capacity in the highly fragmented landscape before the extinction of the populations. Evolutionary response to habitat fragmentation may have enhanced the viability of the populations, but it did not save the species from regional extinction in the face of severe habitat loss and fragmentation. These results highlight a potentially common situation in changing environments: evolutionary changes are not strong enough to fully compensate for the direct adverse effects of environmental change and thereby rescue populations from extinction.
Collapse
|
12
|
Li Y, Canbäck B, Johansson T, Tunlid A, Prentice HC. Evidence for Positive Selection within the PgiC1 Locus in the Grass Festuca ovina. PLoS One 2015; 10:e0125831. [PMID: 25946223 PMCID: PMC4422690 DOI: 10.1371/journal.pone.0125831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The dimeric metabolic enzyme phosphoglucose isomerase (PGI, EC 5.3.1.9) plays an essential role in energy production. In the grass Festuca ovina, field surveys of enzyme variation suggest that genetic variation at cytosolic PGI (PGIC) may be adaptively important. In the present study, we investigated the molecular basis of the potential adaptive significance of PGIC in F. ovina by analyzing cDNA sequence variation within the PgiC1 gene. Two, complementary, types of selection test both identified PGIC1 codon (amino acid) sites 200 and 173 as candidate targets of positive selection. Both candidate sites involve charge-changing amino acid polymorphisms. On the homology-modeled F. ovina PGIC1 3-D protein structure, the two candidate sites are located on the edge of either the inter-monomer boundary or the inter-domain cleft; examination of the homology-modeled PGIC1 structure suggests that the amino acid changes at the two candidate sites are likely to influence the inter-monomer interaction or the domain-domain packing. Biochemical studies in humans have shown that mutations at several amino acid sites that are located close to the candidate sites in F. ovina, at the inter-monomer boundary or the inter-domain cleft, can significantly change the stability and/or kinetic properties of the PGI enzyme. Molecular evolutionary studies in a wide range of other organisms suggest that PGI amino acid sites with similar locations to those of the candidate sites in F. ovina may be the targets of positive/balancing selection. Candidate sites 200 and 173 are the only sites that appear to discriminate between the two most common PGIC enzyme electromorphs in F. ovina: earlier studies suggest that these electromorphs are implicated in local adaptation to different grassland microhabitats. Our results suggest that PGIC1 sites 200 and 173 are under positive selection in F. ovina.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Björn Canbäck
- Department of Biology, Lund University, Lund, Sweden
| | | | - Anders Tunlid
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
13
|
Van Belleghem SM, Roelofs D, Hendrickx F. Evolutionary history of a dispersal-associated locus across sympatric and allopatric divergent populations of a wing-polymorphic beetle across Atlantic Europe. Mol Ecol 2015; 24:890-908. [PMID: 25470210 DOI: 10.1111/mec.13031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
Abstract
Studying the evolutionary history of trait divergence, in particular those related to dispersal capacity, is of major interest for the process of local adaptation and metapopulation dynamics. Here, we reconstruct the evolution of different alleles at the nuclear-encoded mitochondrial NADP(+)-dependent isocitrate dehydrogenase (mtIdh) locus of the ground beetle Pogonus chalceus that are differentially and repeatedly selected in short- and long-winged populations in response to different hydrological regimes at both allopatric and sympatric scales along the Atlantic European coasts. We sequenced 2788 bp of the mtIdh locus spanning a ~7-kb genome region and compared its variation with that of two supposedly neutral genes. mtIdh sequences show (i) monophyletic clustering of the short-winged associated mtIDH-DE haplotypes within the long-winged associated mtIDH-AB haplotypes, (ii) a more than tenfold lower haplotype diversity associated with the mtIDH-DE alleles compared to the mtIDH-AB alleles and (iii) a high number of fixed nucleotide differences between both mtIDH haplotype clusters. Coalescent simulations suggest that this observed sequence variation in the mtIdh locus is most consistent with a singular origin in a partially isolated subpopulation, followed by a relatively recent spread of the mtIDH-DE allele in short-winged populations along the Atlantic coast. These results demonstrate that even traits associated with decreased dispersal capacity can rapidly spread and that reuse of adaptive alleles plays an important role in the adaptive potential within this sympatric mosaic of P. chalceus populations.
Collapse
Affiliation(s)
- Steven M Van Belleghem
- Terrestrial Ecology Unit, Biology Department, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium; Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000, Brussel, Belgium
| | | | | |
Collapse
|
14
|
Wheat CW, Hill J. Pgi: the ongoing saga of a candidate gene. CURRENT OPINION IN INSECT SCIENCE 2014; 4:42-47. [PMID: 28043407 DOI: 10.1016/j.cois.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 05/21/2023]
Abstract
Numerous studies have found amino acid variation at the phosphoglucose isomerase (PGI) gene associated with organismal performance and fitness. Here we focus upon recent advances in the study of this gene, highlighting novel species being studied, new tools being used, and emerging insights into the evolutionary dynamics acting on this gene. Our synthesis highlights questions that are coming into focus, as well as the need for attention in specific areas, such as manipulative experiments to establish mechanistic insights and a causative role of allelic variation.
Collapse
Affiliation(s)
- Christopher W Wheat
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 10691 Stockholm, Sweden
| | - Jason Hill
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 10691 Stockholm, Sweden
| |
Collapse
|
15
|
Detecting selection in the blue crab, Callinectes sapidus, using DNA sequence data from multiple nuclear protein-coding genes. PLoS One 2014; 9:e99081. [PMID: 24896825 PMCID: PMC4045945 DOI: 10.1371/journal.pone.0099081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 05/11/2014] [Indexed: 11/23/2022] Open
Abstract
The identification of genes involved in the adaptive evolution of non-model organisms with uncharacterized genomes constitutes a major challenge. This study employed a rigorous and targeted candidate gene approach to test for positive selection on protein-coding genes of the blue crab, Callinectes sapidus. Four genes with putative roles in physiological adaptation to environmental stress were chosen as candidates. A fifth gene not expected to play a role in environmental adaptation was used as a control. Large samples (n>800) of DNA sequences from C. sapidus were used in tests of selective neutrality based on sequence polymorphisms. In combination with these, sequences from the congener C. similis were used in neutrality tests based on interspecific divergence. In multiple tests, significant departures from neutral expectations and indicative of positive selection were found for the candidate gene trehalose 6-phosphate synthase (tps). These departures could not be explained by any of the historical population expansion or bottleneck scenarios that were evaluated in coalescent simulations. Evidence was also found for balancing selection at ATP-synthase subunit 9 (atps) using a maximum likelihood version of the Hudson, Kreitmen, and Aguadé test, and positive selection favoring amino acid replacements within ATP/ADP translocase (ant) was detected using the McDonald-Kreitman test. In contrast, test statistics for the control gene, ribosomal protein L12 (rpl), which presumably has experienced the same demographic effects as the candidate loci, were not significantly different from neutral expectations and could readily be explained by demographic effects. Together, these findings demonstrate the utility of the candidate gene approach for investigating adaptation at the molecular level in a marine invertebrate for which extensive genomic resources are not available.
Collapse
|
16
|
Olsen MT, Pampoulie C, Daníelsdóttir AK, Lidh E, Bérubé M, Víkingsson GA, Palsbøll PJ. Fin whale MDH-1 and MPI allozyme variation is not reflected in the corresponding DNA sequences. Ecol Evol 2014; 4:1787-803. [PMID: 24963377 PMCID: PMC4063476 DOI: 10.1002/ece3.1046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 11/07/2022] Open
Abstract
The appeal of genetic inference methods to assess population genetic structure and guide management efforts is grounded in the correlation between the genetic similarity and gene flow among populations. Effects of such gene flow are typically genomewide; however, some loci may appear as outliers, displaying above or below average genetic divergence relative to the genomewide level. Above average population, genetic divergence may be due to divergent selection as a result of local adaptation. Consequently, substantial efforts have been directed toward such outlying loci in order to identify traits subject to local adaptation. Here, we report the results of an investigation into the molecular basis of the substantial degree of genetic divergence previously reported at allozyme loci among North Atlantic fin whale (Balaenoptera physalus) populations. We sequenced the exons encoding for the two most divergent allozyme loci (MDH-1 and MPI) and failed to detect any nonsynonymous substitutions. Following extensive error checking and analysis of additional bioinformatic and morphological data, we hypothesize that the observed allozyme polymorphisms may reflect phenotypic plasticity at the cellular level, perhaps as a response to nutritional stress. While such plasticity is intriguing in itself, and of fundamental evolutionary interest, our key finding is that the observed allozyme variation does not appear to be a result of genetic drift, migration, or selection on the MDH-1 and MPI exons themselves, stressing the importance of interpreting allozyme data with caution. As for North Atlantic fin whale population structure, our findings support the low levels of differentiation found in previous analyses of DNA nucleotide loci.
Collapse
Affiliation(s)
- Morten Tange Olsen
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden
| | | | | | - Emmelie Lidh
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden
| | - Martine Bérubé
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden ; Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen PO Box 11103, 9700 CC, Groningen, The Netherlands
| | | | - Per J Palsbøll
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden ; Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen PO Box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
17
|
Dunning LT, Dennis AB, Thomson G, Sinclair BJ, Newcomb RD, Buckley TR. Positive selection in glycolysis among Australasian stick insects. BMC Evol Biol 2013; 13:215. [PMID: 24079656 PMCID: PMC3850572 DOI: 10.1186/1471-2148-13-215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The glycolytic pathway is central to cellular energy production. Selection on individual enzymes within glycolysis, particularly phosphoglucose isomerase (Pgi), has been associated with metabolic performance in numerous organisms. Nonetheless, how whole energy-producing pathways evolve to allow organisms to thrive in different environments and adopt new lifestyles remains little explored. The Lanceocercata radiation of Australasian stick insects includes transitions from tropical to temperate climates, lowland to alpine habitats, and winged to wingless forms. This permits a broad investigation to determine which steps within glycolysis and what sites within enzymes are the targets of positive selection. To address these questions we obtained transcript sequences from seven core glycolysis enzymes, including two Pgi paralogues, from 29 Lanceocercata species. RESULTS Using maximum likelihood methods a signature of positive selection was inferred in two core glycolysis enzymes. Pgi and Glyceraldehyde 3-phosphate dehydrogenase (Gaphd) genes both encode enzymes linking glycolysis to the pentose phosphate pathway. Positive selection among Pgi paralogues and orthologues predominately targets amino acids with residues exposed to the protein's surface, where changes in physical properties may alter enzyme performance. CONCLUSION Our results suggest that, for Lancerocercata stick insects, adaptation to new stressful lifestyles requires a balance between maintaining cellular energy production, efficiently exploiting different energy storage pools and compensating for stress-induced oxidative damage.
Collapse
Affiliation(s)
- Luke T Dunning
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- Imperial College London, Silwood Park Campus, Buckhurst Road, SL5 7PY, Ascot, Berks, UK
| | - Alice B Dennis
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Geoffrey Thomson
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, ON, Canada N6G 1L3
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Thomas R Buckley
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| |
Collapse
|
18
|
Lack of variation at phosphoglucose isomerase (pgi) in bumblebees: implications for conservation genetics studies. PLoS One 2013; 8:e65600. [PMID: 23750269 PMCID: PMC3672202 DOI: 10.1371/journal.pone.0065600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022] Open
Abstract
Assessing genetic variation underlying ecologically important traits is increasingly of interest and importance in population and conservation genetics. For some groups generally useful markers exist for examining the relative role of selection and drift in shaping genetic diversity e.g. the major histocompatibility complex in vertebrates and self-incompatibility loci in plants. For invertebrates there is no such generally useful locus. However, phosphoglucose isomerase (Pgi) has been proposed as a useful functional marker in the conservation genetics of invertebrates. Where thermal microclimate varies, balanced polymorphisms may be maintained due to trade-offs between thermally stable and kinetically advantageous allelic forms. We here report very low levels of Pgi variation in bumblebees rendering this locus to be of little use as an adaptive marker in a conservation genetics context in this group. Potential explanations for this lack of variation are considered.
Collapse
|
19
|
Watt WB. Specific-gene studies of evolutionary mechanisms in an age of genome-wide surveying. Ann N Y Acad Sci 2013; 1289:1-17. [PMID: 23679204 DOI: 10.1111/nyas.12139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular tools of genomics have great power to reveal patterns of genetic difference within or among species, but must be complemented by the mechanistic study of the genetic variants found if these variants' evolutionary meaning is to be well understood. Central to this purpose is knowledge of the organisms' genotype-phenotype-environment interactions, which embody biological adaptation and constraint and thus drive natural selection. The history of this approach is briefly reviewed. Strategies embracing the complementarity of genomics and specific-gene studies in evolution are considered. Implementation of these strategies, and examples showing their feasibility and power, are discussed. Initial generalizations emphasize: (1) reproducibility of adaptive mechanisms; (2) evolutionary co-importance of variation in protein sequences and expression; (3) refinement of rudimentary molecular functions as an origin of evolutionary innovations; (4) identification of specific-gene mechanisms as underpinnings of genomic or quantitative genetic variation; and (5) multiple forms of adaptive or constraining epistasis among genes. Progress along these lines will advance understanding of evolution and support its use in addressing urgent medical and environmental applications.
Collapse
Affiliation(s)
- Ward B Watt
- Department of Biology, Stanford University, Stanford, California and Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.
| |
Collapse
|
20
|
Marden JH, Fescemyer HW, Schilder RJ, Doerfler WR, Vera JC, Wheat CW. GENETIC VARIATION IN HIF SIGNALING UNDERLIES QUANTITATIVE VARIATION IN PHYSIOLOGICAL AND LIFE-HISTORY TRAITS WITHIN LOWLAND BUTTERFLY POPULATIONS. Evolution 2012; 67:1105-15. [DOI: 10.1111/evo.12004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Hedrick PW. What is the evidence for heterozygote advantage selection? Trends Ecol Evol 2012; 27:698-704. [PMID: 22975220 DOI: 10.1016/j.tree.2012.08.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
Recent genomic data have found that many genes show the signal of selection. How many of these genes are undergoing heterozygote advantage selection is only beginning to be known. Initial genomic surveys have suggested that only a small proportion of loci have polymorphisms maintained by heterozygote advantage and this is consistent with the few examples generated from other approaches within given species. Unless further studies provide large numbers of loci with heterozygote advantage, it appears that loci with heterozygote advantage must be considered only a small minority of all loci in a species. This is not to say that some heterozygote advantage loci do not have important adaptive functions, but that their role in overall evolutionary change might be more of an unusual phenomenon than a major player in adaptation.
Collapse
|
22
|
Impact of sampling schemes on demographic inference: an empirical study in two species with different mating systems and demographic histories. G3-GENES GENOMES GENETICS 2012; 2:803-14. [PMID: 22870403 PMCID: PMC3385986 DOI: 10.1534/g3.112.002410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/10/2012] [Indexed: 12/12/2022]
Abstract
Most species have at least some level of genetic structure. Recent simulation studies have shown that it is important to consider population structure when sampling individuals to infer past population history. The relevance of the results of these computer simulations for empirical studies, however, remains unclear. In the present study, we use DNA sequence datasets collected from two closely related species with very different histories, the selfing species Capsella rubella and its outcrossing relative C. grandiflora, to assess the impact of different sampling strategies on summary statistics and the inference of historical demography. Sampling strategy did not strongly influence the mean values of Tajima's D in either species, but it had some impact on the variance. The general conclusions about demographic history were comparable across sampling schemes even when resampled data were analyzed with approximate Bayesian computation (ABC). We used simulations to explore the effects of sampling scheme under different demographic models. We conclude that when sequences from modest numbers of loci (<60) are analyzed, the sampling strategy is generally of limited importance. The same is true under intermediate or high levels of gene flow (4Nm > 2-10) in models in which global expansion is combined with either local expansion or hierarchical population structure. Although we observe a less severe effect of sampling than predicted under some earlier simulation models, our results should not be seen as an encouragement to neglect this issue. In general, a good coverage of the natural range, both within and between populations, will be needed to obtain a reliable reconstruction of a species's demographic history, and in fact, the effect of sampling scheme on polymorphism patterns may itself provide important information about demographic history.
Collapse
|
23
|
Schoville SD, Flowers JM, Burton RS. Diversifying selection underlies the origin of allozyme polymorphism at the phosphoglucose isomerase locus in Tigriopus californicus. PLoS One 2012; 7:e40035. [PMID: 22768211 PMCID: PMC3386920 DOI: 10.1371/journal.pone.0040035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022] Open
Abstract
The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations.
Collapse
Affiliation(s)
- Sean D Schoville
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
24
|
KVIST JOUNI, WHEAT CHRISTOPHERW, KALLIONIEMI EVELIINA, SAASTAMOINEN MARJO, HANSKI ILKKA, FRILANDER MIKKOJ. Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits. Mol Ecol 2012; 22:602-19. [DOI: 10.1111/j.1365-294x.2012.05521.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Li Z, Zou J, Mao K, Lin K, Li H, Liu J, Källman T, Lascoux M. POPULATION GENETIC EVIDENCE FOR COMPLEX EVOLUTIONARY HISTORIES OF FOUR HIGH ALTITUDE JUNIPER SPECIES IN THE QINGHAI-TIBETAN PLATEAU. Evolution 2011; 66:831-845. [DOI: 10.1111/j.1558-5646.2011.01466.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Abstract
Evolutionary changes in natural populations are often so fast that the evolutionary dynamics may influence ecological population dynamics and vice versa. Here we construct an eco-evolutionary model for dispersal by combining a stochastic patch occupancy metapopulation model with a model for changes in the frequency of fast-dispersing individuals in local populations. We test the model using data on allelic variation in the gene phosphoglucose isomerase (Pgi), which is strongly associated with dispersal rate in the Glanville fritillary butterfly. Population-specific measures of immigration and extinction rates and the frequency of fast-dispersing individuals among the immigrants explained 40% of spatial variation in Pgi allele frequency among 97 local populations. The model clarifies the roles of founder events and gene flow in dispersal evolution and resolves a controversy in the literature about the consequences of habitat loss and fragmentation on the evolution of dispersal.
Collapse
Affiliation(s)
- Ilkka Hanski
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
27
|
Crease TJ, Floyd R, Cristescu ME, Innes D. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex. BMC Evol Biol 2011; 11:212. [PMID: 21767386 PMCID: PMC3231769 DOI: 10.1186/1471-2148-11-212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 07/18/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh). Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. RESULTS We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S) for Glutamic acid (F) at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. CONCLUSIONS Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.
Collapse
Affiliation(s)
- Teresa J Crease
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robin Floyd
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol BS105NB, UK
| | - Melania E Cristescu
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - David Innes
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| |
Collapse
|
28
|
Kallioniemi E, Hanski I. Interactive effects of Pgi genotype and temperature on larval growth and survival in the Glanville fritillary butterfly. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01854.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Wheat CW, Fescemyer HW, Kvist J, Tas E, Vera JC, Frilander MJ, Hanski I, Marden JH. Functional genomics of life history variation in a butterfly metapopulation. Mol Ecol 2011; 20:1813-28. [PMID: 21410806 DOI: 10.1111/j.1365-294x.2011.05062.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In fragmented landscapes, small populations frequently go extinct and new ones are established with poorly understood consequences for genetic diversity and evolution of life history traits. Here, we apply functional genomic tools to an ecological model system, the well-studied metapopulation of the Glanville fritillary butterfly. We investigate how dispersal and colonization select upon existing genetic variation affecting life history traits by comparing common-garden reared 2-day adult females from new populations with those from established older populations. New-population females had higher expression of abdomen genes involved in egg provisioning and thorax genes involved in the maintenance of flight muscle proteins. Physiological studies confirmed that new-population butterflies have accelerated egg maturation, apparently regulated by higher juvenile hormone titer and angiotensin converting enzyme mRNA, as well as enhanced flight metabolism. Gene expression varied between allelic forms of two metabolic genes (Pgi and Sdhd), which themselves were associated with differences in flight metabolic rate, population age and population growth rate. These results identify likely molecular mechanisms underpinning life history variation that is maintained by extinction-colonization dynamics in metapopulations.
Collapse
Affiliation(s)
- Christopher W Wheat
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Storz JF, Wheat CW. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 2011; 64:2489-509. [PMID: 20500215 DOI: 10.1111/j.1558-5646.2010.01044.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
31
|
Transspecies dimorphic allelic lineages of the proteasome subunit beta-type 8 gene (PSMB8) in the teleost genus Oryzias. Proc Natl Acad Sci U S A 2010; 107:21599-604. [PMID: 21098669 DOI: 10.1073/pnas.1012881107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome subunit β-type 8 (PSMB8) gene in the jawed vertebrate MHC genomic region encodes a catalytic subunit of the immunoproteasome involved in the generation of peptides to be presented by the MHC class I molecules. A teleost, the medaka (Oryzias latipes), has highly diverged dimorphic allelic lineages of the PSMB8 gene with only about 80% amino acid identity, termed "PSMB8d" and "PSMB8N," which have been retained by most wild populations analyzed. To elucidate the evolutionary origin of these two allelic lineages, seven species of the genus Oryzias were analyzed for their PSMB8 allelic sequences using a large number of individuals from wild populations. All the PSMB8 alleles of these species were classified into one of these two allelic lineages based on their nucleotide sequences of exons and introns, indicating that the Oryzias PSMB8 gene has a truly dichotomous allelic lineage. Retention of both allelic lineages was confirmed except for one species. The PSMB8d lineage showed a higher frequency than the PSMB8N lineage in all seven species. The two allelic lineages showed curious substitutions at the 31st and 53rd residues of the mature peptide, probably involved in formation of the S1 pocket, suggesting that these allelic lineages show a functional difference in cleavage specificity. These results indicate that the PSMB8 dimorphism was established before speciation within the genus Oryzias and has been maintained for more than 30-60 million years under a strict and asymmetric balancing selection through several speciation events.
Collapse
|
32
|
Yuan F, Bernard GD, Le J, Briscoe AD. Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Mol Biol Evol 2010; 27:2392-405. [PMID: 20478921 DOI: 10.1093/molbev/msq124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adult compound eyes of passion-vine butterflies in the genus Heliconius contain one more UV opsin than other butterflies. Together with an 11-cis-3-hydroxyretinal chromophore, their four opsin genes UVRh1, UVRh2, BRh, and LWRh produce four rhodopsins that are UV-, blue-, or long wavelength absorbing. One of the Heliconius UV opsin genes, UVRh2, was found to have evolved under positive selection following recent gene duplication, using the branch-site test of selection. Using a more conservative test, the small-sample method, we confirm our prior finding of positive selection of UVRh2 and provide new statistical evidence of episodic evolution, that is, positive selection followed by purifying selection. We also newly note that one of the positively selected amino acid sites contains substitutions with known spectral tuning effects in avian ultraviolet- and violet-sensitive visual pigments. As this is one of a handful of described examples of positive selection of any specific gene in any butterfly where functional variation between copies has been characterized, we were interested in examining the molecular and physiological context of this adaptive event by examining the UV opsin genes in contrast to the other visual pigment genes. We cloned BRh and LWRh from 13 heliconiine species and UVRh1 and UVRh2 from Heliconius elevatus. In parallel, we performed in vivo epi-microspectrophotometric experiments to estimate the wavelength of peak absorbance, λ(max), of several rhodopsins in seven heliconiine species. In contrast to UVRh2, we found both physiological and statistical evidence consistent with purifying selection on UVRh1, BRh, and LWRh along the branch leading to the common ancestor of Heliconius. These results underscore the utility of combining molecular and physiological experiments in a comparative context for strengthening evidence for adaptive evolution at the molecular level.
Collapse
Affiliation(s)
- Furong Yuan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | | | | | | |
Collapse
|
33
|
Phosphoglucose isomerase (Pgi) performance and fitness effects among Arthropods and its potential role as an adaptive marker in conservation genetics. CONSERV GENET 2010. [DOI: 10.1007/s10592-009-0042-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
|