1
|
Huang Q, Yan K, Li G. Molecular characterization of virulent genes in Pseudomonas aeruginosa based on componential usage divergence. Sci Rep 2025; 15:11246. [PMID: 40175567 PMCID: PMC11965391 DOI: 10.1038/s41598-025-95579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Genetic characteristics of virulent genes in Pseudomonas aeruginosa attracted significant attention for they could govern their drug-resistances. Studies on the componential usage divergences in the virulent genes are beneficial for further explicating their molecular characteristics. In present study, one thousand complete genomes of Pseudomonas aeruginosa were considered to study the molecular characteristics of 21 typical virulent genes. The important componential usage patterns (i.e., the base usage pattern, the codon usage pattern and their divergences) of 21 specific virulent genes were counted and calculated. The results show that (1) most virulent genes concerned in the present study are high GC sequences (overall GC ratio > 50%), especially from the codon usage perspective, the virulent genes are obviously GC3-abundant sequences (GC3 ratio > 70%); (2) the relative synonymous codon usage of all concerned virulent genes are uneven, especially in the anvM and the lptA, there is no codon for some certain amino acids, which could reveal their obvious codon usage bias; (3) some genes (i.e., the oprF and the fadD1) with lower divergence have steady effective number of codons. The findings of the present work would improve novel insights on the genetic characteristics of virulent genes in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Qian Huang
- School of Computer Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, Shanxi, China
| | - Keding Yan
- Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, Shaanxi, China.
| | - Gun Li
- Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, Shaanxi, China.
| |
Collapse
|
2
|
Utilization of Monosaccharides by Hungateiclostridium thermocellum ATCC 27405 through Adaptive Evolution. Microorganisms 2021; 9:microorganisms9071445. [PMID: 34361881 PMCID: PMC8303734 DOI: 10.3390/microorganisms9071445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Hungateiclostridium thermocellum ATCC 27405 is a promising bacterium for consolidated bioprocessing with a robust ability to degrade lignocellulosic biomass through a multienzyme cellulosomal complex. The bacterium uses the released cellodextrins, glucose polymers of different lengths, as its primary carbon source and energy. In contrast, the bacterium exhibits poor growth on monosaccharides such as fructose and glucose. This phenomenon raises many important questions concerning its glycolytic pathways and sugar transport systems. Until now, the detailed mechanisms of H. thermocellum adaptation to growth on hexose sugars have been relatively poorly explored. In this study, adaptive laboratory evolution was applied to train the bacterium in hexose sugars-based media, and genome resequencing was used to detect the genes that got mutated during adaptation period. RNA-seq data of the first culture growing on either fructose or glucose revealed that several glycolytic genes in the Embden–Mayerhof–Parnas pathway were expressed at lower levels in these cells than in cellobiose-grown cells. After seven consecutive transfer events on fructose and glucose (~42 generations for fructose-adapted cells and ~40 generations for glucose-adapted cells), several genes in the EMP glycolysis of the evolved strains increased the levels of mRNA expression, accompanied by a faster growth, a greater biomass yield, a higher ethanol titer than those in their parent strains. Genomic screening also revealed several mutation events in the genomes of the evolved strains, especially in those responsible for sugar transport and central carbon metabolism. Consequently, these genes could be applied as potential targets for further metabolic engineering to improve this bacterium for bio-industrial usage.
Collapse
|
3
|
Lee HH, Park J, Jung H, Seo YS. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021; 9:1123. [PMID: 34067383 PMCID: PMC8224644 DOI: 10.3390/microorganisms9061123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| |
Collapse
|
4
|
LaBella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Signatures of optimal codon usage in metabolic genes inform budding yeast ecology. PLoS Biol 2021; 19:e3001185. [PMID: 33872297 PMCID: PMC8084343 DOI: 10.1371/journal.pbio.3001185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/29/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Reverse ecology is the inference of ecological information from patterns of genomic variation. One rich, heretofore underutilized, source of ecologically relevant genomic information is codon optimality or adaptation. Bias toward codons that match the tRNA pool is robustly associated with high gene expression in diverse organisms, suggesting that codon optimization could be used in a reverse ecology framework to identify highly expressed, ecologically relevant genes. To test this hypothesis, we examined the relationship between optimal codon usage in the classic galactose metabolism (GAL) pathway and known ecological niches for 329 species of budding yeasts, a diverse subphylum of fungi. We find that optimal codon usage in the GAL pathway is positively correlated with quantitative growth on galactose, suggesting that GAL codon optimization reflects increased capacity to grow on galactose. Optimal codon usage in the GAL pathway is also positively correlated with human-associated ecological niches in yeasts of the CUG-Ser1 clade and with dairy-associated ecological niches in the family Saccharomycetaceae. For example, optimal codon usage of GAL genes is greater than 85% of all genes in the genome of the major human pathogen Candida albicans (CUG-Ser1 clade) and greater than 75% of genes in the genome of the dairy yeast Kluyveromyces lactis (family Saccharomycetaceae). We further find a correlation between optimization in the GALactose pathway genes and several genes associated with nutrient sensing and metabolism. This work suggests that codon optimization harbors information about the metabolic ecology of microbial eukaryotes. This information may be particularly useful for studying fungal dark matter-species that have yet to be cultured in the lab or have only been identified by genomic material.
Collapse
Affiliation(s)
- Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A. Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
6
|
Puri A, Bajaj A, Lal S, Singh Y, Lal R. Phylogenomic Framework for Taxonomic Delineation of Paracoccus spp. and Exploration of Core-Pan Genome. Indian J Microbiol 2021; 61:180-194. [PMID: 33927459 DOI: 10.1007/s12088-021-00929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/26/2022] Open
Abstract
The taxonomic classification of metabolically versatile Paracoccus spp. has been so far performed using polyphasic approach. The topology of single gene phylogenies, however, has highlighted ambiguous species assignments. In the present study, genome based multi-gene phylogenies and overall genome related index were used for species threshold assessment. Comprehensive phylogenomic analysis of Paracoccus genomes (n = 103) showed concordant clustering of strains across multi-gene marker set phylogenies (nMC = 0.08-0.14); as compared to 16S rDNA phylogeny (nMC = 0.37-0.42) suggesting robustness of multi gene phylogenies in drawing phylogenetic inferences. Functional gene content distribution across the genus showed that only 1.7% gene content constitutes the core genome highlighting the significance of extensive genomic variability in the evolution of Paracoccus spp. Further, genome metrics were used to validate characterized strains, identifying classification anomalies (n = 13), and based on this, genome derived taxonomic amendments were notified in present study. Conclusively, validated metric tools can be employed on whole genome sequences, including draft assemblies, for the assessment and assignment of uncharacterized strains and species level ascription of newly isolated Paracoccus strains in future.
Collapse
Affiliation(s)
- Akshita Puri
- Department of Zoology, University of Delhi, Delhi, India
- Present Address: P.G.T.D, Zoology, R.T.M Nagpur University, Nagpur, 440033 India
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, Delhi, India
- Present Address: EBGD, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Sukanya Lal
- Present Address: Ramjas College, University of Delhi, Delhi, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
- Present Address: The Energy and Resources Institute Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
7
|
Martín-Rodríguez AJ, Rhen M, Melican K, Richter-Dahlfors A. Nitrate Metabolism Modulates Biosynthesis of Biofilm Components in Uropathogenic Escherichia coli and Acts as a Fitness Factor During Experimental Urinary Tract Infection. Front Microbiol 2020; 11:26. [PMID: 32082279 PMCID: PMC7005491 DOI: 10.3389/fmicb.2020.00026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022] Open
Abstract
To successfully colonize a variety of environments, bacteria can coordinate complex collective behaviors such as biofilm formation. To thrive in oxygen limited niches, bacteria’s versatile physiology enables the utilization of alternative electron acceptors. Nitrate, the second most favorable electron acceptor after oxygen, plays a prominent role in the physiology of uropathogenic Escherichia coli (UPEC) and is abundantly found in urine. Here we analyzed the role of extracellular nitrate in the pathogenesis of the UPEC strain CFT073 with an initial focus on biofilm formation. Colony morphotyping in combination with extensive mutational, transcriptional, and protein expression analyses of CFT073 wild-type and mutants deficient in one or several nitrate reductases revealed an association between nitrate reduction and the biosynthesis of biofilm extracellular matrix components. We identified a role for the nitrate response regulator NarL in modulating expression of the biofilm master regulator CsgD. To analyze the role of nitrate reduction during infection in vivo, we tested wild-type CFT073 and a nitrate reductase null mutant in an ascending urinary tract infection (UTI) model. Individually, each strain colonized extensively, suggesting that nitrate reduction is expendable during UTI. However, during competitive co-infection, the strain incapable of nitrate reduction was strongly outcompeted. This suggests that nitrate reduction can be considered a non-essential but advantageous fitness factor for UPEC pathogenesis. This implies that UPEC rapidly adapts their metabolic needs to the microenvironment of infected tissue. Collectively, this work demonstrates a unique association between nitrate respiration, biofilm formation, and UPEC pathogenicity, highlighting how the use of alternative electron acceptors enables bacterial pathogens to adapt to challenging infectious microenvironments.
Collapse
Affiliation(s)
| | - Mikael Rhen
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Keira Melican
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, Sweden
| | - Agneta Richter-Dahlfors
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
8
|
Silva GM, Souza RM, Yan L, Júnior RS, Medeiros FHV, Walcott RR. Strains of the Group I Lineage of Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch of Cucurbitaceous Crops, are Predominant in Brazil. PHYTOPATHOLOGY 2016; 106:1486-1494. [PMID: 27532426 DOI: 10.1094/phyto-05-16-0205-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial fruit blotch (BFB), caused by the seedborne bacterium Acidovorax citrulli, is an economically important threat to cucurbitaceous crops worldwide. Since the first report of BFB in Brazil in 1990, outbreaks have occurred sporadically on watermelon and, more frequently, on melon, resulting in significant yield losses. At present, the genetic diversity and the population structure of A. citrulli strains in Brazil remain unclear. A collection of 74 A. citrulli strains isolated from naturally infected tissues of different cucurbit hosts in Brazil between 2000 and 2014 and 18 A. citrulli reference strains from other countries were compared by pulsed-field gel electrophoresis (PFGE), multilocus sequence analysis (MLSA) of housekeeping and virulence-associated genes, and pathogenicity tests on seedlings of different cucurbit species. The Brazilian population comprised predominantly group I strains (98%), regardless of the year of isolation, geographical region, or host. Whole-genome restriction digestion and PFGE analysis revealed that three unique and previously unreported A. citrulli haplotypes (assigned as haplotypes B22, B23, and B24) occurred in Brazil. The greatest diversity of A. citrulli (four haplotypes) was found among strains collected from the northeastern region of Brazil, which accounts for more than 90% of the country's melon production. MLSA clearly distinguished A. citrulli strains into two well-supported clades, in agreement with observations based on PFGE analysis. Five Brazilian A. citrulli strains, representing different group I haplotypes, were moderately aggressive on watermelon seedlings compared with four group II strains that were highly aggressive. In contrast, no significant differences in BFB severity were observed between group I and II A. citrulli strains on melon and squash seedlings. Finally, we observed a differential effect of temperature on in vitro growth of representative group I and II A. citrulli haplotypes. Specifically, of 18 group II strains tested, all grew at 40 and 41°C, whereas only 3 of 15 group I strains (haplotypes B8[P], B3[K], and B15) grew at 40°C. Three strains representing haplotype B8(P) were the only group I strains that grew at 41°C. These results contribute to a better understanding of the genetic diversity of A. citrulli associated with BFB outbreaks in Brazil, and reinforce the efficiency of MLSA and PFGE analysis for assessing population structure. This study also provides the first evidence to suggest that temperature might be a driver in the ecological adaptation of A. citrulli populations.
Collapse
Affiliation(s)
- Gustavo M Silva
- First, second, and fifth authors: Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil; third author: College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China; fourth author: Department of Plant Sciences, Federal University of Semi-Árido, Mossoró, RN, Brazil; and sixth author: Department of Plant Pathology, University of Georgia, Athens
| | - Ricardo M Souza
- First, second, and fifth authors: Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil; third author: College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China; fourth author: Department of Plant Sciences, Federal University of Semi-Árido, Mossoró, RN, Brazil; and sixth author: Department of Plant Pathology, University of Georgia, Athens
| | - Lichun Yan
- First, second, and fifth authors: Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil; third author: College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China; fourth author: Department of Plant Sciences, Federal University of Semi-Árido, Mossoró, RN, Brazil; and sixth author: Department of Plant Pathology, University of Georgia, Athens
| | - Rui S Júnior
- First, second, and fifth authors: Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil; third author: College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China; fourth author: Department of Plant Sciences, Federal University of Semi-Árido, Mossoró, RN, Brazil; and sixth author: Department of Plant Pathology, University of Georgia, Athens
| | - Flavio H V Medeiros
- First, second, and fifth authors: Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil; third author: College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China; fourth author: Department of Plant Sciences, Federal University of Semi-Árido, Mossoró, RN, Brazil; and sixth author: Department of Plant Pathology, University of Georgia, Athens
| | - Ron R Walcott
- First, second, and fifth authors: Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil; third author: College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China; fourth author: Department of Plant Sciences, Federal University of Semi-Árido, Mossoró, RN, Brazil; and sixth author: Department of Plant Pathology, University of Georgia, Athens
| |
Collapse
|
9
|
Genome Analysis of the Fruiting Body-Forming Myxobacterium Chondromyces crocatus Reveals High Potential for Natural Product Biosynthesis. Appl Environ Microbiol 2016; 82:1945-1957. [PMID: 26773087 DOI: 10.1128/aem.03011-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/10/2016] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of the type strain of the myxobacterial genus Chondromyces, Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to that of other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters are in line with the capability of Cm c5 to produce an arsenal of antibacterial, antifungal, and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin, crocapeptin, and thuggacin compound families are complemented by many more natural compound biosynthetic gene clusters in the chromosome. Whole-genome comparison of the fruiting-body-forming type strain (Cm c5, DSM 14714) to an accustomed laboratory strain which has lost this ability (nonfruiting phenotype, Cm c5 fr-) revealed genetic changes in three loci. In addition to the low synteny found with the closest sequenced representative of the same family, Sorangium cellulosum, extensive genetic information duplication and broad application of eukaryotic-type signal transduction systems are hallmarks of this 11.3-Mbp prokaryotic genome.
Collapse
|
10
|
Angione C, Lió P. Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 2015; 5:15147. [PMID: 26482106 PMCID: PMC4611489 DOI: 10.1038/srep15147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/14/2015] [Indexed: 01/22/2023] Open
Abstract
Bacterial phenotypic traits and lifestyles in response to diverse environmental conditions depend on changes in the internal molecular environment. However, predicting bacterial adaptability is still difficult outside of laboratory controlled conditions. Many molecular levels can contribute to the adaptation to a changing environment: pathway structure, codon usage, metabolism. To measure adaptability to changing environmental conditions and over time, we develop a multi-omic model of Escherichia coli that accounts for metabolism, gene expression and codon usage at both transcription and translation levels. After the integration of multiple omics into the model, we propose a multiobjective optimization algorithm to find the allowable and optimal metabolic phenotypes through concurrent maximization or minimization of multiple metabolic markers. In the condition space, we propose Pareto hypervolume and spectral analysis as estimators of short term multi-omic (transcriptomic and metabolic) evolution, thus enabling comparative analysis of metabolic conditions. We therefore compare, evaluate and cluster different experimental conditions, models and bacterial strains according to their metabolic response in a multidimensional objective space, rather than in the original space of microarray data. We finally validate our methods on a phenomics dataset of growth conditions. Our framework, named METRADE, is freely available as a MATLAB toolbox.
Collapse
Affiliation(s)
| | - Pietro Lió
- Computer Laboratory - University of Cambridge, UK
| |
Collapse
|
11
|
McDonald MJ, Chou CH, Swamy KBS, Huang HD, Leu JY. The evolutionary dynamics of tRNA-gene copy number and codon-use in E. coli. BMC Evol Biol 2015; 15:163. [PMID: 26282127 PMCID: PMC4539685 DOI: 10.1186/s12862-015-0441-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background The introduction of foreign DNA by Lateral Gene Transfer (LGT) can quickly and drastically alter genome composition. Problems can arise if the genes introduced by LGT use codons that are not suited to the host’s translational machinery. Here we investigate compensatory adaptation of E. coli in response to the introduction of large volumes of codons that are rarely used by the host genome. Results We analyze genome sequences from the E. coli/Shigella complex, and find that certain tRNA genes are present in multiple copies in two pathogenic Shigella and O157:H7 subgroups of E. coli. Furthermore, we show that the codons that correspond to these multi-copy number tRNA genes are enriched in the high copy number Selfish Genetic Elements (SGE’s) in Shigella and laterally introduced genes in O157:H7. We analyze the duplicate copies and find evidence for the selective retention of tRNA genes introduced by LGT in response to the changed codon content of the genome. Conclusion These data support a model where the relatively rapid influx of LGT genes and SGE’s introduces a large number of genes maladapted to the host’s translational machinery. Under these conditions, it becomes advantageous for the host to retain tRNA genes that are required for the incorporation of amino acids at these codons. Subsequently, the increased number of copies of these specific tRNA genes adjusts the cellular tRNA pool to the demands set by global shifts in codon usage. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0441-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Chih-Hung Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | | | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
12
|
Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C, Makkay A, Ventosa A. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life (Basel) 2015; 5:1405-26. [PMID: 25997110 PMCID: PMC4500145 DOI: 10.3390/life5021405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022] Open
Abstract
The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.
Collapse
Affiliation(s)
- R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Paulina Corral
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Nikhil Ram-Mohan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Andrea Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| |
Collapse
|
13
|
Abstract
Understanding the mechanisms that generate variation is a common pursuit unifying the life sciences. Bacteria represent an especially striking puzzle, because closely related strains possess radically different metabolic and ecological capabilities. Differences in protein repertoire arising from gene transfer are currently considered the primary mechanism underlying phenotypic plasticity in bacteria. Although bacterial coding plasticity has been extensively studied in previous decades, little is known about the role that regulatory plasticity plays in bacterial evolution. Here, we show that bacterial genes can rapidly shift between multiple regulatory modes by acquiring functionally divergent nonhomologous promoter regions. Through analysis of 270,000 regulatory regions across 247 genomes, we demonstrate that regulatory "switching" to nonhomologous alternatives is ubiquitous, occurring across the bacterial domain. Using comparative transcriptomics, we show that at least 16% of the expression divergence between Escherichia coli strains can be explained by this regulatory switching. Further, using an oligonucleotide regulatory library, we establish that switching affects bacterial promoter architecture. We provide evidence that regulatory switching can occur through horizontal regulatory transfer, which allows regulatory regions to move across strains, and even genera, independently from the genes they regulate. Finally, by experimentally characterizing the fitness effect of a regulatory transfer on a pathogenic E. coli strain, we demonstrate that regulatory switching elicits important phenotypic consequences. Taken together, our findings expose previously unappreciated regulatory plasticity in bacteria and provide a gateway for understanding bacterial phenotypic variation and adaptation.
Collapse
|
14
|
Krisko A, Copic T, Gabaldón T, Lehner B, Supek F. Inferring gene function from evolutionary change in signatures of translation efficiency. Genome Biol 2014; 15:R44. [PMID: 24580753 PMCID: PMC4054840 DOI: 10.1186/gb-2014-15-3-r44] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 03/03/2014] [Indexed: 11/13/2022] Open
Abstract
Background The genetic code is redundant, meaning that most amino acids can be encoded by more than one codon. Highly expressed genes tend to use optimal codons to increase the accuracy and speed of translation. Thus, codon usage biases provide a signature of the relative expression levels of genes, which can, uniquely, be quantified across the domains of life. Results Here we describe a general statistical framework to exploit this phenomenon and to systematically associate genes with environments and phenotypic traits through changes in codon adaptation. By inferring evolutionary signatures of translation efficiency in 911 bacterial and archaeal genomes while controlling for confounding effects of phylogeny and inter-correlated phenotypes, we linked 187 gene families to 24 diverse phenotypic traits. A series of experiments in Escherichia coli revealed that 13 of 15, 19 of 23, and 3 of 6 gene families with changes in codon adaptation in aerotolerant, thermophilic, or halophilic microbes. Respectively, confer specific resistance to, respectively, hydrogen peroxide, heat, and high salinity. Further, we demonstrate experimentally that changes in codon optimality alone are sufficient to enhance stress resistance. Finally, we present evidence that multiple genes with altered codon optimality in aerobes confer oxidative stress resistance by controlling the levels of iron and NAD(P)H. Conclusions Taken together, these results provide experimental evidence for a widespread connection between changes in translation efficiency and phenotypic adaptation. As the number of sequenced genomes increases, this novel genomic context method for linking genes to phenotypes based on sequence alone will become increasingly useful.
Collapse
|
15
|
Roller M, Lucić V, Nagy I, Perica T, Vlahovicek K. Environmental shaping of codon usage and functional adaptation across microbial communities. Nucleic Acids Res 2013; 41:8842-52. [PMID: 23921637 PMCID: PMC3799439 DOI: 10.1093/nar/gkt673] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microbial communities represent the largest portion of the Earth's biomass. Metagenomics projects use high-throughput sequencing to survey these communities and shed light on genetic capabilities that enable microbes to inhabit every corner of the biosphere. Metagenome studies are generally based on (i) classifying and ranking functions of identified genes; and (ii) estimating the phyletic distribution of constituent microbial species. To understand microbial communities at the systems level, it is necessary to extend these studies beyond the species' boundaries and capture higher levels of metabolic complexity. We evaluated 11 metagenome samples and demonstrated that microbes inhabiting the same ecological niche share common preferences for synonymous codons, regardless of their phylogeny. By exploring concepts of translational optimization through codon usage adaptation, we demonstrated that community-wide bias in codon usage can be used as a prediction tool for lifestyle-specific genes across the entire microbial community, effectively considering microbial communities as meta-genomes. These findings set up a 'functional metagenomics' platform for the identification of genes relevant for adaptations of entire microbial communities to environments. Our results provide valuable arguments in defining the concept of microbial species through the context of their interactions within the community.
Collapse
Affiliation(s)
- Masa Roller
- Bioinformatics Group, Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK and Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|