1
|
Ruschig M, Nerlich J, Becker M, Meier D, Polten S, Cervantes-Luevano K, Kuhn P, Licea-Navarro AF, Hallermann S, Dübel S, Schubert M, Brown J, Hust M. Human antibodies neutralizing the alpha-latrotoxin of the European black widow. Front Immunol 2024; 15:1407398. [PMID: 38933276 PMCID: PMC11199383 DOI: 10.3389/fimmu.2024.1407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024] Open
Abstract
Poisoning by widow-spider (genus Latrodectus) bites occurs worldwide. The illness, termed latrodectism, can cause severe and persistent pain and can lead to muscle rigidity, respiratory complications, and cardiac problems. It is a global health challenge especially in developing countries. Equine serum-derived polyclonal anti-sera are commercially available as a medication for patients with latrodectism, but the use of sera imposes potential inherent risks related to its animal origin. The treatment may cause allergic reactions in humans (serum sickness), including anaphylactic shock. Furthermore, equine-derived antivenom is observed to have batch-to-batch variability and poor specificity, as it is always an undefined mix of antibodies. Because latrodectism can be extremely painful but is rarely fatal, the use of antivenom is controversial and only a small fraction of patients is treated. In this work, recombinant human antibodies were selected against alpha-latrotoxin of the European black widow (Latrodectus tredecimguttatus) by phage display from a naïve antibody gene library. Alpha-Latrotoxin (α-LTX) binding scFv were recloned and produced as fully human IgG. A novel alamarBlue assay for venom neutralization was developed and used to select neutralizing IgGs. The human antibodies showed in vitro neutralization efficacy both as single antibodies and antibody combinations. This was also confirmed by electrophysiological measurements of neuronal activity in cell culture. The best neutralizing antibodies showed nanomolar affinities. Antibody MRU44-4-A1 showed outstanding neutralization efficacy and affinity to L. tredecimguttatus α-LTX. Interestingly, only two of the neutralizing antibodies showed cross-neutralization of the venom of the Southern black widow (Latrodectus mactans). This was unexpected, because in the current literature the alpha-latrotoxins are described as highly conserved. The here-engineered antibodies are candidates for future development as potential therapeutics and diagnostic tools, as they for the first time would provide unlimited supply of a chemically completely defined drug of constant quality and efficacy, which is also made without the use of animals.
Collapse
Affiliation(s)
- Maximilian Ruschig
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jana Nerlich
- Faculty of Medicine, Carl-Ludwig-Institute of Physiology, Leipzig University, Leipzig, Germany
| | - Marlies Becker
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Doris Meier
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Polten
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karla Cervantes-Luevano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | | | - Alexei Fedorovish Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Stefan Hallermann
- Faculty of Medicine, Carl-Ludwig-Institute of Physiology, Leipzig University, Leipzig, Germany
| | - Stefan Dübel
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeffrey Brown
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - Michael Hust
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Sivadasan A, Cortel-LeBlanc MA, Cortel-LeBlanc A, Katzberg H. Peripheral nervous system and neuromuscular disorders in the emergency department: A review. Acad Emerg Med 2024; 31:386-397. [PMID: 38419365 DOI: 10.1111/acem.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Acute presentations and emergencies in neuromuscular disorders (NMDs) often challenge clinical acumen. The objective of this review is to refine the reader's approach to history taking, clinical localization and early diagnosis, as well as emergency management of neuromuscular emergencies. METHODS An extensive literature search was performed to identify relevant studies. We prioritized meta-analysis, systematic reviews, and position statements where possible to inform any recommendations. SUMMARY The spectrum of clinical presentations and etiologies ranges from neurotoxic envenomation or infection to autoimmune disease such as Guillain-Barré Syndrome (GBS) and myasthenia gravis (MG). Delayed diagnosis is not uncommon when presentations occur "de novo," respiratory failure is dominant or isolated, or in the case of atypical scenarios such as GBS variants, severe autonomic dysfunction, or rhabdomyolysis. Diseases of the central nervous system, systemic and musculoskeletal disorders can mimic presentations in neuromuscular disorders. CONCLUSIONS Fortunately, early diagnosis and management can improve prognosis. This article provides a comprehensive review of acute presentations in neuromuscular disorders relevant for the emergency physician.
Collapse
Affiliation(s)
- Ajith Sivadasan
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Miguel A Cortel-LeBlanc
- Department of Emergency Medicine, Queensway Carleton Hospital, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort, Ottawa, Ontario, Canada
- 360 Concussion Care, Ottawa, Ontario, Canada
| | - Achelle Cortel-LeBlanc
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort, Ottawa, Ontario, Canada
- 360 Concussion Care, Ottawa, Ontario, Canada
- Division of Neurology, Department of Medicine, Queensway Carleton Hospital, Ottawa, Ontario, Canada
| | - Hans Katzberg
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
4
|
Ramírez DS, Alzate JF, Simone Y, van der Meijden A, Guevara G, Franco Pérez LM, González-Gómez JC, Prada Quiroga CF. Intersexual Differences in the Gene Expression of Phoneutria depilata (Araneae, Ctenidae) Toxins Revealed by Venom Gland Transcriptome Analyses. Toxins (Basel) 2023; 15:429. [PMID: 37505698 PMCID: PMC10467060 DOI: 10.3390/toxins15070429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The wandering spider, Phoneutria depilata, is one of Colombia's most active nocturnal arthropod predators of vertebrates and invertebrates. Its venom has been a relevant subject of study in the last two decades. However, the scarcity of transcriptomic data for the species limits our knowledge of the distinct components present in its venom for linking the mainly neurotoxic effects of the spider venom to a particular molecular target. The transcriptome of the P. depilata venom gland was analyzed to understand the effect of different diets or sex and the impact of these variables on the composition of the venom. We sequenced venom glands obtained from ten males and ten females from three diet treatments: (i) invertebrate: Tenebrio molitor, (ii) vertebrate: Hemidactylus frenatus, and (iii) mixed (T. molitor + H. frenatus). Of 17,354 assembled transcripts from all samples, 65 transcripts relating to venom production differed between males and females. Among them, 36 were classified as neurotoxins, 14 as serine endopeptidases, 11 as other proteins related to venom production, three as metalloprotease toxins, and one as a venom potentiator. There were no differences in transcripts across the analyzed diets, but when considering the effect of diets on differences between the sexes, 59 transcripts were differentially expressed. Our findings provide essential information on toxins differentially expressed that can be related to sex and the plasticity of the diet of P. depilata and thus can be used as a reference for venomics of other wandering spider species.
Collapse
Affiliation(s)
- Diego Sierra Ramírez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | - Yuri Simone
- CIBIO/InBIO/Biopolis, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal; (Y.S.); (A.v.d.M.)
| | - Arie van der Meijden
- CIBIO/InBIO/Biopolis, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal; (Y.S.); (A.v.d.M.)
| | - Giovany Guevara
- Grupo de Investigación en Zoología (GIZ), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia;
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia;
| | - Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| | - Carlos F. Prada Quiroga
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| |
Collapse
|
5
|
Lüddecke T, Dersch L, Schulte L, Hurka S, Paas A, Oberpaul M, Eichberg J, Hardes K, Klimpel S, Vilcinskas A. Functional Profiling of the A-Family of Venom Peptides from the Wolf Spider Lycosa shansia. Toxins (Basel) 2023; 15:toxins15050303. [PMID: 37235338 DOI: 10.3390/toxins15050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The venoms of spiders from the RTA (retro-lateral tibia apophysis) clade contain diverse short linear peptides (SLPs) that offer a rich source of therapeutic candidates. Many of these peptides have insecticidal, antimicrobial and/or cytolytic activities, but their biological functions are unclear. Here, we explore the bioactivity of all known members of the A-family of SLPs previously identified in the venom of the Chinese wolf spider (Lycosa shansia). Our broad approach included an in silico analysis of physicochemical properties and bioactivity profiling for cytotoxic, antiviral, insecticidal and antibacterial activities. We found that most members of the A-family can form α-helices and resemble the antibacterial peptides found in frog poison. The peptides we tested showed no cytotoxic, antiviral or insecticidal activities but were able to reduce the growth of bacteria, including clinically relevant strains of Staphylococcus epidermidis and Listeria monocytogenes. The absence of insecticidal activity may suggest that these peptides have no role in prey capture, but their antibacterial activity may help to defend the venom gland against infection.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Ludwig Dersch
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Lennart Schulte
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Markus Oberpaul
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sven Klimpel
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
6
|
Krugner R, Espindola C, Justus N, Hatton RL. Web Vibrations in Intraspecific Contests of Female Black Widow Spiders, Latrodectus hesperus. ENVIRONMENTAL ENTOMOLOGY 2023; 52:169-174. [PMID: 36727725 DOI: 10.1093/ee/nvad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 06/18/2023]
Abstract
Female black widow spiders, Latrodectus hesperus Chamberlin and Ivie (Araneae: Theridiidae), are solitary predators of arthropods with no tolerance for intruders on the webs. In California, L. hesperus are found in urban and agricultural settings and can be a phytosanitary pest in fresh produce. Spatial separation of L. hesperus webs could be determined by seasonal population densities, with territorial competition expected under high densities in the environment. However, little is known about female-female communication behaviors in this species. In 1-hr laboratory observations, displays of female-female rivalry included production of vibrational signals in a majority (20 of 30) of trials. The number of signals produced by both females was highest during the initial 10 min of trials, with signaling rate (time interval between signals) peaking during the 40-50 min observation period. The overall ratio of signals produced by the resident female and the introduced female was about 5:1, with the number of signals produced by the resident female higher than the number of signals produced by the introduced female. Analysis of rivalry signals showed a peak in magnitude (about 0.4 m/s) ranging from 6 to 23 Hz and smaller peaks at about 29, 38, and 47 Hz. Collectively, these results demonstrate that female L. hesperus exhibit territorial rivalry and that female-female rivalry is mediated by emission of vibrational signals through the web. Understanding the mechanisms of intraspecific competition in L. hesperus is required for elucidating interspecific interactions in the environment and may lead to development of novel methods to prevent spiders from colonizing crops.
Collapse
Affiliation(s)
- Rodrigo Krugner
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA
| | - Crystal Espindola
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA
| | - Nathan Justus
- School of Mechanical, Industrial, and Manufacturing Engineering, Collaborative Robotics and Intelligent Systems Institute, College of Engineering, Oregon State University, 101 Covell Hall, Corvallis, OR 97331, USA
| | - Ross L Hatton
- School of Mechanical, Industrial, and Manufacturing Engineering, Collaborative Robotics and Intelligent Systems Institute, College of Engineering, Oregon State University, 101 Covell Hall, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Kubena BE, Umar MA, Walker JD, Harper H. Case Report: Soldier With Latrodectism After Black Widow Spider Bite During a Field Training Exercise. Mil Med 2023; 188:e870-e874. [PMID: 34027976 DOI: 10.1093/milmed/usab201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 11/14/2022] Open
Abstract
Latrodectism from black widow spider (BWS) bites is rare in the United States. Latrodectism is a severe systemic manifestation of the envenomation that includes severe abdominal pain mimicking acute surgical abdomen and, in rare cases, could lead to acute myocarditis and rhabdomyolysis. The BWS typically inhabits dark, low-lying areas such as woodpiles, tree stumps, outdoor storage, outdoor furniture, outdoor toilets, and rock piles and is most active during warm weather months. Military service members often participate in field training exercises during warm weather in wooded areas littered with woodpiles and tree stumps; therefore, they are at an increased risk for bites by arachnids. We report the case of a 26-year-old active duty male soldier evacuated from field training with latrodectism and possible envenomation-induced myocarditis after a suspected BWS bite.
Collapse
Affiliation(s)
- Bryan E Kubena
- C Co. 626th Brigade Support Battalion, 3rd Brigade Combat Team, 101st Airborne Division, Fort Campbell, KY 42223, USA
| | - Mohamad A Umar
- Carl R. Darnall Army Medical Center, Fort Hood, TX 76544, USA
| | | | - Hillary Harper
- Carl R. Darnall Army Medical Center, Fort Hood, TX 76544, USA
| |
Collapse
|
8
|
Fischer A, Gries R, Alamsetti SK, Hung E, Roman Torres AC, Fernando Y, Meraj S, Ren W, Britton R, Gries G. Origin, structure and functional transition of sex pheromone components in a false widow spider. Commun Biol 2022; 5:1156. [DOI: 10.1038/s42003-022-04072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFemale web-building spiders disseminate pheromone from their webs that attracts mate-seeking males and deposit contact pheromone on their webs that induces courtship by males upon arrival. The source of contact and mate attractant pheromone components, and the potential ability of females to adjust their web’s attractiveness, have remained elusive. Here, we report three new contact pheromone components produced by female false black widow spiders, Steatoda grossa: N-4-methylvaleroyl-O-butyroyl-L-serine, N-4-methylvaleroyl-O-isobutyroyl-L-serine and N-4-methylvaleroyl-O-hexanoyl-L-serine. The compounds originate from the posterior aggregate silk gland, induce courtship by males, and web pH-dependently hydrolyse at the carboxylic-ester bond, giving rise to three corresponding carboxylic acids that attract males. A carboxyl ester hydrolase (CEH) is present on webs and likely mediates the functional transition of contact sex pheromone components to the carboxylic acid mate attractant pheromone components. As CEH activity is pH-dependent, and female spiders can manipulate their silk’s pH, they might also actively adjust their webs’ attractiveness.
Collapse
|
9
|
Wilder SM, Simpson SJ. A vertebrate, the fence skink, is a common but relatively low-quality prey for an invertebrate predator, the redback spider. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Bartholomai BM, Ruwe KM, Thurston J, Jha P, Scaife K, Simon R, Abdelmoteleb M, Goodman RE, Farhi M. Safety evaluation of Neurospora crassa mycoprotein for use as a novel meat alternative and enhancer. Food Chem Toxicol 2022; 168:113342. [PMID: 35963473 DOI: 10.1016/j.fct.2022.113342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Cultivation of filamentous fungi to produce sustainable, nutrient rich meat replacements has recently attracted significant commercial and research interest. Here, we report evidence for the safety and nutritional value of Neurospora crassa mycoprotein, a whole mycelium food ingredient produced by fermentation and minimal downstream processing. N. crassa has a long history of human use in fermented foods and in molecular biology research. A survey of studies that used N. crassa in animal feed revealed no adverse effects to the health of the animals. Furthermore, a review of the literature found no reports of confirmed allergenicity or toxicity in humans involving N. crassa. Genomic toxigenicity analysis and in vitro testing did not identify any toxins in N. crassa mycoprotein. Two independent genomic allergenicity studies did not identify proteins that would be considered a particular risk for allergenic potential. Furthermore, nutritional analysis demonstrated that N. crassa mycoprotein is a good source of complete protein and is rich in fiber, potassium, and iron. Taken together, the presented data and the history of human use without evidence of human or animal harm indicate that foods containing N. crassa can generally be regarded as safe.
Collapse
Affiliation(s)
| | | | | | - Prachi Jha
- The Better Meat Co., West Sacramento, CA, USA
| | - Kevin Scaife
- Intertek Health Sciences Inc., Mississauga, ON, Canada
| | - Ryan Simon
- Intertek Health Sciences Inc., Mississauga, ON, Canada
| | | | - Richard E Goodman
- Food Allergy Research and Resource Program, University of Nebraska, Lincoln, NE, USA
| | - Moran Farhi
- The Better Meat Co., West Sacramento, CA, USA
| |
Collapse
|
11
|
Salinas-Restrepo C, Misas E, Estrada-Gómez S, Quintana-Castillo JC, Guzman F, Calderón JC, Giraldo MA, Segura C. Improving the Annotation of the Venom Gland Transcriptome of Pamphobeteus verdolaga, Prospecting Novel Bioactive Peptides. Toxins (Basel) 2022; 14:408. [PMID: 35737069 PMCID: PMC9228390 DOI: 10.3390/toxins14060408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Spider venoms constitute a trove of novel peptides with biotechnological interest. Paucity of next-generation-sequencing (NGS) data generation has led to a description of less than 1% of these peptides. Increasing evidence supports the underestimation of the assembled genes a single transcriptome assembler can predict. Here, the transcriptome of the venom gland of the spider Pamphobeteus verdolaga was re-assembled, using three free access algorithms, Trinity, SOAPdenovo-Trans, and SPAdes, to obtain a more complete annotation. Assembler's performance was evaluated by contig number, N50, read representation on the assembly, and BUSCO's terms retrieval against the arthropod dataset. Out of all the assembled sequences with all software, 39.26% were common between the three assemblers, and 27.88% were uniquely assembled by Trinity, while 27.65% were uniquely assembled by SPAdes. The non-redundant merging of all three assemblies' output permitted the annotation of 9232 sequences, which was 23% more when compared to each software and 28% more when compared to the previous P. verdolaga annotation; moreover, the description of 65 novel theraphotoxins was possible. In the generation of data for non-model organisms, as well as in the search for novel peptides with biotechnological interest, it is highly recommended to employ at least two different transcriptome assemblers.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
| | - Elizabeth Misas
- Corporación para Investigaciones Biológicas, Medellín 050012, Colombia;
| | - Sebastian Estrada-Gómez
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Aven-ida Viel 1497, Santiago 7750000, Chile
| | | | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontifícia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050012, Colombia;
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín 050012, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
12
|
Arroyave-Muñoz A, Meijden AVD, Estrada-Gómez S, García LF. Linking toxicity and predation in a venomous arthropod: the case of Tityus fuhrmanni (Scorpiones: Buthidae), a generalist predator scorpion. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210036. [PMID: 35082841 PMCID: PMC8747031 DOI: 10.1590/1678-9199-jvatitd-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Scorpions are arachnids that have a generalist diet, which use venom to
subdue their prey. The study of their trophic ecology and capture behavior
is still limited compared to other organisms, and aspects such as trophic
specialization in this group have been little explored. Methods: In order to determine the relationship between feeding behavior and venom
toxicity in the scorpion species Tityus fuhrmanni, 33
specimens were offered prey with different morphologies and defense
mechanisms: spiders, cockroaches and crickets. In each of the experiments we
recorded the following aspects: acceptance rate, immobilization time and the
number of capture attempts. The median lethal dose of T.
fuhrmanni venom against the three different types of prey was
also evaluated. Results: We found that this species does not have a marked difference in acceptance
for any of the evaluated prey, but the number of capture attempts of spiders
is higher when compared to the other types of prey. The immobilization time
is shorter in spiders compared to other prey and the LD50 was
higher for cockroaches. Conclusions: These results indicate that T. fuhrmanni is a scorpion with
a generalist diet, has a venom with a different potency among prey and is
capable of discriminating between prey types and employing distinct
strategies to subdue them.
Collapse
|
13
|
Vitkauskaite A, Dunbar JP, Lawton C, Dalagiorgos P, Allen MM, Dugon MM. Vertebrate prey capture by Latrodectus mactans (Walckenaer, 1805) and Steatoda triangulosa (Walckenaer, 1802) (Araneae, Theridiidae) provide further insights into the immobilization and hoisting mechanisms of large prey. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Caruso MB, Lauria PSS, de Souza CMV, Casais-E-Silva LL, Zingali RB. Widow spiders in the New World: a review on Latrodectus Walckenaer, 1805 (Theridiidae) and latrodectism in the Americas. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210011. [PMID: 34745240 PMCID: PMC8553018 DOI: 10.1590/1678-9199-jvatitd-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022] Open
Abstract
Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.
Collapse
Affiliation(s)
- Marjolly Brigido Caruso
- Laboratory of Hemostasis and Venoms, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Pedro Santana Sales Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, School of Pharmacy, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | | | - Luciana Lyra Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Russolina Benedeta Zingali
- Laboratory of Hemostasis and Venoms, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
16
|
Luo J, Ding Y, Peng Z, Chen K, Zhang X, Xiao T, Chen J. Molecular diversity and evolutionary trends of cysteine-rich peptides from the venom glands of Chinese spider Heteropoda venatoria. Sci Rep 2021; 11:3211. [PMID: 33547373 PMCID: PMC7865051 DOI: 10.1038/s41598-021-82668-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Heteropoda venatoria in the family Sparassidae is highly valued in pantropical countries because the species feed on domestic insect pests. Unlike most other species of Araneomorphae, H. venatoria uses the great speed and strong chelicerae (mouthparts) with toxin glands to capture the insects instead of its web. Therefore, H. venatoria provides unique opportunities for venom evolution research. The venom of H. venatoria was explored by matrix-assisted laser desorption/ionization tandem time-of-flight and analyzing expressed sequence tags. The 154 sequences coding cysteine-rich peptides (CRPs) revealed 24 families based on the phylogenetic analyses of precursors and cysteine frameworks in the putative mature regions. Intriguingly, four kinds of motifs are first described in spider venom. Furthermore, combining the diverse CRPs of H. venatoria with previous spider venom peptidomics data, the structures of precursors and the patterns of cysteine frameworks were analyzed. This work revealed the dynamic evolutionary trends of venom CRPs in H. venatoria: the precursor has evolved an extended mature peptide with more cysteines, and a diminished or even vanished propeptides between the signal and mature peptides; and the CRPs evolved by multiple duplications of an ancestral ICK gene as well as recruitments of non-toxin genes.
Collapse
Affiliation(s)
- Jie Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yiying Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Zhihao Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Kezhi Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Xuewen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Tiaoyi Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China. .,Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha, 410128, People's Republic of China.
| |
Collapse
|
17
|
Dunbar JP, Khan NA, Abberton CL, Brosnan P, Murphy J, Afoullouss S, O'Flaherty V, Dugon MM, Boyd A. Synanthropic spiders, including the global invasive noble false widow Steatoda nobilis, are reservoirs for medically important and antibiotic resistant bacteria. Sci Rep 2020; 10:20916. [PMID: 33262382 PMCID: PMC7708416 DOI: 10.1038/s41598-020-77839-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
The false widow spider Steatoda nobilis is associated with bites which develop bacterial infections that are sometimes unresponsive to antibiotics. These could be secondary infections derived from opportunistic bacteria on the skin or infections directly vectored by the spider. In this study, we investigated whether it is plausible for S. nobilis and other synanthropic European spiders to vector bacteria during a bite, by seeking to identify bacteria with pathogenic potential on the spiders. 11 genera of bacteria were identified through 16S rRNA sequencing from the body surfaces and chelicerae of S. nobilis, and two native spiders: Amaurobius similis and Eratigena atrica. Out of 22 bacterial species isolated from S. nobilis, 12 were related to human pathogenicity among which Staphylococcus epidermidis, Kluyvera intermedia, Rothia mucilaginosa and Pseudomonas putida are recognized as class 2 pathogens. The isolates varied in their antibiotic susceptibility: Pseudomonas putida, Staphylococcus capitis and Staphylococcus edaphicus showed the highest extent of resistance, to three antibiotics in total. On the other hand, all bacteria recovered from S. nobilis were susceptible to ciprofloxacin. Our study demonstrates that S. nobilis does carry opportunistic pathogenic bacteria on its body surfaces and chelicerae. Therefore, some post-bite infections could be the result of vector-borne bacterial zoonoses that may be antibiotic resistant.
Collapse
Affiliation(s)
- John P Dunbar
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Neyaz A Khan
- Discipline of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Cathy L Abberton
- Westway Health Ltd., Unit 120, Business Innovation Centre, National University of Ireland Galway, Galway, Ireland
| | - Pearce Brosnan
- Westway Health Ltd., Unit 120, Business Innovation Centre, National University of Ireland Galway, Galway, Ireland
| | - Jennifer Murphy
- Westway Health Ltd., Unit 120, Business Innovation Centre, National University of Ireland Galway, Galway, Ireland
| | - Sam Afoullouss
- Marine Biodiscovery, School of Chemistry, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Discipline of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Westway Health Ltd., Unit 120, Business Innovation Centre, National University of Ireland Galway, Galway, Ireland
| | - Michel M Dugon
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Aoife Boyd
- Discipline of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
18
|
Føns S, Ledsgaard L, Nikolaev MV, Vassilevski AA, Sørensen CV, Chevalier MK, Fiebig M, Laustsen AH. Discovery of a Recombinant Human Monoclonal Immunoglobulin G Antibody Against α-Latrotoxin From the Mediterranean Black Widow Spider ( Latrodectus tredecimguttatus). Front Immunol 2020; 11:587825. [PMID: 33262768 PMCID: PMC7688514 DOI: 10.3389/fimmu.2020.587825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
Widow spiders are among the few spider species worldwide that can cause serious envenoming in humans. The clinical syndrome resulting from Latrodectus spp. envenoming is called latrodectism and characterized by pain (local or regional) associated with diaphoresis and nonspecific systemic effects. The syndrome is caused by α-latrotoxin, a ~130 kDa neurotoxin that induces massive neurotransmitter release. Due to this function, α-latrotoxin has played a fundamental role as a tool in the study of neuroexocytosis. Nevertheless, some questions concerning its mode of action remain unresolved today. The diagnosis of latrodectism is purely clinical, combined with the patient's history of spider bite, as no analytical assays exist to detect widow spider venom. By utilizing antibody phage display technology, we here report the discovery of the first recombinant human monoclonal immunoglobulin G antibody (TPL0020_02_G9) that binds α-latrotoxin from the Mediterranean black widow spider (Latrodectus tredecimguttatus) and show neutralization efficacy ex vivo. Such antibody can be used as an affinity reagent for research and diagnostic purposes, providing researchers with a novel tool for more sophisticated experimentation and analysis. Moreover, it may also find therapeutic application in future.
Collapse
Affiliation(s)
- Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maxim V. Nikolaev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander A. Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Manon K. Chevalier
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Keyler DE, Ahmad M, Rodriguez A, De Silva PMK. Latrodectus geometricus (Aranea: Theridiidae) envenoming: Rapid resolution of symptoms following F(ab') 2 antivenom therapy. Toxicon 2020; 188:76-79. [PMID: 33068558 DOI: 10.1016/j.toxicon.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
The Brown Widow spider (Latrodectus geometricus) is an invasive species whose geographic range has been expanding worldwide. It is a relative species of the Black Widow and Red-backed spiders of the genus Latrodectus. Despite its broad geographic distribution cases of Brown Widow envenomation have rarely been documented. The venom of L. geometricus is similar to the venom of L. mactans with the primary venom component being alpha-latrotoxin, and consequent envenoming by L. geometricus to humans has resulted in symptoms similar to those reported for other Latrodectus spp. Specific FDA approved Latrodectus antivenom (IgG) available in North America has been effectively used in treating venom-induced symptoms following L. mactans envenoming. The patient reported here involved a confirmed L. geometricus envenoming who was efficaciously treated with an alternately available F(ab')2 antivenom from Mexico.
Collapse
Affiliation(s)
- D E Keyler
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - M Ahmad
- Metropolitan Methodist Hospital, San Antonio, TX, USA
| | - A Rodriguez
- Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | | |
Collapse
|
20
|
What size of Neotropical frogs do spiders prey on? Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Reyes‐Olivares C, Guajardo‐Santibáñez A, Segura B, Zañartu N, Penna M, Labra A. Lizard predation by spiders: A review from the Neotropical and Andean regions. Ecol Evol 2020; 10:10953-10964. [PMID: 33144940 PMCID: PMC7593146 DOI: 10.1002/ece3.6801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/10/2022] Open
Abstract
Vertebrate predation by invertebrates has been classically underexplored and thus underestimated, despite the fact that many arthropods consume vertebrates. To shed some light on the relevance that spider predation may have upon lizards in the Neotropical and Andean regions, we compiled the available information in the literature on this trophic interaction. We found 50 reports of spiders consuming lizards in these regions, and the 88% of these were from the Neotropical region. Spiders belong to eight families, but Ctenidae and Theraphosidae were the most frequently reported predators. Lizards belong to 12 families, and the most commonly consumed species corresponded to the families Dactyloidae (all Anolis lizards), Gymnophthalmidae, and Sphaerodactylidae. Data suggest trophic spider-lizard associations between Ctenidae and Dactyloidae, followed by Theraphosidae and Liolaemidae. The body sizes of the spiders and lizards showed a positive relationship, and spiders were smaller than their prey. We conclude that various spider taxa can be considered lizard predators and they may be ecologically important in the Neotropical and Andean regions. However, spiders of prime predation relevance seem to be those of the Ctenidae and Theraphosidae families.
Collapse
Affiliation(s)
- Claudio Reyes‐Olivares
- Programa de Doctorado en Ciencias, con mención en Ecología y Biología EvolutivaFacultad de CienciasUniversidad de ChileSantiagoChile
- Laboratorio de NeuroetologíaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de ChileSantiagoChile
| | | | | | - Nicolás Zañartu
- Programa de AgronomíaFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| | - Mario Penna
- Laboratorio de NeuroetologíaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - Antonieta Labra
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
22
|
Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators. Proc Natl Acad Sci U S A 2020; 117:24920-24928. [PMID: 32958636 DOI: 10.1073/pnas.2004516117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.
Collapse
|
23
|
Janecek J, Kushlaf H. Toxin-Induced Channelopathies, Neuromuscular Junction Disorders, and Myopathy. Neurol Clin 2020; 38:765-780. [PMID: 33040860 DOI: 10.1016/j.ncl.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Channelopathies, neuromuscular junction disorders, and myopathies represent multiple mechanisms by which toxins can affect the peripheral nervous system. These toxins include ciguatoxin, tetrodotoxin, botulinum toxin, metabolic poisons, venomous snake bites, and several medications. These toxins are important to be aware of because they can lead to serious symptoms, disability, or even death, and many can be treated if recognized ear.
Collapse
Affiliation(s)
- Jacqueline Janecek
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 260 Stetson Street Suite 2300, Cincinnati, OH 45219, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, 234 Goodman Street, LMB, Suite 110, Cincinnati, OH 45219, USA.
| |
Collapse
|
24
|
Dunaj SJ, Bettencourt BR, Garb JE, Brucker RM. Spider phylosymbiosis: divergence of widow spider species and their tissues' microbiomes. BMC Evol Biol 2020; 20:104. [PMID: 32811423 PMCID: PMC7433143 DOI: 10.1186/s12862-020-01664-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Microbiomes can have profound impacts on host biology and evolution, but to date, remain vastly understudied in spiders despite their unique and diverse predatory adaptations. This study evaluates closely related species of spiders and their host-microbe relationships in the context of phylosymbiosis, an eco-evolutionary pattern where the microbial community profile parallels the phylogeny of closely related host species. Using 16S rRNA gene amplicon sequencing, we characterized the microbiomes of five species with known phylogenetic relationships from the family Theridiidae, including multiple closely related widow spiders (L. hesperus, L. mactans, L. geometricus, S. grossa, and P. tepidariorum). RESULTS We compared whole animal and tissue-specific microbiomes (cephalothorax, fat bodies, venom glands, silk glands, and ovary) in the five species to better understand the relationship between spiders and their microbial symbionts. This showed a strong congruence of the microbiome beta-diversity of the whole spiders, cephalothorax, venom glands, and silk glands when compared to their host phylogeny. Our results support phylosymbiosis in these species and across their specialized tissues. The ovary tissue microbial dendrograms also parallel the widow phylogeny, suggesting vertical transfer of species-specific bacterial symbionts. By cross-validating with RNA sequencing data obtained from the venom glands, silk glands and ovaries of L. hesperus, L. geometricus, S. grossa, and P. tepidariorum we confirmed that several microbial symbionts of interest are viably active in the host. CONCLUSION Together these results provide evidence that supports the importance of host-microbe interactions and the significant role microbial communities may play in the evolution and adaptation of their hosts.
Collapse
Affiliation(s)
- Sara J Dunaj
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Robert M Brucker
- The Rowland Institute of Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Abstract
Latrodectus geometricus, also known as the brown widow or brown button spider, is an unrenowned relative of the American black widow. While brown widow envenomation is generally thought of as mild, it does have the potential to lead to moderate or severe features similar to black widow bites. We report a case of brown widow envenomation that led to a moderate reaction including rash, local pain, pain radiating proximally in the extremity and nausea. Poison control was consulted for aid in spider identification. The patient was treated for pain control and muscle relaxation and monitored for eight hours. After proper tetanus prophylaxis, the patient was successfully discharged home with well-controlled, but continued mild symptoms. This case highlights a little-known, but clinically relevant species of widow spider with a wide distribution. Expeditious identification and treatment of brown widow bites can increase patient comfort, satisfaction, and discharge rates.
Collapse
Affiliation(s)
- Ryan C Earwood
- Department of Emergency Medicine, Florida State University College of Medicine, Tallahassee, USA
| | - Jay Ladde
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, USA
| | - Philip A Giordano
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, USA
| |
Collapse
|
26
|
Esteves FG, Dos Santos-Pinto JRA, Ferro M, Sialana FJ, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Lubec G, Palma MS. Revealing the Venomous Secrets of the Spider's Web. J Proteome Res 2020; 19:3044-3059. [PMID: 32538095 DOI: 10.1021/acs.jproteome.0c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins, and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomic and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web, and the presence of fatty acids in the web may be a responsible mechanism opening the way to the web toxins for accessing the interior of prey's body, as shown here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups, Araneomorphae and Mygalomorphae, and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems and also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.
Collapse
Affiliation(s)
- Franciele Grego Esteves
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Milene Ferro
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Lucaciu Calin Rares
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Nussbaumer
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Mauricio Bacci Júnior
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Gert Lubec
- Paracelsus Medical University, A 5020 Salzburg, Austria
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
27
|
Dunbar JP, Fort A, Redureau D, Sulpice R, Dugon MM, Quinton L. Venomics Approach Reveals a High Proportion of Lactrodectus-Like Toxins in the Venom of the Noble False Widow Spider Steatoda nobilis. Toxins (Basel) 2020; 12:E402. [PMID: 32570718 PMCID: PMC7354476 DOI: 10.3390/toxins12060402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
The noble false widow spider Steatoda nobilis originates from the Macaronesian archipelago and has expanded its range globally. Outside of its natural range, it may have a negative impact on native wildlife, and in temperate regions it lives in synanthropic environments where it frequently encounters humans, subsequently leading to envenomations. S. nobilis is the only medically significant spider in Ireland and the UK, and envenomations have resulted in local and systemic neurotoxic symptoms similar to true black widows (genus Latrodectus). S. nobilis is a sister group to Latrodectus which possesses the highly potent neurotoxins called α-latrotoxins that can induce neuromuscular paralysis and is responsible for human fatalities. However, and despite this close relationship, the venom composition of S. nobilis has never been investigated. In this context, a combination of transcriptomic and proteomic cutting-edge approaches has been used to deeply characterise S. nobilis venom. Mining of transcriptome data for the peptides identified by proteomics revealed 240 annotated sequences, of which 118 are related to toxins, 37 as enzymes, 43 as proteins involved in various biological functions, and 42 proteins without any identified function to date. Among the toxins, the most represented in numbers are α-latrotoxins (61), δ-latroinsectotoxins (44) and latrodectins (6), all of which were first characterised from black widow venoms. Transcriptomics alone provided a similar representation to proteomics, thus demonstrating that our approach is highly sensitive and accurate. More precisely, a relative quantification approach revealed that latrodectins are the most concentrated toxin (28%), followed by α-latrotoxins (11%), δ-latroinsectotoxins (11%) and α-latrocrustotoxins (11%). Approximately two-thirds of the venom is composed of Latrodectus-like toxins. Such toxins are highly potent towards the nervous system of vertebrates and likely responsible for the array of symptoms occurring after envenomation by black widows and false widows. Thus, caution should be taken in dismissing S. nobilis as harmless. This work paves the way towards a better understanding of the competitiveness of S. nobilis and its potential medical importance.
Collapse
Affiliation(s)
- John P. Dunbar
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (J.P.D.); (M.M.D.)
| | - Antoine Fort
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.F.); (R.S.)
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, 4000 Liège, Belgium;
| | - Ronan Sulpice
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.F.); (R.S.)
| | - Michel M. Dugon
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (J.P.D.); (M.M.D.)
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
28
|
Riddle M, Carstairs S. Successful treatment of brown widow spider envenomation with Latrodectus mactans antivenom. Clin Toxicol (Phila) 2020; 58:301-302. [PMID: 31526135 DOI: 10.1080/15563650.2019.1647343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
29
|
Di Paola G, Cirronis M, Scaravaggi G, Castorani L, Petrolini VM, Locatelli CA. Latrodectism in Italy: First report of successful treatment of L. tredecimguttatus envenomation using L. mactans antivenom from North America. Toxicon 2020; 179:107-110. [PMID: 32179049 DOI: 10.1016/j.toxicon.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Latrodectism is a rare, but potentially severe, clinical syndrome caused by spider of the genus Latrodectus. L. tredecimguttatus is widespread in Italy and its bite cause the injection of α-latrotoxin that cause depletion of acetylcholine at motor nerve endings and release of catecholamines at adrenergic nerve endings. We describe the first clinical case of L. tredecimguttatus poisoning successfully treated with L. mactans antivenom from North America. CASE REPORT A healthy 60-year-old patient was admitted to the emergency department after unknown insect sting or arachnid/snake bite. In the early morning, the patient was working in the countryside when he felt a sting-like pain in the medial area of the right lower leg, associated with an intense burning sensation. An hour later he developed agitation, hoarseness, sweating, abdominal distress and intense pain in his right leg. In the emergency room vital signs showed a hypertensive crisis, tachycardia and peripheral oxygen desaturation. ECG was normal and ABE showed mixed acid-base disorder. Blood tests showed leukocytosis with neutrophilia, high levels of myoglobin, with normal coagulation and normal plasmatic cholinesterase. Neck, thorax and abdomen CT scan, with and without contrast medium, was negative. Four hours after admission hypertension worsened with board like rigid abdomen and onset of fasciculations, tremors, miosis and intense regional sweating. The definitive diagnosis of poisoning by L tredecimguttatus was based on the clinical picture. Within short time the antidote was provided by the Poison Centre and administered. A marked improvement of the symptomatology was noted after 30 minutes, and 1 hour later all symptoms were under control. The patient was discharged after 2 days. CONCLUSIONS The clinical presentation of a patient suffering from latrodectism places the clinician in front of a challenging differential diagnosis. Following the suspicion, the first-line doctor is invited to discuss the case with a toxicologist, in order to confirm or exclude the diagnosis and implement all therapeutic measures. In our clinical case, the absence of organic lesions, laboratory tests not suggestive for other causes, and the presence of typical clinical feature suggested the diagnosis of L tredecimguttatus poisoning. This hypothesis was then supported by the close temporal relation between antivenom administration and symptoms improvement. With this case, we report the first use of L mactans antivenom from North America to treat L.tredecimguttatus poisoning and we confirm its effectiveness in counteracting latrodectism caused by this spider.
Collapse
Affiliation(s)
| | - Marco Cirronis
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy.
| | - Giulia Scaravaggi
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy
| | | | - Valeria M Petrolini
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy
| | - Carlo A Locatelli
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy
| |
Collapse
|
30
|
Porras-Villamil JF, Olivera MJ, Hinestroza-Ruiz ÁC, López-Moreno GA. Envenomation by an arachnid (Latrodectus or Steatoda): Case report involving a woman and her female dog. CASE REPORTS 2020. [DOI: 10.15446/cr.v6n1.79718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Accidents involving spiders bites usually cause mild medical reactions that lead to local symptoms and, less commonly, systemic effects. The most medically significant spiders belong to the genera Latrodectus and Loxosceles. This paper presents a posible case of steatodism in a young woman and her pet.Case description: 26-year-old female patient, who reports a clinical history characterized by paresthesia, malaise, fever, diarrea and a painful papule in the left cheek after being bitten by a spider. Immediately after being bit, the patient hit the spider with the back of her hand and it fell to the ground, where her dog swallowed it. The dog presented with vomiting and general discomfort after ingestion. Symptomatic therapy was given for comfort, and neither the patient nor the dog required antivenin therapy. Both evolved favorably.Discussion: The relevance of this case is the involvement of two mammals (a human and her dog) due to the accidental contact with a spider, possibly of the genus Latrodectus or Steatoda.Conclusion: Two possible cases of steatodism are described. Since spider bites are a relatively frequent reason for medical consultation in Colombia, it is important to diagnose and manage them properly.
Collapse
|
31
|
Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol Biol Evol 2019; 36:2748-2763. [PMID: 31396628 PMCID: PMC6878950 DOI: 10.1093/molbev/msz181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bjoern M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Animal Venomics, Giessen, Germany
| | - Lahcen I Campbell
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, Hinxton, United Kingdom
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Ecology and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Valenzuela-Rojas JC, González-Gómez JC, van der Meijden A, Cortés JN, Guevara G, Franco LM, Pekár S, García LF. Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae). Toxins (Basel) 2019; 11:E622. [PMID: 31717836 PMCID: PMC6891708 DOI: 10.3390/toxins11110622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Spiders rely on venom to catch prey and few species are even capable of capturing vertebrates. The majority of spiders are generalist predators, possessing complex venom, in which different toxins seem to target different types of prey. In this study, we focused on the trophic ecology and venom toxicity of Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, a Central American spider of medical importance. We tested the hypothesis that its venom is adapted to catch vertebrate prey by studying its trophic ecology and venom toxicity against selected vertebrate and invertebrate prey. We compared both trophic ecology (based on acceptance experiments) and toxicity (based on bioassays) among sexes of this species. We found that P. boliviensis accepted geckos, spiders, and cockroaches as prey, but rejected frogs. There was no difference in acceptance between males and females. The venom of P. boliviensis was far more efficient against vertebrate (geckos) than invertebrate (spiders) prey in both immobilization time and LD50. Surprisingly, venom of males was more efficient than that of females. Our results suggest that P. boliviensis has adapted its venom to catch vertebrates, which may explain its toxicity to humans.
Collapse
Affiliation(s)
- Juan Carlos Valenzuela-Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - Juan Nicolás Cortés
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Giovany Guevara
- Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia;
| | - Lida Marcela Franco
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Luis Fernando García
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- Grupo Multidisciplinario en Ecología para la Agricultura, Centro Universitario Regional del Este, Treinta y Tres 33000, Uruguay
| |
Collapse
|
33
|
Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel) 2019; 11:toxins11100611. [PMID: 31652611 PMCID: PMC6832493 DOI: 10.3390/toxins11100611] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.
Collapse
|
34
|
de Souza CL, Dos Santos-Pinto JRA, Esteves FG, Perez-Riverol A, Fernandes LGR, de Lima Zollner R, Palma MS. Revisiting Polybia paulista wasp venom using shotgun proteomics - Insights into the N-linked glycosylated venom proteins. J Proteomics 2019; 200:60-73. [PMID: 30905720 DOI: 10.1016/j.jprot.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The partial proteome of Polybia paulista wasp venom was previously reported elsewhere using a gel-dependent approach and resulted in the identification of a limited number of venom toxins. Here, we reinvestigated the P. paulista venom using a gel-free shotgun proteomic approach; the highly dynamic range of this approach facilitated the detection and identification of 1673 proteins, of which 23 venom proteins presented N-linked glycosylation as a posttranslational modification. Three different molecular forms of PLA1 were identified as allergenic proteins, and two of these forms were modified by N-linked glycosylation. This study reveals an extensive repertoire of hitherto undescribed proteins that were classified into the following six different functional groups: (i) typical venom proteins; (ii) proteins related to the folding/conformation and PTMs of toxins; (iii) proteins that protect toxins from oxidative stress; (iv) proteins involved in chemical communication; (v) housekeeping proteins; and (vi) uncharacterized proteins. It was possible to identify venom toxin-like proteins that are commonly reported in other animal venoms, including arthropods such as spiders and scorpions. Thus, the findings reported here may contribute to improving our understanding of the composition of P. paulista venom, its envenoming mechanism and the pathologies experienced by the victim after the wasp stinging accident. BIOLOGICAL SIGNIFICANCE: The present study significantly expanded the number of proteins identified in P. paulista venom, contributing to improvements in our understanding of the envenoming mechanism produced by sting accidents caused by this wasp. For example, novel wasp venom neurotoxins have been identified, but no studies have assessed the presence of this type of toxin in social wasp venoms. In addition, 23 N-linked glycosylated venom proteins were identified in the P. paulista venom proteome, and some of these proteins might be relevant allergens that are immunoreactive to human IgE.
Collapse
Affiliation(s)
- Caroline Lacerra de Souza
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| | - Franciele Grego Esteves
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| |
Collapse
|
35
|
Krämer J, Pohl H, Predel R. Venom collection and analysis in the pseudoscorpion Chelifer cancroides (Pseudoscorpiones: Cheliferidae). Toxicon 2019; 162:15-23. [PMID: 30796931 DOI: 10.1016/j.toxicon.2019.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
Pseudoscorpions are very small arthropods with almost worldwide distribution. They possess a unique venom delivery system in the chelal hands of their pedipalps that has evolved independently from that of scorpions and spiders. Studies on the venom composition of pseudoscorpions are very rare. Recently, the potential venom composition of the pseudoscorpion Synsphyronus apimelus Harvey, 1987 (Pseudoscorpiones: Garypidae) has been studied by transcriptome analysis. However, a proteome analysis of venom to identify the genuine venom compounds of pseudoscorpions has not yet been performed. In our study, we have developed a non-invasive approach for extracting minute amounts of venom, which for the first time allowed collecting pure venom samples of pseudoscorpions with minimal contaminations and high reproducibility. These experiments first required a morphological investigation of the venom delivery system with a focus on the role of the lamina defensor in the release of venom. Likely, the venom delivery system of pseudoscorpions has a mechanism that prevents the release of venom if the prey is not successfully penetrated by a venom tooth. Electrical stimulation of a gland-containing chelal hand in combination with a mechanical stimulation of the lamina defensor at the base of the venom tooth resulted in an average of 5 nl of collected venom. The utility of the method was then validated by repeated venom extractions and subsequent analysis of the venom composition using MALDI-TOF mass fingerprinting. Subsequent proteomics analysis in combination with transcriptome analyses of chelal hand tissue has identified the first genuine venom compounds of pseudoscorpions with putative antimicrobial peptides. For our experiments, we used the house pseudoscorpion Chelifer cancroides (Linnaeus, 1758) (Pseudoscorpiones: Cheliferidae).
Collapse
Affiliation(s)
- Jonas Krämer
- Institute for Zoology, University of Cologne, D-50674, Cologne, Germany.
| | - Hans Pohl
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743, Jena, Germany
| | - Reinhard Predel
- Institute for Zoology, University of Cologne, D-50674, Cologne, Germany.
| |
Collapse
|
36
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
38
|
Santibáñez-López CE, Kriebel R, Ballesteros JA, Rush N, Witter Z, Williams J, Janies DA, Sharma PP. Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions. PeerJ 2018; 6:e5902. [PMID: 30479892 PMCID: PMC6240337 DOI: 10.7717/peerj.5902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Scorpions have evolved a variety of toxins with a plethora of biological targets, but characterizing their evolution has been limited by the lack of a comprehensive phylogenetic hypothesis of scorpion relationships grounded in modern, genome-scale datasets. Disagreements over scorpion higher-level systematics have also incurred challenges to previous interpretations of venom families as ancestral or derived. To redress these gaps, we assessed the phylogenomic relationships of scorpions using the most comprehensive taxonomic sampling to date. We surveyed genomic resources for the incidence of calcins (a type of calcium channel toxin), which were previously known only from 16 scorpion species. Here, we show that calcins are diverse, but phylogenetically restricted only to parvorder Iurida, one of the two basal branches of scorpions. The other branch of scorpions, Buthida, bear the related LKTx toxins (absent in Iurida), but lack calcins entirely. Analysis of sequences and molecular models demonstrates remarkable phylogenetic inertia within both calcins and LKTx genes. These results provide the first synapomorphies (shared derived traits) for the recently redefined clades Buthida and Iurida, constituting the only known case of such traits defined from the morphology of molecules.
Collapse
Affiliation(s)
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Jesús A. Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Rush
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Zachary Witter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - John Williams
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Clinical consequences of toxic envenomation by spiders. Toxicon 2018; 152:65-70. [DOI: 10.1016/j.toxicon.2018.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/17/2018] [Accepted: 07/22/2018] [Indexed: 01/17/2023]
|
40
|
Fischer A, Lee Y, Stewart J, Gries G. Dodging sexual conflict?-Sub-adult females of a web-building spider stay cryptic to mate-seeking adult males. Ethology 2018. [DOI: 10.1111/eth.12807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia Canada
| | - Yerin Lee
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia Canada
- Department of Life Sciences; University of Toronto; Toronto Ontario Canada
| | - Jordan Stewart
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia Canada
| | - Gerhard Gries
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia Canada
| |
Collapse
|
41
|
Macrander J, Panda J, Janies D, Daly M, Reitzel AM. Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data. PeerJ 2018; 6:e5361. [PMID: 30083468 PMCID: PMC6074769 DOI: 10.7717/peerj.5361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
The advent of next-generation sequencing has resulted in transcriptome-based approaches to investigate functionally significant biological components in a variety of non-model organism. This has resulted in the area of “venomics”: a rapidly growing field using combined transcriptomic and proteomic datasets to characterize toxin diversity in a variety of venomous taxa. Ultimately, the transcriptomic portion of these analyses follows very similar pathways after transcriptome assembly often including candidate toxin identification using BLAST, expression level screening, protein sequence alignment, gene tree reconstruction, and characterization of potential toxin function. Here we describe the Python package Venomix, which streamlines these processes using common bioinformatic tools along with ToxProt, a publicly available annotated database comprised of characterized venom proteins. In this study, we use the Venomix pipeline to characterize candidate venom diversity in four phylogenetically distinct organisms, a cone snail (Conidae; Conus sponsalis), a snake (Viperidae; Echis coloratus), an ant (Formicidae; Tetramorium bicarinatum), and a scorpion (Scorpionidae; Urodacus yaschenkoi). Data on these organisms were sampled from public databases, with each original analysis using different approaches for transcriptome assembly, toxin identification, or gene expression quantification. Venomix recovered numerically more candidate toxin transcripts for three of the four transcriptomes than the original analyses and identified new toxin candidates. In summary, we show that the Venomix package is a useful tool to identify and characterize the diversity of toxin-like transcripts derived from transcriptomic datasets. Venomix is available at: https://bitbucket.org/JasonMacrander/Venomix/.
Collapse
Affiliation(s)
- Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America.,Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, United States of America
| | - Jyothirmayi Panda
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Daniel Janies
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States of America.,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, United States of America
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| |
Collapse
|
42
|
|
43
|
Koludarov I, Jackson TN, Brouw BOD, Dobson J, Dashevsky D, Arbuckle K, Clemente CJ, Stockdale EJ, Cochran C, Debono J, Stephens C, Panagides N, Li B, Manchadi MLR, Violette A, Fourmy R, Hendrikx I, Nouwens A, Clements J, Martelli P, Kwok HF, Fry BG. Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins (Basel) 2017; 9:E242. [PMID: 28783084 PMCID: PMC5577576 DOI: 10.3390/toxins9080242] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.
Collapse
Affiliation(s)
- Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Timothy Nw Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
- Australian Venom Research Unit, School of Biomedical Sciences, Level 2 Medical Building, University of Melbourne, Victoria 3010, Australia.
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Christofer J Clemente
- University of the Sunshine Coast, School of Science and Engineering, Sippy Downs, Queensland 4558, Australia.
| | | | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Carson Stephens
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | | | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queenslnd, St. Lucia QLD 4072, Australia.
| | - Judith Clements
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | | | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
44
|
Madio B, Undheim EAB, King GF. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. J Proteomics 2017; 166:83-92. [PMID: 28739511 DOI: 10.1016/j.jprot.2017.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022]
Abstract
More than a century of research on sea anemone venoms has shown that they contain a diversity of biologically active proteins and peptides. However, recent omics studies have revealed that much of the venom proteome remains unexplored. We used, for the first time, a combination of proteomic and transcriptomic techniques to obtain a holistic overview of the venom arsenal of the well-studied sea anemone Stichodactyla haddoni. A purely search-based approach to identify putative toxins in a transcriptome from tentacles regenerating after venom extraction identified 508 unique toxin-like transcripts grouped into 63 families. However, proteomic analysis of venom revealed that 52 of these toxin families are likely false positives. In contrast, the combination of transcriptomic and proteomic data enabled positive identification of 23 families of putative toxins, 12 of which have no homology known proteins or peptides. Our data highlight the importance of using proteomics of milked venom to correctly identify venom proteins/peptides, both known and novel, while minimizing false positive identifications from non-toxin homologues identified in transcriptomes of venom-producing tissues. This work lays the foundation for uncovering the role of individual toxins in sea anemone venom and how they contribute to the envenomation of prey, predators, and competitors. BIOLOGICAL SIGNIFICANCE Proteomic analysis of milked venom combined with analysis of a tentacle transcriptome revealed the full extent of the venom arsenal of the sea anemone Stichodactyla haddoni. This combined approach led to the discovery of 12 entirely new families of disulfide-rich peptides and proteins in a genus of anemones that have been studied for over a century.
Collapse
Affiliation(s)
- Bruno Madio
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
45
|
Correa-Garhwal SM, Chaw RC, Clarke TH, Ayoub NA, Hayashi CY. Silk gene expression of theridiid spiders: implications for male-specific silk use. ZOOLOGY 2017; 122:107-114. [PMID: 28536006 DOI: 10.1016/j.zool.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
Abstract
Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids.
Collapse
Affiliation(s)
| | - R Crystal Chaw
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Thomas H Clarke
- Department of Biology, University of California, Riverside, CA 92521, USA; Department of Biology, Washington and Lee University, Lexington, VA 24450, USA; J. Craig Venter Institute, Rockville, MD 20850, USA.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA 24450, USA.
| | - Cheryl Y Hayashi
- Department of Biology, University of California, Riverside, CA 92521, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
46
|
Richter S, Helm C, Meunier FA, Hering L, Campbell LI, Drukewitz SH, Undheim EAB, Jenner RA, Schiavo G, Bleidorn C. Comparative analyses of glycerotoxin expression unveil a novel structural organization of the bloodworm venom system. BMC Evol Biol 2017; 17:64. [PMID: 28259138 PMCID: PMC5336659 DOI: 10.1186/s12862-017-0904-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We present the first molecular characterization of glycerotoxin (GLTx), a potent neurotoxin found in the venom of the bloodworm Glycera tridactyla (Glyceridae, Annelida). Within the animal kingdom, GLTx shows a unique mode of action as it can specifically up-regulate the activity of Cav2.2 channels (N-type) in a reversible manner. The lack of sequence information has so far hampered a detailed understanding of its mode of action. RESULTS Our analyses reveal three ~3.8 kb GLTx full-length transcripts, show that GLTx represents a multigene family, and suggest it functions as a dimer. An integrative approach using transcriptomics, quantitative real-time PCR, in situ hybridization, and immunocytochemistry shows that GLTx is highly expressed exclusively in four pharyngeal lobes, a previously unrecognized part of the venom apparatus. CONCLUSIONS Our results overturn a century old textbook view on the glycerid venom system, suggesting that it is anatomically and functionally much more complex than previously thought. The herein presented GLTx sequence information constitutes an important step towards the establishment of GLTx as a versatile tool to understand the mechanism of synaptic function, as well as the mode of action of this novel neurotoxin.
Collapse
Affiliation(s)
- Sandy Richter
- Institute of Biology - Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD UK
| | - Conrad Helm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Frederic A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, 4072 QLD Australia
| | - Lars Hering
- Institute of Biology - Department of Zoology, University of Kassel, Heinrich-Plett-Straße 40, D-34132 Kassel, Germany
| | - Lahcen I. Campbell
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD UK
- The European Bioinformatics Institute (EMBL-EBI) - Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Stephan H. Drukewitz
- Institute of Biology - Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, 4072 QLD Australia
| | - Ronald A. Jenner
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Christoph Bleidorn
- Institute of Biology - Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Calle José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
47
|
Gendreau KL, Haney RA, Schwager EE, Wierschin T, Stanke M, Richards S, Garb JE. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity. BMC Genomics 2017; 18:178. [PMID: 28209133 PMCID: PMC5314461 DOI: 10.1186/s12864-017-3551-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/02/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. RESULTS We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. CONCLUSIONS The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in house spiders relative to black widows, along with the absence of a vertebrate-targeting α-latrotoxin gene in the house spider genome, may account for the extreme potency of black widow venom.
Collapse
Affiliation(s)
- Kerry L Gendreau
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.,Department of Biological Sciences, Virginia Tech, Biocomplexity Institute, Blacksburg, VA, 24061, USA
| | - Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Torsten Wierschin
- Institut für Mathematik und Informatik, Ernst-Moritz-Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany
| | - Mario Stanke
- Institut für Mathematik und Informatik, Ernst-Moritz-Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
48
|
Porter ML, Roberts NW, Partridge JC. Evolution under pressure and the adaptation of visual pigment compressibility in deep-sea environments. Mol Phylogenet Evol 2016; 105:160-165. [DOI: 10.1016/j.ympev.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
|
49
|
Rueda A, Realpe E, Uribe A. Toxicity evaluation and initial characterization of the venom of a Colombian Latrodectus sp. Toxicon 2016; 125:53-58. [PMID: 27889602 DOI: 10.1016/j.toxicon.2016.11.255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
Abstract
The genus Latrodectus has not been studied in Colombia even though it is medically important worldwide; there are three species for the country, this study focused on a non-identified species found in the Tatacoa Desert in the Huila Department. This research is the first approximation to the extraction, composition analysis and toxicity evaluation of the venom of a species of the genus Latrodectus in Colombia; and aims to evaluate the toxicity by the initial characterization of its venom. The venom extraction was accomplished with electrostimulation and total protein concentration was determined by the Lowry method and BCA assays from crude venom; with these methods, high protein concentration of the samples was measured. Bioassays on mice were also made to evaluate the toxicity and compare the symptoms produced by this Colombian spider to the Latrodectism Syndrome. Finally, an SDS-PAGE electrophoresis was used to separate the main components of high molecular weight from the samples and compared to a control of the venom of Latrodectus mactans to determine if the venom composition is different between these two species.
Collapse
Affiliation(s)
- Alexandra Rueda
- Biological Sciences Department, Laboratory of Zoology and Aquatic Ecology LAZOEA, Universidad de los Andes, Bogotá, Colombia.
| | - Emilio Realpe
- Biological Sciences Department, Laboratory of Zoology and Aquatic Ecology LAZOEA, Universidad de los Andes, Bogotá, Colombia.
| | - Alfredo Uribe
- Biological Sciences Department, Biochemical Investigation Center CIBI, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
50
|
Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 2016; 7:13155. [PMID: 27727237 PMCID: PMC5062602 DOI: 10.1038/ncomms13155] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/08/2016] [Indexed: 01/13/2023] Open
Abstract
Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. Viruses commonly exchange genetic material with their hosts, but not with species from other domains of life. Here, the authors find that the bacteriophage WO of Wolbachia contains eukaryotic-like genes, implicating lateral genetic transfer between eukaryotes and viruses infecting bacteria.
Collapse
|