1
|
Kayal E, Lavrov DV. One Ring does not rule them all: Linear mtDNA in Metazoa. Gene 2025; 933:148999. [PMID: 39396556 DOI: 10.1016/j.gene.2024.148999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in genome sequencing technologies have facilitated the exploration of the architecture of genomes, including mitochondrial genomes (mtDNA). In particular, whole genome sequencing has provided easier access to mitochondrial genomes with unusual organizations, which were difficult to obtain using traditional PCR-based approaches. As a consequence, there has been a steep increase in complete mtDNA sequences, particularly for Metazoa. The popular view of metazoan mtDNA is that of a small gene-dense circular chromosome. This view clashes with discoveries of a number of linear mtDNAs, particularly in non-bilaterian animals. Here, we review the distribution of linear mtDNA in Metazoa, namely in isopods, cnidarians, and sponges. We discuss the multiple origins of linear mitogenomes in these clades, where linearity has been linked to the likely insertion of a linear plasmid in cnidarians and the demosponge Acanthella acuta, while fixation of a heteroplasmy in the anticodon site of a tRNA might be responsible for the monolinear form of the mtDNA in some isopods. We also summarize our current knowledge of mechanisms that maintain the integrity of linear mitochromosomes, where a recurrent theme is the presence of terminal repeats that likely play the role of telomeres. We caution in defining a linear chromosome as complete, particularly when coding sequences and key features of linear DNA are missing. Finally, we encourage authors interested in mitogenome science to utilize all available data for linear mtDNA, including those tagged as "incomplete" or "unverified" in public databases, as they can still provide useful information such as phylogenetic characters and gene order.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Hulatt CJ, Suzuki H, Détain A, Wijffels RH, Leya T, Posewitz MC. The genome of the Arctic snow alga Limnomonas spitsbergensis (Chlamydomonadales). G3 (BETHESDA, MD.) 2024; 14:jkae086. [PMID: 38662665 PMCID: PMC11228838 DOI: 10.1093/g3journal/jkae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 07/09/2024]
Abstract
Snow algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High-quality snow algae genomes are needed for studies on their unique physiology, adaptive mechanisms, and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight. Here, we assembled and annotated the genome of Limnomonas spitsbergensis, a cryophilic biciliate green alga originally isolated from melting snow on Svalbard, in the Arctic. The L. spitsbergensis genome assembly is based primarily on the use of PacBio long reads and secondly Illumina short reads, with an assembly size of 260.248 Mb in 124 contigs. A combination of 3 alternative annotation strategies was used including protein homology, RNA-seq evidence, and PacBio full-length transcript isoforms. The best merged set of annotations identified 18,277 protein-coding genes, which were 95.2% complete based on Benchmarking Universal Single-Copy Orthologs analysis. We also provide the annotated mitogenome, which is a relatively large 77.942 kb circular mapping sequence containing extensive repeats. The L. spitsbergensis genome will provide a new resource for research on snow algae adaptation, behavior, and natural selection in unique, low-temperature terrestrial environments that are under threat from climate change.
Collapse
Affiliation(s)
- Chris J Hulatt
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Hirono Suzuki
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
| | - Alexandre Détain
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
| | - René H Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research and Biobank CCCryo, 14476 Potsdam-Golm, Germany
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
3
|
He Y, Ma S, Yang Q, Lai H, Zhang J. Characterization of the mitochondrial genome of Chlorolobion braunii ITBB-AG6, an azolla-associated green alga isolated from sanitary sewage. Mitochondrial DNA B Resour 2023; 8:826-830. [PMID: 37545555 PMCID: PMC10402853 DOI: 10.1080/23802359.2023.2241573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
Sphaeropleales have the characteristics of rapid growth, high oil content, and efficient removal rates of nitrogen and phosphorus in sewage waters, and is potentially valuable in biodiesel production and environmental remediation. In this study, we isolated a strain of Sphaeropleales, Chlorolobion braunii strain ITBB-AG6 from an azolla community in a sewage pond. Its mitochondrial genome contains 110,124 bp and harbors at least 40 genes, including 15 protein-coding genes, 20 tRNA genes, and three rRNA genes. The protein-coding genes include two for ATP synthases, seven for NAD(P)H-quinone oxidoreductases (nad), three for cytochrome c oxidase subunits (coxs), and one for cytochrome b (cob). Transfer RNA genes for 18 amino acids were identified, in which the tRNA genes for leucine and serine are doubled, but the tRNA genes for threonine and valine are not annotated. Phylogenetic analysis using the mitochondrial genomes of seven families of Sphaeropleales indicated that ITBB-AG6 is closely related to Monoraphidium neglectum, and falls in the family Selenastraceae with 100% bootstrap support. Two species in the family Neochloridaceae are separated by a species in Hydrodictyaceae, indicating a polyphyletic nature. These findings revealed the complicated phylogenetic relationships of the Sphaeropleales and the necessity of genome sequences in the taxonomy of microalgae.
Collapse
Affiliation(s)
- Yiliang He
- College of Agriculture, Hainan University, Haikou, China
| | - Shuai Ma
- Institute of Tropical Bioscience and Biotechnology, Hainan Key Laboratory of Microbiological Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qiaoqiao Yang
- College of Agriculture, Hainan University, Haikou, China
| | - Huanggui Lai
- College of Agriculture, Hainan University, Haikou, China
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, Hainan Key Laboratory of Microbiological Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
4
|
Park SH, Kyndt JA, Brown JK. Comparison of Auxenochlorella protothecoides and Chlorella spp. Chloroplast Genomes: Evidence for Endosymbiosis and Horizontal Virus-like Gene Transfer. Life (Basel) 2022; 12:life12030458. [PMID: 35330209 PMCID: PMC8955559 DOI: 10.3390/life12030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Resequencing of the chloroplast genome (cpDNA) of Auxenochlorella protothecoides UTEX 25 was completed (GenBank Accession no. KC631634.1), revealing a genome size of 84,576 base pairs and 30.8% GC content, consistent with features reported for the previously sequenced A. protothecoides 0710, (GenBank Accession no. KC843975). The A. protothecoides UTEX 25 cpDNA encoded 78 predicted open reading frames, 32 tRNAs, and 4 rRNAs, making it smaller and more compact than the cpDNA genome of C. variabilis (124,579 bp) and C. vulgaris (150,613 bp). By comparison, the compact genome size of A. protothecoides was attributable primarily to a lower intergenic sequence content. The cpDNA coding regions of all known Chlorella species were found to be organized in conserved colinear blocks, with some rearrangements. The Auxenochlorella and Chlorella species genome structure and composition were similar, and of particular interest were genes influencing photosynthetic efficiency, i.e., chlorophyll synthesis and photosystem subunit I and II genes, consistent with other biofuel species of interest. Phylogenetic analysis revealed that Prototheca cutis is the closest known A. protothecoides relative, followed by members of the genus Chlorella. The cpDNA of A. protothecoides encodes 37 genes that are highly homologous to representative cyanobacteria species, including rrn16, rrn23, and psbA, corroborating a well-recognized symbiosis. Several putative coding regions were identified that shared high nucleotide sequence identity with virus-like sequences, suggestive of horizontal gene transfer. Despite these predictions, no corresponding transcripts were obtained by RT-PCR amplification, indicating they are unlikely to be expressed in the extant lineage.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001, USA
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA
- Correspondence:
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
| |
Collapse
|
5
|
Hillebrand H, Acevedo‐Trejos E, Moorthi SD, Ryabov A, Striebel M, Thomas PK, Schneider M. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB] Oldenburg Germany
- Alfred Wegener Institute Helmholtz‐Centre for Polar and Marine Research [AWI] Bremerhaven Germany
| | - Esteban Acevedo‐Trejos
- Earth Surface Process Modelling Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany
| | - Stefanie D. Moorthi
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| | - Alexey Ryabov
- Institute for Chemistry and Biology of Marine Environments [ICBM] Mathematical Modelling Carl‐von‐Ossietzky University Oldenburg Oldenburg Germany
- Institute of Forest Growth and Computer Science Technische Universität Dresden Tharandt Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| | - Patrick K. Thomas
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| | - Marie‐Luise Schneider
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| |
Collapse
|
6
|
Zhou J, Zhang S, Wang J, Shen H, Ai B, Gao W, Zhang C, Fei Q, Yuan D, Wu Z, Tembrock LR, Li S, Gu C, Liao X. Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution. Sci Rep 2021; 11:9471. [PMID: 33947883 PMCID: PMC8096831 DOI: 10.1038/s41598-021-88160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
The chloroplast is one of two organelles containing a separate genome that codes for essential and distinct cellular functions such as photosynthesis. Given the importance of chloroplasts in plant metabolism, the genomic architecture and gene content have been strongly conserved through long periods of time and as such are useful molecular tools for evolutionary inferences. At present, complete chloroplast genomes from over 4000 species have been deposited into publicly accessible databases. Despite the large number of complete chloroplast genomes, comprehensive analyses regarding genome architecture and gene content have not been conducted for many lineages with complete species sampling. In this study, we employed the genus Populus to assess how more comprehensively sampled chloroplast genome analyses can be used in understanding chloroplast evolution in a broadly studied lineage of angiosperms. We conducted comparative analyses across Populus in order to elucidate variation in key genome features such as genome size, gene number, gene content, repeat type and number, SSR (Simple Sequence Repeat) abundance, and boundary positioning between the four main units of the genome. We found that some genome annotations were variable across the genus owing in part from errors in assembly or data checking and from this provided corrected annotations. We also employed complete chloroplast genomes for phylogenetic analyses including the dating of divergence times throughout the genus. Lastly, we utilized re-sequencing data to describe the variations of pan-chloroplast genomes at the population level for P. euphratica. The analyses used in this paper provide a blueprint for the types of analyses that can be conducted with publicly available chloroplast genomes as well as methods for building upon existing datasets to improve evolutionary inference.
Collapse
Affiliation(s)
- Jiawei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Hongmei Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- The Second Peoples's Hospital of Nantong, Nantong, 226000, Jiangsu, China
| | - Bin Ai
- Foshan Green Development Innovation Research Institute, Foshan, 528000, Guangdong, China
| | - Wei Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhiqiang Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- The College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Sen Li
- The College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
7
|
Proulex GCR, Meade MJ, Manoylov KM, Cahoon AB. Mitochondrial mRNA Processing in the Chlorophyte Alga Pediastrum duplex and Streptophyte Alga Chara vulgaris Reveals an Evolutionary Branch in Mitochondrial mRNA Processing. PLANTS (BASEL, SWITZERLAND) 2021; 10:576. [PMID: 33803683 PMCID: PMC8003010 DOI: 10.3390/plants10030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria carry the remnant of an ancestral bacterial chromosome and express those genes with a system separate and distinct from the nucleus. Mitochondrial genes are transcribed as poly-cistronic primary transcripts which are post-transcriptionally processed to create individual translationally competent mRNAs. Algae post-transcriptional processing has only been explored in Chlamydomonas reinhardtii (Class: Chlorophyceae) and the mature mRNAs are different than higher plants, having no 5' UnTranslated Regions (UTRs), much shorter and more variable 3' UTRs and polycytidylated mature mRNAs. In this study, we analyzed transcript termini using circular RT-PCR and PacBio Iso-Seq to survey the 3' and 5' UTRs and termini for two green algae, Pediastrum duplex (Class: Chlorophyceae) and Chara vulgaris (Class: Charophyceae). This enabled the comparison of processing in the chlorophyte and charophyte clades of green algae to determine if the differences in mitochondrial mRNA processing pre-date the invasion of land by embryophytes. We report that the 5' mRNA termini and non-template 3' termini additions in P. duplex resemble those of C. reinhardtii, suggesting a conservation of mRNA processing among the chlorophyceae. We also report that C. vulgaris mRNA UTRs are much longer than chlorophytic examples, lack polycytidylation, and are polyadenylated similar to embryophytes. This demonstrates that some mitochondrial mRNA processing events diverged with the split between chlorophytic and streptophytic algae.
Collapse
Affiliation(s)
- Grayson C. R. Proulex
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Marcus J. Meade
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Kalina M. Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA;
| | - A. Bruce Cahoon
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| |
Collapse
|
8
|
Smith DR, Craig RJ. Does mitochondrial DNA replication in Chlamydomonas require a reverse transcriptase? THE NEW PHYTOLOGIST 2021; 229:1192-1195. [PMID: 32936939 DOI: 10.1111/nph.16930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
9
|
Chen N, Sha LN, Wang YL, Yin LJ, Zhang Y, Wang Y, Wu DD, Kang HY, Zhang HQ, Zhou YH, Sun GL, Fan X. Variation in Plastome Sizes Accompanied by Evolutionary History in Monogenomic Triticeae (Poaceae: Triticeae). FRONTIERS IN PLANT SCIENCE 2021; 12:741063. [PMID: 34966398 PMCID: PMC8710740 DOI: 10.3389/fpls.2021.741063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
To investigate the pattern of chloroplast genome variation in Triticeae, we comprehensively analyzed the indels in protein-coding genes and intergenic sequence, gene loss/pseudonization, intron variation, expansion/contraction in inverted repeat regions, and the relationship between sequence characteristics and chloroplast genome size in 34 monogenomic Triticeae plants. Ancestral genome reconstruction suggests that major length variations occurred in four-stem branches of monogenomic Triticeae followed by independent changes in each genus. It was shown that the chloroplast genome sizes of monogenomic Triticeae were highly variable. The chloroplast genome of Pseudoroegneria, Dasypyrum, Lophopyrum, Thinopyrum, Eremopyrum, Agropyron, Australopyrum, and Henradia in Triticeae had evolved toward size reduction largely because of pseudogenes elimination events and length deletion fragments in intergenic. The Aegilops/Triticum complex, Taeniatherum, Secale, Crithopsis, Herteranthelium, and Hordeum in Triticeae had a larger chloroplast genome size. The large size variation in major lineages and their subclades are most likely consequences of adaptive processes since these variations were significantly correlated with divergence time and historical climatic changes. We also found that several intergenic regions, such as petN-trnC and psbE-petL containing unique genetic information, which can be used as important tools to identify the maternal relationship among Triticeae species. Our results contribute to the novel knowledge of plastid genome evolution in Triticeae.
Collapse
Affiliation(s)
- Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Shanxi, China
| | - Ling-Juan Yin
- Lijiang Nationality Secondary Specialized School, Lijiang, China
| | - Yue Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Gen-Lou Sun
- Saint Mary’s University, Halifax, NS, Canada
- *Correspondence: Gen-Lou Sun,
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Xing Fan,
| |
Collapse
|
10
|
Liu C, Shi X, Wu F, Ren M, Gao G, Wu Q. Genome analyses provide insights into the evolution and adaptation of the eukaryotic Picophytoplankton Mychonastes homosphaera. BMC Genomics 2020; 21:477. [PMID: 32652928 PMCID: PMC7354681 DOI: 10.1186/s12864-020-06891-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Picophytoplankton are abundant and can contribute greatly to primary production in eutrophic lakes. Mychonastes species are among the common eukaryotic picophytoplankton in eutrophic lakes. We used third-generation sequencing technology to sequence the whole genome of Mychonastes homosphaera isolated from Lake Chaohu, a eutrophic freshwater lake in China. Result The 24.23 Mbp nuclear genome of M.homosphaera, harboring 6649 protein-coding genes, is more compact than the genomes of the closely related Sphaeropleales species. This genome streamlining may be caused by a reduction in gene family number, intergenic size and introns. The genome sequence of M.homosphaera reveals the strategies adopted by this organism for environmental adaptation in the eutrophic lake. Analysis of cultures and the protein complement highlight the metabolic flexibility of M.homosphaera, the genome of which encodes genes involved in light harvesting, carbohydrate metabolism, and nitrogen and microelement metabolism, many of which form functional gene clusters. Reconstruction of the bioenergetic metabolic pathways of M.homosphaera, such as the lipid, starch and isoprenoid pathways, reveals characteristics that make this species suitable for biofuel production. Conclusion The analysis of the whole genome of M. homosphaera provides insights into the genome streamlining, the high lipid yield, the environmental adaptation and phytoplankton evolution.
Collapse
Affiliation(s)
- Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Fan Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingdong Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Pichugin Y, Park HJ, Traulsen A. Evolution of simple multicellular life cycles in dynamic environments. J R Soc Interface 2020; 16:20190054. [PMID: 31088261 DOI: 10.1098/rsif.2019.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mode of reproduction is a critical characteristic of any species, as it has a strong effect on its evolution. As any other trait, the reproduction mode is subject to natural selection and may adapt to the environment. When the environment varies over time, different reproduction modes could be optimal at different times. The natural response to a dynamic environment seems to be bet hedging, where multiple reproductive strategies are stochastically executed. Here, we develop a framework for the evolution of simple multicellular life cycles in a dynamic environment. We use a matrix population model of undifferentiated multicellular groups undergoing fragmentation and ask which mode maximizes the population growth rate. Counterintuitively, we find that natural selection in dynamic environments generally tends to promote deterministic, not stochastic, reproduction modes.
Collapse
Affiliation(s)
- Yuriy Pichugin
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| | - Hye Jin Park
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| |
Collapse
|
12
|
Turmel M, Otis C, Vincent AT, Lemieux C. The complete mitogenomes of the green algae Jenufa minuta and Jenufa perforata (Chlorophyceae, incertae sedis) reveal a variant genetic code previously unrecognized in the Chlorophyceae. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1742229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Christian Otis
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Antony T. Vincent
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| |
Collapse
|
13
|
Hu Y, Xing W, Hu Z, Liu G. Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes. Genes (Basel) 2020; 11:genes11010115. [PMID: 31968709 PMCID: PMC7016891 DOI: 10.3390/genes11010115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/30/2023] Open
Abstract
We sequenced the mitochondrial genome of six colonial volvocine algae, namely: Pandorina morum, Pandorina colemaniae, Volvulina compacta, Colemanosphaera angeleri, Colemanosphaera charkowiensi, and Yamagishiella unicocca. Previous studies have typically reconstructed the phylogenetic relationship between colonial volvocine algae based on chloroplast or nuclear genes. Here, we explore the validity of phylogenetic analysis based on mitochondrial protein-coding genes. We found phylogenetic incongruence of the genera Yamagishiella and Colemanosphaera. In Yamagishiella, the stochastic error and linkage group formed by the mitochondrial protein-coding genes prevent phylogenetic analyses from reflecting the true relationship. In Colemanosphaera, a different reconstruction approach revealed a different phylogenetic relationship. This incongruence may be because of the influence of biological factors, such as incomplete lineage sorting or horizontal gene transfer. We also analyzed the substitution rates in the mitochondrial and chloroplast genomes between colonial volvocine algae. Our results showed that all volvocine species showed significantly higher substitution rates for the mitochondrial genome compared with the chloroplast genome. The nonsynonymous substitution (dN)/synonymous substitution (dS) ratio is similar in the genomes of both organelles in most volvocine species, suggesting that the two counterparts are under a similar selection pressure. We also identified a few chloroplast protein-coding genes that showed high dN/dS ratios in some species, resulting in a significant dN/dS ratio difference between the mitochondrial and chloroplast genomes.
Collapse
Affiliation(s)
- Yuxin Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Xing
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyu Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoxiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: ; Tel.: +86-027-6878-0576
| |
Collapse
|
14
|
Turmel M, Bélanger AS, Otis C, Lemieux C. Complete mitogenomes of the chlorophycean green algae Bulbochaete rectangularis var. hiloensis (Oedogoniales) and Stigeoclonium helveticum (Chaetophorales) provide insight into the sequence of events that led to the acquisition of a reduced-derived pattern of evolution in the Chlamydomonadales and Sphaeropleales. Mitochondrial DNA B Resour 2020; 5:611-613. [PMID: 33366670 PMCID: PMC7748496 DOI: 10.1080/23802359.2019.1710607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitogenome evolution in the Chlorophyceae is characterized by the acquisition of a reduced-derived pattern by the Chlamydomonadales + Sphaeropleales clade. Because no mitogenomes are available for the sister clade Oedogoniales + Chaetophorales + Chaetopeltidales, it remains unclear whether the common ancestor of chlorophycean green algae harbored a reduced-derived or ancestral-type mitogenome. The 70,191 and 46,765-bp mitogenomes reported here for Bulbochaete rectangularis var. hiloensis (Oedogoniales) and Stigeoclonium helveticum (Chaetophorales), respectively, shed light on this question. Both contain the same set of 41 conserved genes, a repertoire lacking numerous protein-coding genes but featuring all 27 tRNA genes typically found in ancestral-type mitogenomes.
Collapse
Affiliation(s)
- Monique Turmel
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Anne-Sophie Bélanger
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Christian Otis
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
15
|
Neupane S, Fučíková K, Lewis LA, Kuo L, Chen MH, Lewis PO. Assessing Combinability of Phylogenomic Data Using Bayes Factors. Syst Biol 2020; 68:744-754. [PMID: 30726954 DOI: 10.1093/sysbio/syz007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 11/14/2022] Open
Abstract
With the rapid reduction in sequencing costs of high-throughput genomic data, it has become commonplace to use hundreds of genes to infer phylogeny of any study system. While sampling a large number of genes has given us a tremendous opportunity to uncover previously unknown relationships and improve phylogenetic resolution, it also presents us with new challenges when the phylogenetic signal is confused by differences in the evolutionary histories of sampled genes. Given the incorporation of accurate marginal likelihood estimation methods into popular Bayesian software programs, it is natural to consider using the Bayes Factor (BF) to compare different partition models in which genes within any given partition subset share both tree topology and edge lengths. We explore using marginal likelihood to assess data subset combinability when data subsets have varying levels of phylogenetic discordance due to deep coalescence events among genes (simulated within a species tree), and compare the results with our recently described phylogenetic informational dissonance index (D) estimated for each data set. BF effectively detects phylogenetic incongruence and provides a way to assess the statistical significance of D values. We use BFs to assess data combinability using an empirical data set comprising 56 plastid genes from the green algal order Volvocales. We also discuss the potential need for calibrating BFs and demonstrate that BFs used in this study are correctly calibrated.
Collapse
Affiliation(s)
- Suman Neupane
- Department of Biological Sciences, Virginia Tech University, 4076 Derring Hall, 926 West Campus Drive, Blacksburg, VA 24061, USA.,Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Karolina Fučíková
- Department of Natural Sciences, Assumption College, 500 Salisbury St., Worcester, MA 01609, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, 215 Glenbrook Road, Unit 4120, Storrs, CT 06269, USA
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, 215 Glenbrook Road, Unit 4120, Storrs, CT 06269, USA
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| |
Collapse
|
16
|
Repetti SI, Jackson CJ, Judd LM, Wick RR, Holt KE, Verbruggen H. The inflated mitochondrial genomes of siphonous green algae reflect processes driving expansion of noncoding DNA and proliferation of introns. PeerJ 2020; 8:e8273. [PMID: 31915577 PMCID: PMC6944098 DOI: 10.7717/peerj.8273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Within the siphonous green algal order Bryopsidales, the size and gene arrangement of chloroplast genomes has been examined extensively, while mitochondrial genomes have been mostly overlooked. The recently published mitochondrial genome of Caulerpa lentillifera is large with expanded noncoding DNA, but it remains unclear if this is characteristic of the entire order. Our study aims to evaluate the evolutionary forces shaping organelle genome dynamics in the Bryopsidales based on the C. lentillifera and Ostreobium quekettii mitochondrial genomes. In this study, the mitochondrial genome of O. quekettii was characterised using a combination of long and short read sequencing, and bioinformatic tools for annotation and sequence analyses. We compared the mitochondrial and chloroplast genomes of O. quekettii and C. lentillifera to examine hypotheses related to genome evolution. The O. quekettii mitochondrial genome is the largest green algal mitochondrial genome sequenced (241,739 bp), considerably larger than its chloroplast genome. As with the mtDNA of C. lentillifera, most of this excess size is from the expansion of intergenic DNA and proliferation of introns. Inflated mitochondrial genomes in the Bryopsidales suggest effective population size, recombination and/or mutation rate, influenced by nuclear-encoded proteins, differ between the genomes of mitochondria and chloroplasts, reducing the strength of selection to influence evolution of their mitochondrial genomes.
Collapse
Affiliation(s)
- Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | | | - Louise M Judd
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Sudianto E, Chaw SM. Two Independent Plastid accD Transfers to the Nuclear Genome of Gnetum and Other Insights on Acetyl-CoA Carboxylase Evolution in Gymnosperms. Genome Biol Evol 2019; 11:1691-1705. [PMID: 30924880 PMCID: PMC6595918 DOI: 10.1093/gbe/evz059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Acetyl-CoA carboxylase (ACCase) is the key regulator of fatty acid biosynthesis. In most plants, ACCase exists in two locations (cytosol and plastids) and in two forms (homomeric and heteromeric). Heteromeric ACCase comprises four subunits, three of them (ACCA-C) are nuclear encoded (nr) and the fourth (ACCD) is usually plastid encoded. Homomeric ACCase is encoded by a single nr-gene (ACC). We investigated the ACCase gene evolution in gymnosperms by examining the transcriptomes of newly sequenced Gnetum ula, combined with 75 transcriptomes and 110 plastomes of other gymnosperms. AccD-coding sequences are elongated through the insertion of repetitive DNA in four out of five cupressophyte families (except Sciadopityaceae) and were functionally transferred to the nucleus of gnetophytes and Sciadopitys. We discovered that, among the three genera of gnetophytes, only Gnetum has two copies of nr-accD. Furthermore, using protoplast transient expression assays, we experimentally verified that the nr-accD precursor proteins in Gnetum and Sciadopitys can be delivered to the plastids. Of the two nr-accD copies of Gnetum, one dually targets plastids and mitochondria, whereas the other potentially targets plastoglobuli. The distinct transit peptides, gene architectures, and flanking sequences between the two Gnetum accDs suggest that they have independent origins. Our findings are the first account of two distinctly targeted nr-accDs of any green plants and the most comprehensive analyses of ACCase evolution in gymnosperms to date.
Collapse
Affiliation(s)
- Edi Sudianto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Hu Y, Xing W, Song H, Zhu H, Liu G, Hu Z. Evolutionary Analysis of Unicellular Species in Chlamydomonadales Through Chloroplast Genome Comparison With the Colonial Volvocine Algae. Front Microbiol 2019; 10:1351. [PMID: 31275275 PMCID: PMC6591512 DOI: 10.3389/fmicb.2019.01351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
This study is the first determination of six chloroplast genomes of colonial volvocine algae, Colemanosphaera charkowiensis, Volvulina compacta, Pandorina colemaniae, Pandorina morum, Colemanosphaera angeleri, and Yamagishiella unicocca. Based on 55 chloroplast protein-coding genes, we compared the nonsynonymous (dN) and synonymous (dS) substitution rates between colonial volvocine algae and the other unicellular Chlamydomonadales species. When refer to the dN, we found 27 genes were significantly different, among them, 19 genes were significant higher in unicellular species (FDR-adjusted P < 0.05). When refer to the dS, we found 10 genes were significantly different, among them, 6 genes were significant higher in unicellular species (FDR-adjusted P < 0.05). Then we identified 14 putative fast-evolving genes and 11 putative positively selected genes of unicellular species, we analyzed the function of positively selected sites of the overlap genes of putative fast-evolving and positively selected genes, and found some sites were close to the important functional region of the proteins. Photosynthesis is the process to transform and store solar energy by chloroplast, it plays a vital role in the survival of algae, this study is the first to use the chloroplast genomes to analysis the evolutionary relationship between colonial and unicellular species in Chlamydomonadales. We found more genes have higher substitution rates in unicellular species and proposed that the fast-evolving and positively selected two genes, psbA and psbC, may help to improve the photosynthetic efficiency of unicellular species in Chlamydomonadales.
Collapse
Affiliation(s)
- Yuxin Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weiyue Xing
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huiyin Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guoxiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhengyu Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
19
|
Featherston J, Arakaki Y, Hanschen ER, Ferris PJ, Michod RE, Olson BJSC, Nozaki H, Durand PM. The 4-Celled Tetrabaena socialis Nuclear Genome Reveals the Essential Components for Genetic Control of Cell Number at the Origin of Multicellularity in the Volvocine Lineage. Mol Biol Evol 2019; 35:855-870. [PMID: 29294063 DOI: 10.1093/molbev/msx332] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multicellularity is the premier example of a major evolutionary transition in individuality and was a foundational event in the evolution of macroscopic biodiversity. The volvocine chlorophyte lineage is well suited for studying this process. Extant members span unicellular, simple colonial, and obligate multicellular taxa with germ-soma differentiation. Here, we report the nuclear genome sequence of one of the most morphologically simple organisms in this lineage-the 4-celled colonial Tetrabaena socialis and compare this to the three other complete volvocine nuclear genomes. Using conservative estimates of gene family expansions a minimal set of expanded gene families was identified that associate with the origin of multicellularity. These families are rich in genes related to developmental processes. A subset of these families is lineage specific, which suggests that at a genomic level the evolution of multicellularity also includes lineage-specific molecular developments. Multiple points of evidence associate modifications to the ubiquitin proteasomal pathway (UPP) with the beginning of coloniality. Genes undergoing positive or accelerating selection in the multicellular volvocines were found to be enriched in components of the UPP and gene families gained at the origin of multicellularity include components of the UPP. A defining feature of colonial/multicellular life cycles is the genetic control of cell number. The genomic data presented here, which includes diversification of cell cycle genes and modifications to the UPP, align the genetic components with the evolution of this trait.
Collapse
Affiliation(s)
- Jonathan Featherston
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | - Yoko Arakaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Hongo, Japan
| | - Erik R Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Patrick J Ferris
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | | | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Hongo, Japan
| | - Pierre M Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Sudianto E, Wu CS, Leonhard L, Martin WF, Chaw SM. Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae. Mol Phylogenet Evol 2018; 133:24-32. [PMID: 30553879 DOI: 10.1016/j.ympev.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
Abstract
Podocarpaceae is the largest family in cupressophytes (conifers II), but its plastid genomes (plastomes) are poorly studied, with plastome data currently existing for only four of the 19 Podocarpaceous genera. In this study, we sequenced and assembled the complete plastomes from representatives of eight additional genera, including Afrocarpus, Dacrydium, Lagarostrobos, Lepidothamnus, Pherosphaera, Phyllocladus, Prumnopitys, and Saxegothaea. We found that Lagarostrobos, a monotypic genus native to Tasmania, has the largest plastome (151,496 bp) among any cupressophytes studied to date. Plastome enlargement in Lagarostrobos coincides with increased intergenic spacers, repeats, and duplicated genes. Among the Podocarpaceae, Lagarostrobos has the most rearranged plastome, but its substitution rates are modest. Plastid phylogenomic analyses based on 81 plastid genes clarify the positions of previously conflicting Podocarpaceous genera. Tree topologies firmly support the division of Podocarpaceae into two sister clades: (1) the Prumnopityoid clade and (2) the clade containing Podocarpoid, Dacrydioid, Pherosphaera, and Saxegothaea. The Phyllocladus is nested within the Podocarpaceae, thus familial status of the monotypic Phyllocladaceae is not supported.
Collapse
Affiliation(s)
- Edi Sudianto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei 11529, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Lars Leonhard
- Botanical Garden, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| | - Shu-Miaw Chaw
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei 11529, Taiwan; Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
21
|
Xiao S, Nguyen DT, Wu B, Hao W. Genetic Drift and Indel Mutation in the Evolution of Yeast Mitochondrial Genome Size. Genome Biol Evol 2018; 9:3088-3099. [PMID: 29126284 PMCID: PMC5714193 DOI: 10.1093/gbe/evx232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) are remarkably diverse in genome size and organization, but the origins of dynamic mitogenome architectures are still poorly understood. For instance, the mutational burden hypothesis postulates that the drastic difference between large plant mitogenomes and streamlined animal mitogenomes can be driven by their different mutation rates. However, inconsistent trends between mitogenome sizes and mutation rates have been documented in several lineages. These conflicting results highlight the need of systematic and sophisticated investigations on the evolution and diversity of mitogenome architecture. This study took advantage of the strikingly variable mitogenome size among different yeast species and also among intraspecific strains, examined sequence dynamics of introns, GC-clusters, tandem repeats, mononucleotide repeats (homopolymers) and evaluated their contributions to genome size variation. The contributions of these sequence features to mitogenomic variation are dependent on the timescale, over which extant genomes evolved from their last common ancestor, perhaps due to a combination of different turnover rates of mobile sequences, variable insertion spaces, and functional constraints. We observed a positive correlation between mitogenome size and the level of genetic drift, suggesting that mitogenome expansion in yeast is likely driven by multiple types of sequence insertions in a primarily nonadaptive manner. Although these cannot be explained directly by the mutational burden hypothesis, our results support an important role of genetic drift in the evolution of yeast mitogenomes.
Collapse
Affiliation(s)
- Shujie Xiao
- Department of Biological Sciences, Wayne State University
| | - Duong T Nguyen
- Department of Biological Sciences, Wayne State University
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University.,Department of Biology, Clark University, Worcester, MA
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
22
|
Gaouda H, Hamaji T, Yamamoto K, Kawai-Toyooka H, Suzuki M, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Nozaki H, Smith DR. Exploring the Limits and Causes of Plastid Genome Expansion in Volvocine Green Algae. Genome Biol Evol 2018; 10:2248-2254. [PMID: 30102347 PMCID: PMC6128376 DOI: 10.1093/gbe/evy175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
Plastid genomes are not normally celebrated for being large. But researchers are steadily uncovering algal lineages with big and, in rare cases, enormous plastid DNAs (ptDNAs), such as volvocine green algae. Plastome sequencing of five different volvocine species has revealed some of the largest, most repeat-dense plastomes on record, including that of Volvox carteri (∼525 kb). Volvocine algae have also been used as models for testing leading hypotheses on organelle genome evolution (e.g., the mutational hazard hypothesis), and it has been suggested that ptDNA inflation within this group might be a consequence of low mutation rates and/or the transition from a unicellular to multicellular existence. Here, we further our understanding of plastome size variation in the volvocine line by examining the ptDNA sequences of the colonial species Yamagishiella unicocca and Eudorina sp. NIES-3984 and the multicellular Volvox africanus, which are phylogenetically situated between species with known ptDNA sizes. Although V. africanus is closely related and similar in multicellular organization to V. carteri, its ptDNA was much less inflated than that of V. carteri. Synonymous- and noncoding-site nucleotide substitution rate analyses of these two Volvox ptDNAs suggest that there are drastically different plastid mutation rates operating in the coding versus intergenic regions, supporting the idea that error-prone DNA repair in repeat-rich intergenic spacers is contributing to genome expansion. Our results reinforce the idea that the volvocine line harbors extremes in plastome size but ultimately shed doubt on some of the previously proposed hypotheses for ptDNA inflation within the lineage.
Collapse
Affiliation(s)
- Hager Gaouda
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Japan
| | - Kayoko Yamamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
24
|
McManus HA, Fučíková K, Lewis PO, Lewis LA, Karol KG. Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:315-329. [PMID: 29722901 DOI: 10.1002/ajb2.1066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/19/2017] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Phylogenomic analyses across the green algae are resolving relationships at the class, order, and family levels and highlighting dynamic patterns of evolution in organellar genomes. Here we present a within-family phylogenomic study to resolve genera and species relationships in the family Hydrodictyaceae (Chlorophyceae), for which poor resolution in previous phylogenetic studies, along with divergent morphological traits, have precluded taxonomic revisions. METHODS Complete plastome sequences and mitochondrial protein-coding gene sequences were acquired from representatives of the Hydrodictyaceae using next-generation sequencing methods. Plastomes were characterized, and gene order and content were compared with plastomes spanning the Sphaeropleales. Single-gene and concatenated-gene phylogenetic analyses of plastid and mitochondrial genes were performed. KEY RESULTS The Hydrodictyaceae contain the largest sphaeroplealean plastomes thus far fully sequenced. Conservation of plastome gene order within Hydrodictyaceae is striking compared with more dynamic patterns revealed across Sphaeropleales. Phylogenetic analyses resolve Hydrodictyon sister to a monophyletic Pediastrum, though the morphologically distinct P. angulosum and P. duplex continue to be polyphyletic. Analyses of plastid data supported the neochloridacean genus Chlorotetraëdron as sister to Hydrodictyaceae, while conflicting signal was found in the mitochondrial data. CONCLUSIONS A phylogenomic approach resolved within-family relationships not obtainable with previous phylogenetic analyses. Denser taxon sampling across Sphaeropleales is necessary to capture patterns in plastome evolution, and further taxa and studies are needed to fully resolve the sister lineage to Hydrodictyaceae and polyphyly of Pediastrum angulosum and P. duplex.
Collapse
Affiliation(s)
- Hilary A McManus
- Department of Biological and Environmental Sciences, Le Moyne College, 1419 Salt Springs Road, Syracuse, New York, 13066, USA
| | - Karolina Fučíková
- Department of Natural Sciences, Assumption College, 500 Salisbury Street, Worcester, Massachusetts, 01609, USA
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Kenneth G Karol
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458, USA
| |
Collapse
|
25
|
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 2018; 72:386-398. [PMID: 29134623 PMCID: PMC5796843 DOI: 10.1111/evo.13394] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing.
Collapse
Affiliation(s)
- Erik R. Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona
| |
Collapse
|
26
|
Guerrero-Bosagna C. Evolution with No Reason: A Neutral View on Epigenetic Changes, Genomic Variability, and Evolutionary Novelty. Bioscience 2017. [DOI: 10.1093/biosci/bix021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Hamaji T, Kawai-Toyooka H, Toyoda A, Minakuchi Y, Suzuki M, Fujiyama A, Nozaki H, Smith DR. Multiple Independent Changes in Mitochondrial Genome Conformation in Chlamydomonadalean Algae. Genome Biol Evol 2017; 9:993-999. [PMID: 31972029 PMCID: PMC5398295 DOI: 10.1093/gbe/evx060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chlamydomonadalean green algae are no stranger to linear mitochondrial genomes, particularly members of the Reinhardtinia clade. At least nine different Reinhardtinia species are known to have linear mitochondrial DNAs (mtDNAs), including the model species Chlamydomonas reinhardtii. Thus, it is no surprise that some have suggested that the most recent common ancestor of the Reinhardtinia clade had a linear mtDNA. But the recent uncovering of circular-mapping mtDNAs in a range of Reinhardtinia algae, such as Volvox carteri and Tetrabaena socialis, has shed doubt on this hypothesis. Here, we explore mtDNA sequence and structure within the colonial Reinhardtinia algae Yamagishiella unicocca and Eudorina sp. NIES-3984, which occupy phylogenetically intermediate positions between species with opposing mtDNA mapping structures. Sequencing and gel electrophoresis data indicate that Y. unicocca has a linear monomeric mitochondrial genome with long (3 kb) palindromic telomeres. Conversely, the mtDNA of Eudorina sp., despite having an identical gene order to that of Y. unicocca, assembled as a circular-mapping molecule. Restriction digests of Eudorina sp. mtDNA supported its circular map, but also revealed a linear monomeric form with a matching architecture and gene order to the Y. unicocca mtDNA. Based on these data, we suggest that there have been at least three separate shifts in mtDNA conformation in the Reinhardtinia, and that the common ancestor of this clade had a linear monomeric mitochondrial genome with palindromic telomeres.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Brouard JS, Turmel M, Otis C, Lemieux C. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae). PeerJ 2016; 4:e2627. [PMID: 27812423 PMCID: PMC5088586 DOI: 10.7717/peerj.2627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/29/2016] [Indexed: 01/28/2023] Open
Abstract
Background The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA) structure, size, gene order, and intron content have been observed. The large inverted repeat (IR), an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales) but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum. Methods The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. Results The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium, it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold longer and dispersed repeats are more abundant, but a smaller fraction of the Oedocladium genome is occupied by introns. Six additional group II introns are present, five of which lack ORFs and carry highly similar sequences to that of the ORF-less IIA intron shared with Oedogonium. Secondary structure analysis of the group IIA introns disclosed marked differences in the exon-binding sites; however, each intron showed perfect or nearly perfect base pairing interactions with its target site. Discussion Our results suggest that chloroplast genes rearrange more slowly in the Oedogoniales than in the Chaetophorales and raise questions as to what was the nature of the foreign coding sequences in the IR of the common ancestor of the Oedogoniales. They provide the first evidence for intragenomic proliferation of group IIA introns in the Viridiplantae, revealing that intron spread in the Oedocladium lineage likely occurred by retrohoming after sequence divergence of the exon-binding sites.
Collapse
Affiliation(s)
- Jean-Simon Brouard
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| |
Collapse
|
29
|
Smith DR. The mutational hazard hypothesis of organelle genome evolution: 10 years on. Mol Ecol 2016; 25:3769-75. [PMID: 27357487 DOI: 10.1111/mec.13742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/14/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Why is there such a large variation in size and noncoding DNA content among organelle genomes? One explanation is that this genomic variation results from differences in the rates of organelle mutation and random genetic drift, as opposed to being the direct product of natural selection. Along these lines, the mutational hazard hypothesis (MHH) holds that 'excess' DNA is a mutational liability (because it increases the potential for harmful mutations) and, thus, has a greater tendency to accumulate in an organelle system with a low mutation rate as opposed to one with a high rate of mutation. Various studies have explored this hypothesis and, more generally, the relationship between organelle genome architecture and the mode and efficiency of organelle DNA repair. Although some of these investigations are in agreement with the MHH, others have contradicted it; nevertheless, they support a central role of mutation, DNA maintenance pathways and random genetic drift in fashioning organelle chromosomes. Arguably, one of the most important contributions of the MHH is that it has sparked crucial, widespread discussions about the importance of nonadaptive processes in genome evolution.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
30
|
Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution. Mol Phylogenet Evol 2016; 98:176-83. [DOI: 10.1016/j.ympev.2016.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/08/2015] [Accepted: 01/19/2016] [Indexed: 01/16/2023]
|
31
|
The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat Commun 2016; 7:11370. [PMID: 27102219 PMCID: PMC4844696 DOI: 10.1038/ncomms11370] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/18/2016] [Indexed: 12/30/2022] Open
Abstract
The transition to multicellularity has occurred numerous times in all domains of life, yet its initial steps are poorly understood. The volvocine green algae are a tractable system for understanding the genetic basis of multicellularity including the initial formation of cooperative cell groups. Here we report the genome sequence of the undifferentiated colonial alga, Gonium pectorale, where group formation evolved by co-option of the retinoblastoma cell cycle regulatory pathway. Significantly, expression of the Gonium retinoblastoma cell cycle regulator in unicellular Chlamydomonas causes it to become colonial. The presence of these changes in undifferentiated Gonium indicates extensive group-level adaptation during the initial step in the evolution of multicellularity. These results emphasize an early and formative step in the evolution of multicellularity, the evolution of cell cycle regulation, one that may shed light on the evolutionary history of other multicellular innovations and evolutionary transitions.
Collapse
|
32
|
Farwagi AA, Fučíková K, McManus HA. Phylogenetic patterns of gene rearrangements in four mitochondrial genomes from the green algal family Hydrodictyaceae (Sphaeropleales, Chlorophyceae). BMC Genomics 2015; 16:826. [PMID: 26486870 PMCID: PMC4618342 DOI: 10.1186/s12864-015-2056-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022] Open
Abstract
Background The variability in gene organization and architecture of green algal mitochondrial genomes is only recently being studied on a finer taxonomic scale. Sequenced mt genomes from the chlorophycean orders Volvocales and Sphaeropleales exhibit considerable variation in size, content, and structure, even among closely related genera. However, sampling of mt genomes on a within-family scale is still poor and the sparsity of information precludes a thorough understanding of genome evolution in the green algae. Methods Genomic DNA of representative taxa were sequenced on an Illumina HiSeq2500 to produce 2x100 bp paired reads, and mitochondrial genomes were assembled and annotated using Geneious v.6.1.5. Phylogenetic analysis of 13 protein-coding mitochondrial genes spanning the Sphaeropleales was performed. Results This study presents one of the first within-family comparisons of mt genome diversity, and is the first to report complete mt genomes for the family Hydrodictyaceae (order Sphaeropleales). Four complete mt genomes representing three taxa and four phylogenetic groups, Stauridium tetras, Pseudopediastrum boryanum, and Pediastrum duplex, range in size from 37,723 to 53,560 bp. The size variability is primarily due to intergenic region expansion, and intron content is generally low compared with other mt genomes of Sphaeropleales. Conclusions Certain gene rearrangements appear to follow a phylogenetic pattern, and with a more thorough taxon sampling genome-level sequence may be useful in resolving systematic conundrums that plague this morphologically diverse family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2056-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Audrey A Farwagi
- Department of Biological Sciences, Le Moyne College, Syracuse, NY, USA.
| | - Karolina Fučíková
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
| | - Hilary A McManus
- Department of Biological Sciences, Le Moyne College, Syracuse, NY, USA.
| |
Collapse
|
33
|
Mori T, Kawai-Toyooka H, Igawa T, Nozaki H. Gamete Dialogs in Green Lineages. MOLECULAR PLANT 2015; 8:1442-54. [PMID: 26145252 DOI: 10.1016/j.molp.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/15/2015] [Accepted: 06/28/2015] [Indexed: 05/20/2023]
Abstract
Gamete fusion is a core process of sexual reproduction and, in both plants and animals, different sex gametes fuse within species. Although most of the molecular factors involved in gamete interaction are still unknown in various sex-possessing eukaryotes, reports of such factors in algae and land plants have been increasing in the past decade. In particular, knowledge of gamete interaction in flowering plants and green algae has increased since the identification of the conserved gamete fusion factor generative cell specific 1/hapless 2 (GCS1/HAP2). GCS1 was first identified as a pollen generative cell-specific transmembrane protein in the lily (Lilium longiflorum), and was then shown to function not only in flowering plant gamete fusion but also in various eukaryotes, including unicellular protists and metazoans. In addition, although initially restricted to Chlamydomonas, knowledge of gamete attachment in flowering plants was also acquired. This review focuses on recent progress in the study of gamete interaction in volvocine green algae and flowering plants and discusses conserved mechanisms of gamete recognition, attachment, and fusion leading to zygote formation.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
34
|
Yang EC, Kim KM, Kim SY, Lee J, Boo GH, Lee JH, Nelson WA, Yi G, Schmidt WE, Fredericq S, Boo SM, Bhattacharya D, Yoon HS. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae. Genome Biol Evol 2015; 7:2394-406. [PMID: 26245677 PMCID: PMC4558864 DOI: 10.1093/gbe/evv147] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 11/12/2022] Open
Abstract
Two red algal classes, the Florideophyceae (approximately 7,100 spp.) and Bangiophyceae (approximately 193 spp.), comprise 98% of red algal diversity in marine and freshwater habitats. These two classes form well-supported monophyletic groups in most phylogenetic analyses. Nonetheless, the interordinal relationships remain largely unresolved, in particular in the largest subclass Rhodymeniophycidae that includes 70% of all species. To elucidate red algal phylogenetic relationships and study organelle evolution, we determined the sequence of 11 mitochondrial genomes (mtDNA) from 5 florideophycean subclasses. These mtDNAs were combined with existing data, resulting in a database of 25 florideophytes and 12 bangiophytes (including cyanidiophycean species). A concatenated alignment of mt proteins was used to resolve ordinal relationships in the Rhodymeniophycidae. Red algal mtDNA genome comparisons showed 47 instances of gene rearrangement including 12 that distinguish Bangiophyceae from Hildenbrandiophycidae, and 5 that distinguish Hildenbrandiophycidae from Nemaliophycidae. These organelle data support a rapid radiation and surprisingly high conservation of mtDNA gene syntheny among the morphologically divergent multicellular lineages of Rhodymeniophycidae. In contrast, we find extensive mitochondrial gene rearrangements when comparing Bangiophyceae and Florideophyceae and multiple examples of gene loss among the different red algal lineages.
Collapse
Affiliation(s)
- Eun Chan Yang
- Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, Ansan, Korea Department of Marine Biology, Korea University of Science and Technology, Daejeon, Korea
| | - Kyeong Mi Kim
- Bioresource Systematics Department, National Marine Biodiversity Institute of Korea, Seocheon, Chungnam, Korea
| | - Su Yeon Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ga Hun Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science & Technology, Ansan, Korea
| | - Wendy A Nelson
- National Institute for Water and Atmospheric Research, Wellington, New Zealand School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gangman Yi
- Department of Computer Science and Engineering, Gangneung-Wonju National University, Wonju, Korea
| | | | | | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Marine and Coastal Sciences, Rutgers University
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
35
|
Turmel M, Otis C, Lemieux C. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae. Genome Biol Evol 2015; 7:2062-82. [PMID: 26139832 PMCID: PMC4524492 DOI: 10.1093/gbe/evv130] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 01/21/2023] Open
Abstract
Previous studies of trebouxiophycean chloroplast genomes revealed little information regarding the evolutionary dynamics of this genome because taxon sampling was too sparse and the relationships between the sampled taxa were unknown. We recently sequenced the chloroplast genomes of 27 trebouxiophycean and 2 pedinophycean green algae to resolve the relationships among the main lineages recognized for the Trebouxiophyceae. These taxa and the previously sampled members of the Pedinophyceae and Trebouxiophyceae are included in the comparative chloroplast genome analysis we report here. The 38 genomes examined display considerable variability at all levels, except gene content. Our results highlight the high propensity of the rDNA-containing large inverted repeat (IR) to vary in size, gene content and gene order as well as the repeated losses it experienced during trebouxiophycean evolution. Of the seven predicted IR losses, one event demarcates a superclade of 11 taxa representing 5 late-diverging lineages. IR expansions/contractions account not only for changes in gene content in this region but also for changes in gene order and gene duplications. Inversions also led to gene rearrangements within the IR, including the reversal or disruption of the rDNA operon in some lineages. Most of the 20 IR-less genomes are more rearranged compared with their IR-containing homologs and tend to show an accelerated rate of sequence evolution. In the IR-less superclade, several ancestral operons were disrupted, a few genes were fragmented, and a subgroup of taxa features a G+C-biased nucleotide composition. Our analyses also unveiled putative cases of gene acquisitions through horizontal transfer.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| |
Collapse
|
36
|
Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc Natl Acad Sci U S A 2015; 112:10192-9. [PMID: 26286984 DOI: 10.1073/pnas.1421386112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.
Collapse
|
37
|
Figueroa‐Martinez F, Nedelcu AM, Smith DR, Reyes‐Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. THE NEW PHYTOLOGIST 2015; 206:972-82. [PMID: 26042246 PMCID: PMC5024002 DOI: 10.1111/nph.13279] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/10/2014] [Indexed: 05/22/2023]
Abstract
The endosymbiotic origin of plastids was a launching point for eukaryotic evolution. The autotrophic abilities bestowed by plastids are responsible for much of the eukaryotic diversity we observe today. But despite its many advantages, photosynthesis has been lost numerous times and in disparate lineages throughout eukaryote evolution. For example, among green algae, several groups have lost photosynthesis independently and in response to different selective pressures; these include the parasitic/pathogenic trebouxiophyte genera Helicosporidium and Prototheca, and the free-living chlamydomonadalean genera Polytomella and Polytoma. Here, we examine the published data on colorless green algae and argue that investigations into the different evolutionary routes leading to their current nonphotosynthetic lifestyles provide exceptional opportunities to understand the ecological and genomic factors involved in the loss of photosynthesis.
Collapse
Affiliation(s)
| | - Aurora M. Nedelcu
- Biology DepartmentUniversity of New BrunswickFrederictonNBE3B 5A3Canada
| | - David R. Smith
- Biology DepartmentUniversity of Western OntarioLondonONN6A 5B7Canada
| | - Adrian Reyes‐Prieto
- Biology DepartmentUniversity of New BrunswickFrederictonNBE3B 5A3Canada
- Integrated Microbiology ProgramCanadian Institute for Advanced ResearchTorontoON M5G 1Z8Canada
| |
Collapse
|
38
|
Del Vasto M, Figueroa-Martinez F, Featherston J, González MA, Reyes-Prieto A, Durand PM, Smith DR. Massive and widespread organelle genomic expansion in the green algal genus Dunaliella. Genome Biol Evol 2015; 7:656-63. [PMID: 25663488 PMCID: PMC5322560 DOI: 10.1093/gbe/evv027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial genomes of chlamydomonadalean green algae are renowned for their highly reduced and conserved gene repertoires, which are almost fixed at 12 genes across the entire lineage. The sizes of these genomes, however, are much more variable, with some species having small, compact mitochondrial DNAs (mtDNAs) and others having expanded ones. Earlier work demonstrated that the halophilic genus Dunaliella contains extremely inflated organelle genomes, but to date the mtDNA of only one isolate has been explored. Here, by surveying mtDNA architecture across the Chlamydomonadales, we show that various Dunaliella species have undergone massive levels of mitochondrial genomic expansion, harboring the most inflated, intron-dense mtDNAs available from chlorophyte green algae. The same also appears to be true for their plastid genomes, which are potentially among the largest of all plastid-containing eukaryotes. Genetic divergence data are used to investigate the underlying causes of such extreme organelle genomic architectures, and ultimately reveal order-of-magnitude differences in mitochondrial versus plastid mutation rates within Dunaliella.
Collapse
Affiliation(s)
- Michael Del Vasto
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Figueroa-Martinez
- Department of Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Jonathan Featherston
- Department of Molecular Medicine and Sydney Brenner Institute for Molecular Biosciences, University of the Witwatersrand, Johannesburg, South Africa Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | - Mariela A González
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanógraficas. Universidad de Concepción, Casilla, Concepción, Chile
| | - Adrian Reyes-Prieto
- Department of Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Pierre M Durand
- Department of Molecular Medicine and Sydney Brenner Institute for Molecular Biosciences, University of the Witwatersrand, Johannesburg, South Africa Department of Biodiversity and Conservation Biology, Faculty of Natural Sciences, University of the Western Cape, Belville, Cape Town, South Africa
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
39
|
Van Leuven JT, Meister RC, Simon C, McCutcheon JP. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 2014; 158:1270-1280. [PMID: 25175626 DOI: 10.1016/j.cell.2014.07.047] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/18/2014] [Accepted: 07/07/2014] [Indexed: 10/24/2022]
Abstract
Mutualisms that become evolutionarily stable give rise to organismal interdependencies. Some insects have developed intracellular associations with communities of bacteria, where the interdependencies are manifest in patterns of complementary gene loss and retention among members of the symbiosis. Here, using comparative genomics and microscopy, we show that a three-member symbiotic community has become a four-way assemblage through a novel bacterial lineage-splitting event. In some but not all cicada species of the genus Tettigades, the endosymbiont Candidatus Hodgkinia cicadicola has split into two new cytologically distinct but metabolically interdependent species. Although these new bacterial genomes are partitioned into discrete cell types, the intergenome patterns of gene loss and retention are almost perfectly complementary. These results defy easy classification: they show genomic patterns consistent with those observed after both speciation and whole-genome duplication. We suggest that our results highlight the potential power of nonadaptive forces in shaping organismal complexity.
Collapse
Affiliation(s)
- James T Van Leuven
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Russell C Meister
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
40
|
Fučíková K, Lewis PO, González-Halphen D, Lewis LA. Gene arrangement convergence, diverse intron content, and genetic code modifications in mitochondrial genomes of sphaeropleales (chlorophyta). Genome Biol Evol 2014; 6:2170-80. [PMID: 25106621 PMCID: PMC4159012 DOI: 10.1093/gbe/evu172] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The majority of our knowledge about mitochondrial genomes of Viridiplantae comes from land plants, but much less is known about their green algal relatives. In the green algal order Sphaeropleales (Chlorophyta), only one representative mitochondrial genome is currently available—that of Acutodesmus obliquus. Our study adds nine completely sequenced and three partially sequenced mitochondrial genomes spanning the phylogenetic diversity of Sphaeropleales. We show not only a size range of 25–53 kb and variation in intron content (0–11) and gene order but also conservation of 13 core respiratory genes and fragmented ribosomal RNA genes. We also report an unusual case of gene arrangement convergence in Neochloris aquatica, where the two rns fragments were secondarily placed in close proximity. Finally, we report the unprecedented usage of UCG as stop codon in Pseudomuriella schumacherensis. In addition, phylogenetic analyses of the mitochondrial protein-coding genes yield a fully resolved, well-supported phylogeny, showing promise for addressing systematic challenges in green algae.
Collapse
Affiliation(s)
- Karolina Fučíková
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Departamento de Genética Molecular Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut
| |
Collapse
|