1
|
Pereira BB, Marrafa M, Cruz C, Rodrigues L, Nunes F, Monteiro S, Santos R, Carneiro RN, Neto C, Aguilar J, Ferreiro NR, Passanha M, Candeias G, Fernandes A, Paixão P, Chasqueira MJ. Antimicrobial Resistance Genes in Legionella from Artificial Water Systems: Findings from a Two-Year Study. Antibiotics (Basel) 2024; 13:1121. [PMID: 39766511 PMCID: PMC11672855 DOI: 10.3390/antibiotics13121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Legionella species are the causative agent of Legionnaires' disease and, as ubiquitous waterborne bacteria, are prone to antimicrobial resistance gene (ARG) acquisition and dissemination due to the antimicrobial contamination of natural environments. Given the potential health risks associated with ARGs, it is crucial to assess their presence in the Legionella population. METHODS The ARGs lpeAB and tet56 were detected in 348 samples, isolates, and DNA extracts using conventional PCR. In a subset of lpeAB-positive isolates, azithromycin (AZT) MIC values were obtained using the EUCAST protocol and LpeAB activity was evaluated through an efflux pump inhibition assay. RESULTS The lpeAB gene was found in 19% (66/348) of samples, with higher detection rates in the L. pneumophila and L. pneumophila sg1 subgroups, at 30% and 41%, respectively. A positive association between lpeAB and L. pneumophila sg1 was found. The MIC values of the lpeAB-positive isolates ranged from 0.064 to 2 mg/L. LpeAB inhibition resulted in 2- and 4-fold MIC reductions in 10 of the 13 isolates analyzed. One sample each of L. longbeacheae and L. bozemanae was found to possess the tet56 gene. CONCLUSIONS The lpeAB gene is predominant in L. pneumophila sg1. A few isolates with the lpeAB gene exhibited MIC values below the EUCAST tentative highest MIC values for wild-type isolates. Expanding ARG monitoring in Legionella is essential to assess the public health risk of Legionnaires' disease.
Collapse
Affiliation(s)
- Bernardo Beirão Pereira
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Mário Marrafa
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Carolina Cruz
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Lúcia Rodrigues
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Filipa Nunes
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Silvia Monteiro
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Civil Engineering Reasearch and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Civil Engineering Reasearch and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rui Neves Carneiro
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | - Célia Neto
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | - Joana Aguilar
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | | | - Margarida Passanha
- Laboratório Regional de Saúde Pública do Alentejo, 7000-811 Évora, Portugal
| | - Gonçalo Candeias
- Laboratório Regional de Saúde Pública do Alentejo, 7000-811 Évora, Portugal
| | - Aida Fernandes
- Laboratório Regional de Saúde Pública Dra. Laura Ayres, 8135-014 Almancil, Portugal
| | - Paulo Paixão
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
- Comprehensive Health Reasearch Center, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Jesus Chasqueira
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
- Comprehensive Health Reasearch Center, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
2
|
Legionnaires' Disease in China Caused by Legionella pneumophila Corby. Microorganisms 2023; 11:microorganisms11010204. [PMID: 36677496 PMCID: PMC9863629 DOI: 10.3390/microorganisms11010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Legionella pneumophila is an intracellular pathogen causing pneumonia in humans. In February 2022, Legionnaires' disease caused by L. pneumophila strain Corby in a patient with lung adenocarcinoma was identified for the first time in China. This paper includes the case report and phenotypic and genomic analysis of the Corby (ICDC) strain. Its biological characteristics were evaluated by antibiotic sensitivity testing and cytology experiments, and genomic analysis was performed to understand its genetic evolution. The patient's clinical manifestations included cough, fever, pulmonary infiltration, and significantly decreased activity endurance. After empirical antimicrobial therapy, infection indicators decreased. The Corby (ICDC) strain was susceptible to nine antibiotics and exhibited strong intracellular proliferation ability. A phylogenetic tree showed that the Corby (ICDC) strain was closely related to the Corby strain, but under the pressure of a complex environment, its genome had undergone more rearrangement and inversion. The type IF CRISPR-Cas system was identified in its genome, and spacer analysis indicated that it had been invaded by several foreign plasmids, bacteria, and viruses during evolution. Legionnaires' disease caused by L. pneumophila strain Corby may be ignored in China, and it is urgent to improve long-term monitoring and investigation of aquatic environments and patients with respiratory infections to prevent a large-scale outbreak of Legionnaires' disease.
Collapse
|
3
|
Sengupta S, Azad RK. Reconstructing horizontal gene flow network to understand prokaryotic evolution. Open Biol 2022; 12:220169. [PMID: 36446404 PMCID: PMC9708380 DOI: 10.1098/rsob.220169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major source of phenotypic innovation and a mechanism of niche adaptation in prokaryotes. Quantification of HGT is critical to decipher its myriad roles in microbial evolution and adaptation. Advances in genome sequencing and bioinformatics have augmented our ability to understand the microbial world, particularly the direct or indirect influence of HGT on diverse life forms. Methods for detecting HGT can be classified into phylogenetic-based and parametric or composition-based approaches. Here, we exploited the complementary strengths of both the approaches to construct a high confidence horizontal gene flow network. Our network is unique in its ability to detect the transfer of native genes of a genome to genomes from other taxa, thus establishing donor and recipient organisms (taxa), rather than through a post hoc analysis as is the practice with several other approaches. The scale-free horizontal gene flow network presented here provides new insights into modes of transfer for the exchange of genetic information and also illuminates differential gene flow across phyla.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA,Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
4
|
Sengupta S, Azad RK. Reconstructing horizontal gene flow network to understand prokaryotic evolution. Open Biol 2022. [PMID: 36446404 DOI: 10.6084/m9.figshare.c.6307519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major source of phenotypic innovation and a mechanism of niche adaptation in prokaryotes. Quantification of HGT is critical to decipher its myriad roles in microbial evolution and adaptation. Advances in genome sequencing and bioinformatics have augmented our ability to understand the microbial world, particularly the direct or indirect influence of HGT on diverse life forms. Methods for detecting HGT can be classified into phylogenetic-based and parametric or composition-based approaches. Here, we exploited the complementary strengths of both the approaches to construct a high confidence horizontal gene flow network. Our network is unique in its ability to detect the transfer of native genes of a genome to genomes from other taxa, thus establishing donor and recipient organisms (taxa), rather than through a post hoc analysis as is the practice with several other approaches. The scale-free horizontal gene flow network presented here provides new insights into modes of transfer for the exchange of genetic information and also illuminates differential gene flow across phyla.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA.,Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
5
|
Mejía L, Prado B, Cárdenas P, Trueba G, González-Candelas F. The impact of genetic recombination on pathogenic Leptospira. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105313. [PMID: 35688386 DOI: 10.1016/j.meegid.2022.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Leptospirosis is the most common zoonosis worldwide, and is increasingly common in poor urban communities, where there is inadequate sewage disposal and abundance of domestic and peridomestic animals. There are many risk factors associated with the disease, such as contaminated water exposure, close contact with animals, floods, recreational activities related to water, wet agriculture. The symptoms of leptospirosis are common to other infectious diseases and, if not treated, it can lead to meningitis, liver failure, kidney damage and death. Leptospirosis is caused by 38 pathogenic species of Leptospira, which are divided in almost 30 serogroups and more than 300 serovars. The serological classification (serogroups and serovars) is based on the expression of distinct lipopolysaccharide (LPS) antigens. These antigens are also associated to protective immunity; antibodies against a serovar protect from any member of the same serovar. Serologic and phylogenetic analyses are not congruent probably due to genetic recombination of LPS genes among different leptospiral species. To analyze the importance of recombination in leptospiral evolution, we performed a gene-by-gene tree topology comparison on closed genomes available in public databases at two levels: among core genomes of pathogenic species (34 recombinant among 1213 core genes), and among core genomes of L. interrogans isolates (178/798). We found that most recombinant genes code for proteins involved in translation, ribosomal structure and biogenesis, but also for cell wall, membrane and envelope biogenesis. Besides, our final results showed that half of LPS genes are recombinant (18/36). This is relevant because serovar classification and vaccine development are based on these epitopes. The frequent recombination of LPS-associated genes suggests that natural selection is promoting the survival of recombinant lineages. These results may help understanding the factors that make Leptospira a successful pathogen.
Collapse
Affiliation(s)
- Lorena Mejía
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
| | - Belén Prado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|
6
|
Valiente-Mullor C, Beamud B, Ansari I, Francés-Cuesta C, García-González N, Mejía L, Ruiz-Hueso P, González-Candelas F. One is not enough: On the effects of reference genome for the mapping and subsequent analyses of short-reads. PLoS Comput Biol 2021; 17:e1008678. [PMID: 33503026 PMCID: PMC7870062 DOI: 10.1371/journal.pcbi.1008678] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/08/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Mapping of high-throughput sequencing (HTS) reads to a single arbitrary reference genome is a frequently used approach in microbial genomics. However, the choice of a reference may represent a source of errors that may affect subsequent analyses such as the detection of single nucleotide polymorphisms (SNPs) and phylogenetic inference. In this work, we evaluated the effect of reference choice on short-read sequence data from five clinically and epidemiologically relevant bacteria (Klebsiella pneumoniae, Legionella pneumophila, Neisseria gonorrhoeae, Pseudomonas aeruginosa and Serratia marcescens). Publicly available whole-genome assemblies encompassing the genomic diversity of these species were selected as reference sequences, and read alignment statistics, SNP calling, recombination rates, dN/dS ratios, and phylogenetic trees were evaluated depending on the mapping reference. The choice of different reference genomes proved to have an impact on almost all the parameters considered in the five species. In addition, these biases had potential epidemiological implications such as including/excluding isolates of particular clades and the estimation of genetic distances. These findings suggest that the single reference approach might introduce systematic errors during mapping that affect subsequent analyses, particularly for data sets with isolates from genetically diverse backgrounds. In any case, exploring the effects of different references on the final conclusions is highly recommended. Mapping consists in the alignment of reads (i.e., DNA fragments) obtained through high-throughput genome sequencing to a previously assembled reference sequence. It is a common practice in genomic studies to use a single reference for mapping, usually the ‘reference genome’ of a species—a high-quality assembly. However, the selection of an optimal reference is hindered by intrinsic intra-species genetic variability, particularly in bacteria. It is known that genetic differences between the reference genome and the read sequences may produce incorrect alignments during mapping. Eventually, these errors could lead to misidentification of variants and biased reconstruction of phylogenetic trees (which reflect ancestry between different bacterial lineages). To our knowledge, this is the first work to systematically examine the effect of different references for mapping on the inference of tree topology as well as the impact on recombination and natural selection inferences. Furthermore, the novelty of this work relies on a procedure that guarantees that we are evaluating only the effect of the reference. This effect has proved to be pervasive in the five bacterial species that we have studied and, in some cases, alterations in phylogenetic trees could lead to incorrect epidemiological inferences. Hence, the use of different reference genomes may be prescriptive to assess the potential biases of mapping.
Collapse
Affiliation(s)
- Carlos Valiente-Mullor
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Beatriz Beamud
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- * E-mail: (BB); (FG-C)
| | - Iván Ansari
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Carlos Francés-Cuesta
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Neris García-González
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Lorena Mejía
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paula Ruiz-Hueso
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBER in Epidemiology and Public Health, Valencia, Spain
- * E-mail: (BB); (FG-C)
| |
Collapse
|
7
|
Duron O, Doublet P, Vavre F, Bouchon D. The Importance of Revisiting Legionellales Diversity. Trends Parasitol 2018; 34:1027-1037. [PMID: 30322750 DOI: 10.1016/j.pt.2018.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
Bacteria of the order Legionellales, such as Legionella pneumophila, the agent of Legionnaires' disease, and Coxiella burnetii, the agent of Q fever, are widely recognized as human pathogens. While our view of the Legionellales is often limited to clinical isolates, ecological surveys are continually uncovering new members of the Legionellales that do not fall into the recognized pathogenic species. Here we emphasize that most of these Legionellales are nonpathogenic forms that have evolved symbiotic lifestyles with nonvertebrate hosts. The diversity of nonpathogenic forms remains, however, largely underexplored. We conjecture that its characterization, once contrasted with the data on pathogenic species, will reveal novel highlights on the mechanisms underlying lifestyle transitions of intracellular bacteria, including the emergence of pathogenesis and mutualism, transmission routes, and host specificity.
Collapse
Affiliation(s)
- Olivier Duron
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD) - Université de Montpellier (UM), 911 Avenue Agropolis, F-34394 Montpellier, France.
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon, F-69100 Villeurbanne, France
| | - Fabrice Vavre
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Didier Bouchon
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, F-86073 Poitiers, France
| |
Collapse
|
8
|
Sousa PS, Silva IN, Moreira LM, Veríssimo A, Costa J. Differences in Virulence Between Legionella pneumophila Isolates From Human and Non-human Sources Determined in Galleria mellonella Infection Model. Front Cell Infect Microbiol 2018; 8:97. [PMID: 29670859 PMCID: PMC5893783 DOI: 10.3389/fcimb.2018.00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 01/13/2023] Open
Abstract
Legionella pneumophila is a ubiquitous bacterium in freshwater environments and in many man-made water systems capable of inducing pneumonia in humans. Despite its ubiquitous character most studies on L. pneumophila virulence focused on clinical strains and isolates from man-made environments, so little is known about the nature and extent of virulence variation in strains isolated from natural environments. It has been established that clinical isolates are less diverse than man-made and natural environmental strains, suggesting that only a subset of environmental isolates is specially adapted to infect humans. In this work we intended to determine if unrelated L. pneumophila strains, isolated from different environments and with distinct virulence-related genetic backgrounds, displayed differences in virulence, using the Wax Moth Galleria mellonella infection model. We found that all tested strains were pathogenic in G. mellonella, regardless of their origin. Indeed, a panoply of virulence-related phenotypes was observed sustaining the existence of significant differences on the ability of L. pneumophila strains to induce disease. Taken together our results suggest that the occurrence of human infection is not related with the increased capability of some strains to induce disease since we also found a concentration threshold above which L. pneumophila strains are equally able to cause disease. In addition, no link could be established between the sequence-type (ST) and L. pneumophila pathogenicity. We envision that in man-made water distribution systems environmental filtering selection and biotic competition acts structuring L. pneumophila populations by selecting more resilient and adapted strains that can rise to high concentration if no control measures are implemented. Therefore, public health strategies based on the sequence based typing (STB) scheme analysis should take into account that the major disease-associated clones of L. pneumophila were not related with higher virulence in G. mellonella infection model, and that potential variability of virulence-related phenotypes was found within the same ST.
Collapse
Affiliation(s)
- Patrícia S Sousa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Inês N Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Leonilde M Moreira
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.,Department of Bioengineering, IST, University of Lisbon, Lisbon, Portugal
| | - António Veríssimo
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana Costa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Bacigalupe R, Lindsay D, Edwards G, Fitzgerald JR. Population Genomics of Legionella longbeachae and Hidden Complexities of Infection Source Attribution. Emerg Infect Dis 2017; 23:750-757. [PMID: 28418314 PMCID: PMC5403047 DOI: 10.3201/eid2305.161165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Legionella longbeachae is the primary cause of legionellosis in Australasia and Southeast Asia and an emerging pathogen in Europe and the United States; however, our understanding of the population diversity of L. longbeachae from patient and environmental sources is limited. We analyzed the genomes of 64 L. longbeachae isolates, of which 29 were from a cluster of legionellosis cases linked to commercial growing media in Scotland in 2013 and 35 were non-outbreak-associated isolates from Scotland and other countries. We identified extensive genetic diversity across the L. longbeachae species, associated with intraspecies and interspecies gene flow, and a wide geographic distribution of closely related genotypes. Of note, we observed a highly diverse pool of L. longbeachae genotypes within compost samples that precluded the genetic establishment of an infection source. These data represent a view of the genomic diversity of L. longbeachae that will inform strategies for investigating future outbreaks.
Collapse
|
10
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
11
|
Mercante JW, Morrison SS, Desai HP, Raphael BH, Winchell JM. Genomic Analysis Reveals Novel Diversity among the 1976 Philadelphia Legionnaires' Disease Outbreak Isolates and Additional ST36 Strains. PLoS One 2016; 11:e0164074. [PMID: 27684472 PMCID: PMC5042515 DOI: 10.1371/journal.pone.0164074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila was first recognized as a cause of severe and potentially fatal pneumonia during a large-scale outbreak of Legionnaires’ disease (LD) at a Pennsylvania veterans’ convention in Philadelphia, 1976. The ensuing investigation and recovery of four clinical isolates launched the fields of Legionella epidemiology and scientific research. Only one of the original isolates, “Philadelphia-1”, has been widely distributed or extensively studied. Here we describe the whole-genome sequencing (WGS), complete assembly, and comparative analysis of all Philadelphia LD strains recovered from that investigation, along with L. pneumophila isolates sharing the Philadelphia sequence type (ST36). Analyses revealed that the 1976 outbreak was due to multiple serogroup 1 strains within the same genetic lineage, differentiated by an actively mobilized, self-replicating episome that is shared with L. pneumophila str. Paris, and two large, horizontally-transferred genomic loci, among other polymorphisms. We also found a completely unassociated ST36 strain that displayed remarkable genetic similarity to the historical Philadelphia isolates. This similar strain implies the presence of a potential clonal population, and suggests important implications may exist for considering epidemiological context when interpreting phylogenetic relationships among outbreak-associated isolates. Additional extensive archival research identified the Philadelphia isolate associated with a non-Legionnaire case of “Broad Street pneumonia”, and provided new historical and genetic insights into the 1976 epidemic. This retrospective analysis has underscored the utility of fully-assembled WGS data for Legionella outbreak investigations, highlighting the increased resolution that comes from long-read sequencing and a sequence type-matched genomic data set.
Collapse
Affiliation(s)
- Jeffrey W. Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shatavia S. Morrison
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Heta P. Desai
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Brian H. Raphael
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jonas M. Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Joseph SJ, Cox D, Wolff B, Morrison SS, Kozak-Muiznieks NA, Frace M, Didelot X, Castillo-Ramirez S, Winchell J, Read TD, Dean D. Dynamics of genome change among Legionella species. Sci Rep 2016; 6:33442. [PMID: 27633769 PMCID: PMC5025774 DOI: 10.1038/srep33442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
Legionella species inhabit freshwater and soil ecosystems where they parasitize protozoa. L. pneumonphila (LP) serogroup-1 (Lp1) is the major cause of Legionnaires' Disease (LD), a life-threatening pulmonary infection that can spread systemically. The increased global frequency of LD caused by Lp and non-Lp species underscores the need to expand our knowledge of evolutionary forces underlying disease pathogenesis. Whole genome analyses of 43 strains, including all known Lp serogroups 1-17 and 17 emergent LD-causing Legionella species (of which 33 were sequenced in this study) in addition to 10 publicly available genomes, resolved the strains into four phylogenetic clades along host virulence demarcations. Clade-specific genes were distinct for genetic exchange and signal-transduction, indicating adaptation to specific cellular and/or environmental niches. CRISPR spacer comparisons hinted at larger pools of accessory DNA sequences in Lp than predicted by the pan-genome analyses. While recombination within Lp was frequent and has been reported previously, population structure analysis identified surprisingly few DNA admixture events between species. In summary, diverse Legionella LD-causing species share a conserved core-genome, are genetically isolated from each other, and selectively acquire genes with potential for enhanced virulence.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel Cox
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bernard Wolff
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shatavia S. Morrison
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Michael Frace
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London, United Kingdom
| | - Santiago Castillo-Ramirez
- Programa de Genomica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jonas Winchell
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Dean
- Department of Medicine and University of California, San Francisco, San Francisco, California, USA
- Department of Biomedical Engineering, University of California at San Francisco and Berkeley, San Francisco and Berkeley, California, USA
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
13
|
Borges V, Nunes A, Sampaio DA, Vieira L, Machado J, Simões MJ, Gonçalves P, Gomes JP. Legionella pneumophila strain associated with the first evidence of person-to-person transmission of Legionnaires' disease: a unique mosaic genetic backbone. Sci Rep 2016; 6:26261. [PMID: 27196677 PMCID: PMC4872527 DOI: 10.1038/srep26261] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
A first strong evidence of person-to-person transmission of Legionnaires’ Disease (LD) was recently reported. Here, we characterize the genetic backbone of this case-related Legionella pneumophila strain (“PtVFX/2014”), which also caused a large outbreak of LD. PtVFX/2014 is phylogenetically divergent from the most worldwide studied outbreak-associated L. pneumophila subspecies pneumophila serogroup 1 strains. In fact, this strain is also from serogroup 1, but belongs to the L. pneumophila subspecies fraseri. Its genomic mosaic backbone reveals eight horizontally transferred regions encompassing genes, for instance, involved in lipopolysaccharide biosynthesis or encoding virulence-associated Dot/Icm type IVB secretion system (T4BSS) substrates. PtVFX/2014 also inherited a rare ~65 kb pathogenicity island carrying virulence factors and detoxifying enzymes believed to contribute to the emergence of best-fitted strains in water reservoirs and in human macrophages, as well as a inter-species transferred (from L. oakridgensis) ~37.5 kb genomic island (harboring a lvh/lvr T4ASS cluster) that had never been found intact within L. pneumophila species. PtVFX/2014 encodes another lvh/lvr cluster near to CRISPR-associated genes, which may boost L. pneumophila transition from an environmental bacterium to a human pathogen. Overall, this unique genomic make-up may impact PtVFX/2014 ability to adapt to diverse environments, and, ultimately, to be transmitted and cause human disease.
Collapse
Affiliation(s)
- Vítor Borges
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Jorge Machado
- Coordination of the Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Maria J Simões
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - Paulo Gonçalves
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
14
|
Khodr A, Kay E, Gomez-Valero L, Ginevra C, Doublet P, Buchrieser C, Jarraud S. Molecular epidemiology, phylogeny and evolution of Legionella. INFECTION GENETICS AND EVOLUTION 2016; 43:108-22. [PMID: 27180896 DOI: 10.1016/j.meegid.2016.04.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022]
Abstract
Legionella are opportunistic pathogens that develop in aquatic environments where they multiply in protozoa. When infected aerosols reach the human respiratory tract they may accidentally infect the alveolar macrophages leading to a severe pneumonia called Legionnaires' disease (LD). The ability of Legionella to survive within host-cells is strictly dependent on the Dot/Icm Type 4 Secretion System that translocates a large repertoire of effectors into the host cell cytosol. Although Legionella is a large genus comprising nearly 60 species that are worldwide distributed, only about half of them have been involved in LD cases. Strikingly, the species Legionella pneumophila alone is responsible for 90% of all LD cases. The present review summarizes the molecular approaches that are used for L. pneumophila genotyping with a major focus on the contribution of whole genome sequencing (WGS) to the investigation of local L. pneumophila outbreaks and global epidemiology studies. We report the newest knowledge regarding the phylogeny and the evolution of Legionella and then focus on virulence evolution of those Legionella species that are known to have the capacity to infect humans. Finally, we discuss the evolutionary forces and adaptation mechanisms acting on the Dot/Icm system itself as well as the role of mobile genetic elements (MGE) encoding T4ASSs and of gene duplications in the evolution of Legionella and its adaptation to different hosts and lifestyles.
Collapse
Affiliation(s)
- A Khodr
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, France; CNRS, UMR 3525, 28, Rue du Dr Roux, 75724 Paris, France
| | - E Kay
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France
| | - L Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, France; CNRS, UMR 3525, 28, Rue du Dr Roux, 75724 Paris, France
| | - C Ginevra
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France; French National Reference Center of Legionella, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - P Doublet
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France
| | - C Buchrieser
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, France; CNRS, UMR 3525, 28, Rue du Dr Roux, 75724 Paris, France
| | - S Jarraud
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France; French National Reference Center of Legionella, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
15
|
Population structure and minimum core genome typing of Legionella pneumophila. Sci Rep 2016; 6:21356. [PMID: 26888563 PMCID: PMC4766850 DOI: 10.1038/srep21356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is an important human pathogen causing Legionnaires’ disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila.
Collapse
|
16
|
Abstract
The Legionella genus includes opportunistic human pathogenic species that invade human cells using effector proteins that evolved during association with their natural amoeba hosts. A new study compares the genomes of 41 Legionella species to identify nearly 6,000 effectors, providing insight into these species' evolution and pathogenic lifestyles.
Collapse
Affiliation(s)
- Iñaki Comas
- Genomics and Health Unit, FISABIO Public Health, Valencia, Spain, and Centro de Investigación Biomédica en Red (CIBER) Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease. Genome Biol 2015; 15:505. [PMID: 25370836 DOI: 10.1186/preaccept-1086350395137407] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires’ disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. RESULTS We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. CONCLUSIONS Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains.
Collapse
|
18
|
Sequence types diversity of Legionella pneumophila isolates from environmental water sources in Guangzhou and Jiangmen, China. INFECTION GENETICS AND EVOLUTION 2015; 29:35-41. [DOI: 10.1016/j.meegid.2014.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/17/2014] [Accepted: 10/25/2014] [Indexed: 11/18/2022]
|
19
|
Gomez-Valero L, Rusniok C, Rolando M, Neou M, Dervins-Ravault D, Demirtas J, Rouy Z, Moore RJ, Chen H, Petty NK, Jarraud S, Etienne J, Steinert M, Heuner K, Gribaldo S, Médigue C, Glöckner G, Hartland EL, Buchrieser C. Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires’ disease. Genome Biol 2014. [PMID: 25370836 PMCID: PMC4256840 DOI: 10.1186/s13059-014-0505-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires’ disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. Results We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. Conclusions Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0505-0) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Recombination drives genome evolution in outbreak-related Legionella pneumophila isolates. Nat Genet 2014; 46:1205-11. [PMID: 25282102 DOI: 10.1038/ng.3114] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 09/12/2014] [Indexed: 11/09/2022]
Abstract
Legionella pneumophila is a strictly environmental pathogen and the etiological agent of legionellosis. It is known that non-vertical processes have a major role in the short-term evolution of pathogens, but little is known about the relevance of these and other processes in environmental bacteria. We report the whole-genome sequencing of 69 L. pneumophila strains linked to recurrent outbreaks in a single location (Alcoy, Spain) over 11 years. We found some examples where the genome sequences of isolates of the same sequence type and outbreak did not cluster together and were more closely related to sequences from different outbreaks. Our analyses identify 16 recombination events responsible for almost 98% of the SNPs detected in the core genome and an apparent acceleration in the evolutionary rate. These results have profound implications for the understanding of microbial populations and for public health interventions in Legionella outbreak investigations.
Collapse
|
21
|
Underwood AP, Jones G, Mentasti M, Fry NK, Harrison TG. Comparison of the Legionella pneumophila population structure as determined by sequence-based typing and whole genome sequencing. BMC Microbiol 2013; 13:302. [PMID: 24364868 PMCID: PMC3877988 DOI: 10.1186/1471-2180-13-302] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023] Open
Abstract
Background Legionella pneumophila is an opportunistic pathogen of humans where the source of infection is usually from contaminated man-made water systems. When an outbreak of Legionnaires’ disease caused by L. pneumophila occurs, it is necessary to discover the source of infection. A seven allele sequence-based typing scheme (SBT) has been very successful in providing the means to attribute outbreaks of L. pneumophila to a particular source or sources. Particular sequence types described by this scheme are known to exhibit specific phenotypes. For instance some types are seen often in clinical cases but are rarely isolated from the environment and vice versa. Of those causing human disease some types are thought to be more likely to cause more severe disease. It is possible that the genetic basis for these differences are vertically inherited and associated with particular genetic lineages within the population. In order to provide a framework within which to test this hypothesis and others relating to the population biology of L. pneumophila, a set of genomes covering the known diversity of the organism is required. Results Firstly, this study describes a means to group L. pneumophila strains into pragmatic clusters, using a methodology that takes into consideration the genetic forces operating on the population. These clusters can be used as a standardised nomenclature, so those wishing to describe a group of strains can do so. Secondly, the clusters generated from the first part of the study were used to select strains rationally for whole genome sequencing (WGS). The data generated was used to compare phylogenies derived from SBT and WGS. In general the SBT sequence type (ST) accurately reflects the whole genome-based genotype. Where there are exceptions and recombination has resulted in the ST no longer reflecting the genetic lineage described by the whole genome sequence, the clustering technique employed detects these sequence types as being admixed, indicating their mixed inheritance. Conclusions We conclude that SBT is usually a good proxy for the genetic lineage described by the whole genome, and therefore utility of SBT is still suitable until the technology and economics of high throughput sequencing reach the point where routine WGS of L. pneumophila isolates for outbreak investigation is feasible.
Collapse
Affiliation(s)
- Anthony P Underwood
- Bioinformatics Unit, Microbiology Services (Colindale), Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | | | | | | | | |
Collapse
|
22
|
Rong X, Doroghazi JR, Cheng K, Zhang L, Buckley DH, Huang Y. Classification of Streptomyces phylogroup pratensis (Doroghazi and Buckley, 2010) based on genetic and phenotypic evidence, and proposal of Streptomyces pratensis sp. nov. Syst Appl Microbiol 2013; 36:401-7. [PMID: 23769815 DOI: 10.1016/j.syapm.2013.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 11/26/2022]
Abstract
The Streptomyces phylogroup pratensis (Doroghazi and Buckley, 2010) contains isolates obtained from grassy fields, as well as Streptomyces flavogriseus ATCC 33331 and strain CGMCC 4.1868. This latter strain was received as Streptomyces griseoplanus but was subsequently found to be mislabeled, and S. flavogriseus ATCC 33331 (=IAF-45-CD) was shown to be clearly distinct from the type strain S. flavogriseus ATCC 25452(T) (=CGMCC 4.1884(T)). In order to evaluate the taxonomic position of phylogroup pratensis further, sequences of the 16S rRNA gene and five protein-coding housekeeping genes (atpD, gyrB, recA, rpoB and trpB) were determined for six strains of the phylogroup and type strains of 19 related species, which were selected by a BLAST search based on the sequences of the phylogroup. The 16S rRNA gene sequences for the phylogroup were identical to those of eight species belonging to cluster I of the S. griseus clade. However, in all the individual protein-coding gene and MLSA phylogenies, the phylogroup strains without exception formed an obviously distinct cluster that could be equated with a new species status. The phylogenetic evidence for the new species assignment was also supported by corresponding DNA-DNA hybridization values and by phenotypic characteristics. It is therefore proposed that the phylogroup should be classified as Streptomyces pratensis sp. nov., and the type strain is ch24(T) (=CGMCC 4.6829(T)=NRRL B-24916(T)).
Collapse
Affiliation(s)
- Xiaoying Rong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
23
|
Williams D, Gogarten JP, Papke RT. Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol Evol 2013; 4:1223-44. [PMID: 23160063 PMCID: PMC3542582 DOI: 10.1093/gbe/evs098] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In vitro studies of the haloarchaeal genus Haloferax have demonstrated
their ability to frequently exchange DNA between species, whereas rates of homologous
recombination estimated from natural populations in the genus Halorubrum
are high enough to maintain random association of alleles between five loci. To quantify
the effects of gene transfer and recombination of commonly held (relaxed core) genes
during the evolution of the class Halobacteria (haloarchaea), we reconstructed the history
of 21 genomes representing all major groups. Using a novel algorithm and a concatenated
ribosomal protein phylogeny as a reference, we created a directed horizontal genetic
transfer (HGT) network of contemporary and ancestral genomes. Gene order analysis revealed
that 90% of testable HGTs were by direct homologous replacement, rather than
nonhomologous integration followed by a loss. Network analysis revealed an inverse
log-linear relationship between HGT frequency and ribosomal protein evolutionary distance
that is maintained across the deepest divergences in Halobacteria. We use this
mathematical relationship to estimate the total transfers and amino acid substitutions
delivered by HGTs in each genome, providing a measure of chimerism. For the relaxed core
genes of each genome, we conservatively estimate that 11–20% of their
evolution occurred in other haloarchaea. Our findings are unexpected, because the transfer
and homologous recombination of relaxed core genes between members of the class
Halobacteria disrupts the coevolution of genes; however, the generation of new
combinations of divergent but functionally related genes may lead to adaptive phenotypes
not available through cumulative mutations and recombination within a single
population.
Collapse
Affiliation(s)
- David Williams
- Department of Molecular and Cell Biology, University of Connecticut, CT, USA
| | | | | |
Collapse
|
24
|
Sánchez-Busó L, Coscollá M, Pinto-Carbó M, Catalán V, González-Candelas F. Genetic Characterization of Legionella pneumophila Isolated from a Common Watershed in Comunidad Valenciana, Spain. PLoS One 2013; 8:e61564. [PMID: 23634210 PMCID: PMC3636276 DOI: 10.1371/journal.pone.0061564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Legionella pneumophila infects humans to produce legionellosis and Pontiac fever only from environmental sources. In order to establish control measures and study the sources of outbreaks it is essential to know extent and distribution of strain variants of this bacterium in the environment. Sporadic and outbreak-related cases of legionellosis have been historically frequent in the Comunidad Valenciana region (CV, Spain), with a high prevalence in its Southeastern-most part (BV). Environmental investigations for the detection of Legionella pneumophila are performed in this area routinely. We present a population genetics study of 87 L. pneumophila strains isolated in 13 different localities of the BV area irrigated from the same watershed and compare them to a dataset of 46 strains isolated in different points of the whole CV. Our goal was to compare environmental genetic variation at two different geographic scales, at county and regional levels. Genetic diversity, recombination and population structure were analyzed with Sequence-Based Typing data and three intergenic regions. The results obtained reveal a low, but detectable, level of genetic differentiation between both datasets, mainly, but not only, attributed to the occurrence of unusual variants of the neuA locus present in the BV populations. This differentiation is still detectable when the 10 loci considered are analyzed independently, despite the relatively high incidence of the most common genetic variant in this species, sequence type 1 (ST-1). However, when the genetic data are considered without their associated geographic information, four major groups could be inferred at the genetic level which did not show any correlation with sampling locations. The overall results indicate that the population structure of these environmental samples results from the joint action of a global, widespread ST-1 along with genetic differentiation at shorter geographic distances, which in this case are related to the common watershed for the BV localities.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Genomics and Health Joint Unit CSISP (FISABIO)-University of Valencia/Cavanilles Institute, Valencia, Spain
- CIBER Epidemiology and Public Health, Valencia, Spain
| | - Mireia Coscollá
- Tuberculosis Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Marta Pinto-Carbó
- Genomics and Health Joint Unit CSISP (FISABIO)-University of Valencia/Cavanilles Institute, Valencia, Spain
| | | | - Fernando González-Candelas
- Genomics and Health Joint Unit CSISP (FISABIO)-University of Valencia/Cavanilles Institute, Valencia, Spain
- CIBER Epidemiology and Public Health, Valencia, Spain
- * E-mail:
| |
Collapse
|
25
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
26
|
Merhej V, Raoult D. Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin. Front Cell Infect Microbiol 2012; 2:113. [PMID: 22973559 PMCID: PMC3428605 DOI: 10.3389/fcimb.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022] Open
Abstract
Darwin's theory about the evolution of species has been the object of considerable dispute. In this review, we have described seven key principles in Darwin's book The Origin of Species and tried to present how genomics challenge each of these concepts and improve our knowledge about evolution. Darwin believed that species evolution consists on a positive directional selection ensuring the “survival of the fittest.” The most developed state of the species is characterized by increasing complexity. Darwin proposed the theory of “descent with modification” according to which all species evolve from a single common ancestor through a gradual process of small modification of their vertical inheritance. Finally, the process of evolution can be depicted in the form of a tree. However, microbial genomics showed that evolution is better described as the “biological changes over time.” The mode of change is not unidirectional and does not necessarily favors advantageous mutations to increase fitness it is rather subject to random selection as a result of catastrophic stochastic processes. Complexity is not necessarily the completion of development: several complex organisms have gone extinct and many microbes including bacteria with intracellular lifestyle have streamlined highly effective genomes. Genomes evolve through large events of gene deletions, duplications, insertions, and genomes rearrangements rather than a gradual adaptative process. Genomes are dynamic and chimeric entities with gene repertoires that result from vertical and horizontal acquisitions as well as de novo gene creation. The chimeric character of microbial genomes excludes the possibility of finding a single common ancestor for all the genes recorded currently. Genomes are collections of genes with different evolutionary histories that cannot be represented by a single tree of life (TOL). A forest, a network or a rhizome of life may be more accurate to represent evolutionary relationships among species.
Collapse
Affiliation(s)
- Vicky Merhej
- URMITE, UM63, CNRS 7278, IRD 198, INSERM U1095, Aix Marseille Université Marseille, France
| | | |
Collapse
|
27
|
Bertelli C, Greub G. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Front Cell Infect Microbiol 2012; 2:110. [PMID: 22919697 PMCID: PMC3423634 DOI: 10.3389/fcimb.2012.00110] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/01/2012] [Indexed: 12/05/2022] Open
Abstract
Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).
Collapse
Affiliation(s)
- Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne Lausanne, Switzerland
| | | |
Collapse
|
28
|
Lapierre P, Lasek-Nesselquist E, Gogarten JP. The impact of HGT on phylogenomic reconstruction methods. Brief Bioinform 2012; 15:79-90. [DOI: 10.1093/bib/bbs050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
29
|
Georgiades K, Raoult D. How microbiology helps define the rhizome of life. Front Cell Infect Microbiol 2012; 2:60. [PMID: 22919651 PMCID: PMC3417629 DOI: 10.3389/fcimb.2012.00060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/16/2012] [Indexed: 01/24/2023] Open
Abstract
In contrast to the tree of life (TOF) theory, species are mosaics of gene sequences with different origins. Observations of the extensive lateral sequence transfers in all organisms have demonstrated that the genomes of all life forms are collections of genes with different evolutionary histories that cannot be represented by a single TOF. Moreover, genes themselves commonly have several origins due to recombination. The human genome is not free from recombination events, so it is a mosaic like other organisms' genomes. Recent studies have demonstrated evidence for the integration of parasitic DNA into the human genome. Lateral transfer events have been accepted as major contributors of genome evolution in free-living bacteria. Furthermore, the accumulation of genomic sequence data provides evidence for extended genetic exchanges in intracellular bacteria and suggests that such events constitute an agent that promotes and maintains all bacterial species. Archaea and viruses also form chimeras containing primarily bacterial but also eukaryotic sequences. In addition to lateral transfers, orphan genes are indicative of the fact that gene creation is a permanent and unsettled phenomenon. Currently, a rhizome may more adequately represent the multiplicity and de novo creation of a genome. We wanted to confirm that the term “rhizome” in evolutionary biology applies to the entire cellular life history. This view of evolution should resemble a clump of roots representing the multiple origins of the repertoires of the genes of each species.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Faculté de Médecine La Timone, Unité de Recherche en Maladies Infectieuses Tropical Emergentes (URMITE), CNRS-IRD UMR 6236-198, Université de la Méditerranée Marseille, France
| | | |
Collapse
|
30
|
Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the 'core' and origins of host genes. Environ Microbiol 2012; 14:2113-26. [PMID: 22348436 DOI: 10.1111/j.1462-2920.2012.02704.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The last two decades have revealed that phages (viruses that infect bacteria) are abundant and play fundamental roles in the Earth System, with the T4-like myoviruses (herein T4-like phages) emerging as a dominant 'signal' in wild populations. Here we examine 27 T4-like phage genomes, with a focus on 17 that infect ocean picocyanobacteria (cyanophages), to evaluate lateral gene transfer (LGT) in this group. First, we establish a reference tree by evaluating concatenated core gene supertrees and whole genome gene content trees. Next, we evaluate what fraction of these 'core genes' shared by all 17 cyanophages appear prone to LGT. Most (47 out of 57 core genes) were vertically transferred as inferred from tree tests and genomic synteny. Of those 10 core genes that failed the tree tests, the bulk (8 of 10) remain syntenic in the genomes with only a few (3 of the 10) having identifiable signatures of mobile elements. Notably, only one of these 10 is shared not only by the 17 cyanophages, but also by all 27 T4-like phages (thymidylate synthase); its evolutionary history suggests cyanophages may be the origin of these genes to Prochlorococcus. Next, we examined intragenic recombination among the core genes and found that it did occur, even among these core genes, but that the rate was significantly higher between closely related phages, perhaps reducing any detectable LGT signal and leading to taxon cohesion. Finally, among 18 auxiliary metabolic genes (AMGs, a.k.a. 'host' genes), we found that half originated from their immediate hosts, in some cases multiple times (e.g. psbA, psbD, pstS), while the remaining have less clear evolutionary origins ranging from cyanobacteria (4 genes) or microbes (5 genes), with particular diversity among viral TalC and Hsp20 sequences. Together, these findings highlight the patterns and limits of vertical evolution, as well as the ecological and evolutionary roles of LGT in shaping T4-like phage genomes.
Collapse
|
31
|
Merhej V, Notredame C, Royer-Carenzi M, Pontarotti P, Raoult D. The rhizome of life: the sympatric Rickettsia felis paradigm demonstrates the random transfer of DNA sequences. Mol Biol Evol 2012; 28:3213-23. [PMID: 22024628 DOI: 10.1093/molbev/msr239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The intracellular flea symbiont, Rickettsia felis, may meet other organisms intracellularly such as R. typhi. We used a single-gene phylogenetic approach of the 1375 R. felis genes to look for horizontal transfers that occurred as a result of the bacterial promiscuity with other organisms. Our results showed that besides genes that are linked to the Spotted Fever Group, 165 genes have a different history and are linked to other Rickettsia such as R. bellii (107 genes), R. typhi (15 genes), or to other bacteria such as Legionella sp. and Francisella sp. or to eukaryotes. Among these genes, we identified 73 individual genes and 34 spatial clusters containing 2-4 adjacent genes, a total of 79 genes, with evidence of en bloc transfer. We described 13 chimeric genes resulting from gene recombination with sympatric R. typhi. The transferred DNA sequences present different sizes and functions, suggesting that the horizontal transfer in R. felis is random and neutral within its specific host. Our study shows that the strict intracellular bacteria R. felis exhibits a mosaic genome. We therefore developed a new representation for the evolutionary history of R. felis showing its different putative ancestors in the form of a rhizome.
Collapse
Affiliation(s)
- Vicky Merhej
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, CNRS-IRD UMR6236-198, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | | | | | | | | |
Collapse
|
32
|
Costa J, d'Avó AF, da Costa MS, Veríssimo A. Molecular evolution of key genes for type II secretion in Legionella pneumophila. Environ Microbiol 2011; 14:2017-33. [PMID: 22118294 DOI: 10.1111/j.1462-2920.2011.02646.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given the role of type II protein secretion system (T2S) in the ecology and pathogenesis of Legionella pneumophila, it is possible that this system is a target for adaptive evolution. The population genetic structure of L.pneumophila was inferred from the partial sequences of rpoB and from the complete sequence of three T2S structural components (lspD, lspE and pilD) and from two T2S effectors critical for intracellular infection of protozoa (proA and srnA) of 37 strains isolated from natural and man-made environments and disease-related from worldwide sources. A phylogenetic analysis was obtained for the concatenated alignment and for each individual locus. Seven main groups were identified containing the same L.pneumophila strains, suggesting an ancient divergence for each cluster and indicating that the operating selective pressures have equally affected the evolution of the five genes. Although linkage disequilibrium analysis indicate a clonal nature for population structure in this sample, our results indicate that recombination is a common phenomenon among T2S-related genes on this species, as 24 of the 37 L.pneumophila isolates contained at least one locus in which recombination was identified. Furthermore, neutral selection acting on the analysed T2S-related genes emerged as a clear result, namely on T2S effectors, ProA and SrnA, indicating that they are probably implicated in conserved virulence mechanisms through legionellae hosts.
Collapse
Affiliation(s)
- Joana Costa
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
33
|
Gomez-Valero L, Rusniok C, Jarraud S, Vacherie B, Rouy Z, Barbe V, Medigue C, Etienne J, Buchrieser C. Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes. BMC Genomics 2011; 12:536. [PMID: 22044686 PMCID: PMC3218107 DOI: 10.1186/1471-2164-12-536] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Legionella pneumophila is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of Legionella species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely L. pneumophila Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis. Results We show that L. pneumophila Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between L. pneumophila strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different Legionella species. Conclusion Horizontal gene transfer among bacteria and from eukaryotes to L. pneumophila as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Georgiades K, Merhej V, Raoult D. The influence of rickettsiologists on post-modern microbiology. Front Cell Infect Microbiol 2011; 1:8. [PMID: 22919574 PMCID: PMC3417371 DOI: 10.3389/fcimb.2011.00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/10/2011] [Indexed: 11/29/2022] Open
Abstract
Many of the definitions in microbiology are currently false. We have reviewed the great denominations of microbiology and attempted to free microorganisms from the theories of the twentieth century. The presence of compartmentation and a nucleoid in Planctomycetes clearly calls into question the accuracy of the definitions of eukaryotes and prokaryotes. Archaea are viewed as prokaryotes resembling bacteria. However, the name archaea, suggesting an archaic origin of lifestyle, is inconsistent with the lifestyle of this family. Viruses are defined as small, filterable infectious agents, but giant viruses challenge the size criteria used for the definition of a virus. Pathogenicity does not require the acquisition of virulence factors (except for toxins), and in many cases, gene loss is significantly inked to the emergence of virulence. Species classification based on 16S rRNA is useless for taxonomic purposes of human pathogens, as a 2% divergence would classify all Rickettsiae within the same species and would not identify bacteria specialized for mammal infection. The use of metagenomics helps us to understand evolution and physiology by elucidating the structure, function, and interactions of the major microbial communities, but it neglects the minority populations. Finally, Darwin’s descent with modification theory, as represented by the tree of life, no longer matches our current genomic knowledge because genomics has revealed the occurrence of de novo-created genes and the mosaic structure of genomes, the Rhizome of life is therefore more appropriate.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Unité de Recherche en Maladies Infectieuses Tropical Emergentes, CNRS-IRD UMR 6236-198, Université de la Méditerranée Marseille, France.
| | | | | |
Collapse
|
35
|
Andam CP, Fournier GP, Gogarten JP. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol Rev 2011; 35:756-67. [DOI: 10.1111/j.1574-6976.2011.00274.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Popa O, Dagan T. Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 2011; 14:615-23. [PMID: 21856213 DOI: 10.1016/j.mib.2011.07.027] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
Gene acquisition by lateral gene transfer (LGT) is an important mechanism for natural variation among prokaryotes. Laboratory experiments show that protein-coding genes can be laterally transferred extremely fast among microbial cells, inherited to most of their descendants, and adapt to a new regulatory regime within a short time. Recent advance in the phylogenetic analysis of microbial genomes using networks approach reveals a substantial impact of LGT during microbial genome evolution. Phylogenomic networks of LGT among prokaryotes reconstructed from completely sequenced genomes uncover barriers to LGT in multiple levels. Here we discuss the kinds of barriers to gene acquisition in nature including physical barriers for gene transfer between cells, genomic barriers for the integration of acquired DNA, and functional barriers for the acquisition of new genes.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Molecular Evolution, Heinrich-Heine University of Düsseldorf, Universitätstr. 1 40225, Düsseldorf, Germany
| | | |
Collapse
|
37
|
High-throughput typing method to identify a non-outbreak-involved Legionella pneumophila strain colonizing the entire water supply system in the town of Rennes, France. Appl Environ Microbiol 2011; 77:6899-907. [PMID: 21821761 DOI: 10.1128/aem.05556-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two legionellosis outbreaks occurred in the city of Rennes, France, during the past decade, requiring in-depth monitoring of Legionella pneumophila in the water network and the cooling towers in the city. In order to characterize the resulting large collection of isolates, an automated low-cost typing method was developed. The multiplex capillary-based variable-number tandem repeat (VNTR) (multiple-locus VNTR analysis [MLVA]) assay requiring only one PCR amplification per isolate ensures a high level of discrimination and reduces hands-on and time requirements. In less than 2 days and using one 4-capillary apparatus, 217 environmental isolates collected between 2000 and 2009 and 5 clinical isolates obtained during outbreaks in 2000 and 2006 in Rennes were analyzed, and 15 different genotypes were identified. A large cluster of isolates with closely related genotypes and representing 77% of the population was composed exclusively of environmental isolates extracted from hot water supply systems. It was not responsible for the known Rennes epidemic cases, although strains showing a similar MLVA profile have regularly been involved in European outbreaks. The clinical isolates in Rennes had the same genotype as isolates contaminating a mall's cooling tower. This study further demonstrates that unknown environmental or genetic factors contribute to the pathogenicity of some strains. This work illustrates the potential of the high-throughput MLVA typing method to investigate the origin of legionellosis cases by allowing the systematic typing of any new isolate and inclusion of data in shared databases.
Collapse
|
38
|
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 2011; 35:957-76. [PMID: 21711367 DOI: 10.1111/j.1574-6976.2011.00292.x] [Citation(s) in RCA: 403] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Horizontal genetic transfer (HGT) has played an important role in bacterial evolution at least since the origins of the bacterial divisions, and HGT still facilitates the origins of bacterial diversity, including diversity based on antibiotic resistance. Adaptive HGT is aided by unique features of genetic exchange in bacteria such as the promiscuity of genetic exchange and the shortness of segments transferred. Genetic exchange rates are limited by the genetic and ecological similarity of organisms. Adaptive transfer of genes is limited to those that can be transferred as a functional unit, provide a niche-transcending adaptation, and are compatible with the architecture and physiology of other organisms. Horizontally transferred adaptations may bring about fitness costs, and natural selection may ameliorate these costs. The origins of ecological diversity can be analyzed by comparing the genomes of recently divergent, ecologically distinct populations, which can be discovered as sequence clusters. Such genome comparisons demonstrate the importance of HGT in ecological diversification. Newly divergent populations cannot be discovered as sequence clusters when their ecological differences are coded by plasmids, as is often the case for antibiotic resistance; the discovery of such populations requires a screen for plasmid-coded functions. This paper reviews the features of bacterial genetics that allow HGT, the similarities between organisms that foster HGT between them, the limits to the kinds of adaptations that can be transferred, and amelioration of fitness costs associated with HGT; the paper also reviews approaches to discover the origins of new, ecologically distinct bacterial populations and the role that HGT plays in their founding.
Collapse
Affiliation(s)
- Jane Wiedenbeck
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
39
|
Beauregard-Racine J, Bicep C, Schliep K, Lopez P, Lapointe FJ, Bapteste E. Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli. Biol Direct 2011; 6:39; discussion 39. [PMID: 21774799 PMCID: PMC3160433 DOI: 10.1186/1745-6150-6-39] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/20/2011] [Indexed: 12/26/2022] Open
Abstract
Background We introduce several forest-based and network-based methods for exploring microbial evolution, and apply them to the study of thousands of genes from 30 strains of E. coli. This case study illustrates how additional analyses could offer fast heuristic alternatives to standard tree of life (TOL) approaches. Results We use gene networks to identify genes with atypical modes of evolution, and genome networks to characterize the evolution of genetic partnerships between E. coli and mobile genetic elements. We develop a novel polychromatic quartet method to capture patterns of recombination within E. coli, to update the clanistic toolkit, and to search for the impact of lateral gene transfer and of pathogenicity on gene evolution in two large forests of trees bearing E. coli. We unravel high rates of lateral gene transfer involving E. coli (about 40% of the trees under study), and show that both core genes and shell genes of E. coli are affected by non-tree-like evolutionary processes. We show that pathogenic lifestyle impacted the structure of 30% of the gene trees, and that pathogenic strains are more likely to transfer genes with one another than with non-pathogenic strains. In addition, we propose five groups of genes as candidate mobile modules of pathogenicity. We also present strong evidence for recent lateral gene transfer between E. coli and mobile genetic elements. Conclusions Depending on which evolutionary questions biologists want to address (i.e. the identification of modules, genetic partnerships, recombination, lateral gene transfer, or genes with atypical evolutionary modes, etc.), forest-based and network-based methods are preferable to the reconstruction of a single tree, because they provide insights and produce hypotheses about the dynamics of genome evolution, rather than the relative branching order of species and lineages. Such a methodological pluralism - the use of woods and webs - is to be encouraged to analyse the evolutionary processes at play in microbial evolution. This manuscript was reviewed by: Ford Doolittle, Tal Pupko, Richard Burian, James McInerney, Didier Raoult, and Yan Boucher
Collapse
|
40
|
Renvoisé A, Merhej V, Georgiades K, Raoult D. Intracellular Rickettsiales: Insights into manipulators of eukaryotic cells. Trends Mol Med 2011; 17:573-83. [PMID: 21763202 DOI: 10.1016/j.molmed.2011.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 02/08/2023]
Abstract
The order Rickettsiales comprises obligate intracellular bacteria that are the ancestors of modern eukaryotes. These bacteria infect various vectors and hosts, with some species being pathogenic to man. Rickettsiales have small, degraded genomes and provide a paradigm for increased pathogenicity despite gene loss; significant levels of genetic exchange occur between bacteria that infect the same host and with the eukaryotic hosts themselves. Crosstalk between host and bacteria appears to be mediated by a Type IV secretion system and proteins containing eukaryotic-like repeat motifs. Rickettsiales also manipulate host reproduction and induce host resistance to viruses. Manipulation of its host by Rickettsiales has long been misunderstood because of technical difficulties, but recent advances in understanding bacterial-eukaryotes interactions have been made and are reviewed here.
Collapse
Affiliation(s)
- Aurélie Renvoisé
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR6236-198, Université de la Méditerranée, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | | | | | | |
Collapse
|
41
|
|