1
|
Baglivo I, Malgieri G, Roop RM, Barton IS, Wang X, Russo V, Pirone L, Pedone EM, Pedone PV. MucR protein: Three decades of studies have led to the identification of a new H-NS-like protein. Mol Microbiol 2025; 123:154-167. [PMID: 38619026 PMCID: PMC11473720 DOI: 10.1111/mmi.15261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Roy Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S. Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Paolo V. Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
2
|
Slapakova M, Sgambati D, Pirone L, Russo V, D’Abrosca G, Valletta M, Russo R, Chambery A, Malgieri G, Pedone EM, Dame RT, Pedone PV, Baglivo I. MucR from Sinorhizobium meliloti: New Insights into Its DNA Targets and Its Ability to Oligomerize. Int J Mol Sci 2023; 24:14702. [PMID: 37834166 PMCID: PMC10572780 DOI: 10.3390/ijms241914702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Proteins of the MucR/Ros family play a crucial role in bacterial infection or symbiosis with eukaryotic hosts. MucR from Sinorhizobium meliloti plays a regulatory role in establishing symbiosis with the host plant, both dependent and independent of Quorum Sensing. Here, we report the first characterization of MucR isolated from Sinorhizobium meliloti by mass spectrometry and demonstrate that this protein forms higher-order oligomers in its native condition of expression by SEC-MALS. We show that MucR purified from Sinorhizobium meliloti can bind DNA and recognize the region upstream of the ndvA gene in EMSA, revealing that this gene is a direct target of MucR. Although MucR DNA binding activity was already described, a detailed characterization of Sinorhizobium meliloti DNA targets has never been reported. We, thus, analyze sequences recognized by MucR in the rem gene promoter, showing that this protein recognizes AT-rich sequences and does not require a consensus sequence to bind DNA. Furthermore, we investigate the dependence of MucR DNA binding on the length of DNA targets. Taken together, our studies establish MucR from Sinorhizobium meliloti as a member of a new family of Histone-like Nucleoid Structuring (H-NS) proteins, thus explaining the multifaceted role of this protein in many species of alpha-proteobacteria.
Collapse
Affiliation(s)
- Martina Slapakova
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Domenico Sgambati
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino, 80134 Naples, Italy; (L.P.); (E.M.P.)
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy;
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino, 80134 Naples, Italy; (L.P.); (E.M.P.)
| | - Remus Thei Dame
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Centre for Microbial Cell Biology, Leiden University, 2333 CC Leiden, The Netherlands
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| |
Collapse
|
3
|
Deng Z, Yang Z, Liu X, Dai X, Zhang J, Deng K. Genome-Wide Identification and Expression Analysis of C3H Zinc Finger Family in Potato ( Solanum tuberosum L.). Int J Mol Sci 2023; 24:12888. [PMID: 37629069 PMCID: PMC10454627 DOI: 10.3390/ijms241612888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Transcription factors containing a CCCH structure (C3H) play important roles in plant growth and development, and their stress response, but research on the C3H gene family in potato has not been reported yet. In this study, we used bioinformatics to identify 50 C3H genes in potato and named them StC3H-1 to StC3H-50 according to their location on chromosomes, and we analyzed their physical and chemical properties, chromosome location, phylogenetic relationship, gene structure, collinearity relationship, and cis-regulatory element. The gene expression pattern analysis showed that many StC3H genes are involved in potato growth and development, and their response to diverse environmental stresses. Furthermore, RT-qPCR data showed that the expression of many StC3H genes was induced by high temperatures, indicating that StC3H genes may play important roles in potato response to heat stress. In addition, Some StC3H genes were predominantly expressed in the stolon and developing tubers, suggesting that these StC3H genes may be involved in the regulation of tuber development. Together, these results provide new information on StC3H genes and will be helpful for further revealing the function of StC3H genes in the heat stress response and tuber development in potato.
Collapse
Affiliation(s)
- Zeyi Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Zhijiang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xinyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
4
|
The Ros/MucR Zinc-Finger Protein Family in Bacteria: Structure and Functions. Int J Mol Sci 2022; 23:ijms232415536. [PMID: 36555178 PMCID: PMC9779718 DOI: 10.3390/ijms232415536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Ros/MucR is a widespread family of bacterial zinc-finger-containing proteins that integrate multiple functions, such as symbiosis, virulence, transcription regulation, motility, production of surface components, and various other physiological processes in cells. This regulatory protein family is conserved in bacteria and is characterized by its zinc-finger motif, which has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure has evolved. The first prokaryotic zinc-finger domain found in the transcription regulator Ros was identified in Agrobacterium tumefaciens. In the past decades, a large body of evidence revealed Ros/MucR as pleiotropic transcriptional regulators that mainly act as repressors through oligomerization and binding to AT-rich target promoters. The N-terminal domain and the zinc-finger-bearing C-terminal region of these regulatory proteins are engaged in oligomerization and DNA binding, respectively. These properties of the Ros/MucR proteins are similar to those of xenogeneic silencers, such as H-NS, MvaT, and Lsr2, which are mainly found in other lineages. In fact, a novel functional model recently proposed for this protein family suggests that they act as H-NS-'like' gene silencers. The prokaryotic zinc-finger domain exhibits interesting structural and functional features that are different from that of its eukaryotic counterpart (a βββα topology), as it folds in a significantly larger zinc-binding globular domain (a βββαα topology). Phylogenetic analysis of Ros/MucR homologs suggests an ancestral origin of this type of protein in α-Proteobacteria. Furthermore, multiple duplications and lateral gene transfer events contributing to the diversity and phyletic distribution of these regulatory proteins were found in bacterial genomes.
Collapse
|
5
|
Shi WT, Zhang B, Li ML, Liu KH, Jiao J, Tian CF. The convergent xenogeneic silencer MucR predisposes α-proteobacteria to integrate AT-rich symbiosis genes. Nucleic Acids Res 2022; 50:8580-8598. [PMID: 36007892 PMCID: PMC9410896 DOI: 10.1093/nar/gkac664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial adaptation is largely shaped by horizontal gene transfer, xenogeneic silencing mediated by lineage-specific DNA bridgers (H-NS, Lsr2, MvaT and Rok), and various anti-silencing mechanisms. No xenogeneic silencing DNA bridger is known for α-proteobacteria, from which mitochondria evolved. By investigating α-proteobacterium Sinorhizobium fredii, a facultative legume microsymbiont, here we report the conserved zinc-finger bearing MucR as a novel xenogeneic silencing DNA bridger. Self-association mediated by its N-terminal domain (NTD) is required for DNA–MucR–DNA bridging complex formation, maximizing MucR stability, transcriptional silencing, and efficient symbiosis in legume nodules. Essential roles of NTD, CTD (C-terminal DNA-binding domain), or full-length MucR in symbiosis can be replaced by non-homologous NTD, CTD, or full-length protein of H-NS from γ-proteobacterium Escherichia coli, while NTD rather than CTD of Lsr2 from Gram-positive Mycobacterium tuberculosis can replace the corresponding domain of MucR in symbiosis. Chromatin immunoprecipitation sequencing reveals similar recruitment profiles of H-NS, MucR and various functional chimeric xenogeneic silencers across the multipartite genome of S. fredii, i.e. preferring AT-rich genomic islands and symbiosis plasmid with key symbiosis genes as shared targets. Collectively, the convergently evolved DNA bridger MucR predisposed α-proteobacteria to integrate AT-rich foreign DNA including symbiosis genes, horizontal transfer of which is strongly selected in nature.
Collapse
Affiliation(s)
- Wen-Tao Shi
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Meng-Lin Li
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Ke-Han Liu
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| |
Collapse
|
6
|
Esposito S, D’Abrosca G, Antolak A, Pedone PV, Isernia C, Malgieri G. Host and Viral Zinc-Finger Proteins in COVID-19. Int J Mol Sci 2022; 23:ijms23073711. [PMID: 35409070 PMCID: PMC8998646 DOI: 10.3390/ijms23073711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.
Collapse
|
7
|
Grazioso R, García-Viñuales S, D'Abrosca G, Baglivo I, Pedone PV, Milardi D, Fattorusso R, Isernia C, Russo L, Malgieri G. The change of conditions does not affect Ros87 downhill folding mechanism. Sci Rep 2020; 10:21067. [PMID: 33273582 PMCID: PMC7713307 DOI: 10.1038/s41598-020-78008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.
Collapse
Affiliation(s)
- Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | | | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography-CNR, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
8
|
Jiao J, Tian CF. Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer? Comput Struct Biotechnol J 2020; 18:3623-3631. [PMID: 33304460 PMCID: PMC7710501 DOI: 10.1016/j.csbj.2020.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.
Collapse
Affiliation(s)
- Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. Int J Mol Sci 2020; 21:ijms21218285. [PMID: 33167398 PMCID: PMC7663847 DOI: 10.3390/ijms21218285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger βββαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.
Collapse
|
10
|
Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family. Sci Rep 2020; 10:9283. [PMID: 32518326 PMCID: PMC7283297 DOI: 10.1038/s41598-020-66204-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/15/2020] [Indexed: 11/30/2022] Open
Abstract
Ros/MucR is a widespread family of bacterial zinc-finger (ZF) containing proteins that integrate multiple functions such as virulence, symbiosis and/or cell cycle transcription. NMR solution structure of Ros DNA-binding domain (region 56–142, i.e. Ros87) has been solved by our group and shows that the prokaryotic ZF domain shows interesting structural and functional features that differentiate it from its eukaryotic counterpart as it folds in a significantly larger zinc-binding globular domain. We have recently proposed a novel functional model for this family of proteins suggesting that they may act as H-NS-‘like’ gene silencers. Indeed, the N-terminal region of this family of proteins appears to be responsible for the formation of functional oligomers. No structural characterization of the Ros N-terminal domain (region 1–55) is available to date, mainly because of serious solubility problems of the full-length protein. Here we report the first structural characterization of the N-terminal domain of the prokaryotic ZF family examining by means of MD and NMR the structural preferences of the full-length Ros protein from Agrobacterium tumefaciens.
Collapse
|
11
|
Conformational Dynamics from Ambiguous Zinc Coordination in the RanBP2-Type Zinc Finger of RBM5. J Mol Biol 2020; 432:4127-4138. [PMID: 32450081 DOI: 10.1016/j.jmb.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The multi-domain RNA binding protein RBM5 is a molecular signature of metastasis. RBM5 regulates alternative splicing of apoptotic genes including the cell death receptor Fas and the initiator Caspase-2. The RBM5 RanBP2-type zinc finger (Zf1) is known to specifically recognize single-stranded RNAs with high affinity. Here, we study the structure and conformational dynamics of the Zf1 zinc finger of human RBM5 using NMR. We show that the presence of a non-canonical cysteine in Zf1 kinetically destabilizes the protein. Metal-exchange kinetics show that mutation of the cysteine establishes high-affinity coordination of the zinc. Our data indicate that selection of such a structurally destabilizing mutation during the course of evolution could present an opportunity for functional adaptation of the protein.
Collapse
|
12
|
Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation. Sci Rep 2018; 8:17238. [PMID: 30467359 PMCID: PMC6250670 DOI: 10.1038/s41598-018-35432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
MucR is a member of the Ros/MucR family of prokaryotic zinc-finger proteins found in the α-proteobacteria which regulate the expression of genes required for the successful pathogenic and symbiotic interactions of these bacteria with the eukaryotic hosts. The structure and function of their distinctive zinc-finger domain has been well-studied, but only recently the quaternary structure of the full length proteins was investigated demonstrating their ability to form higher-order oligomers. The aim of this study was to identify the region of MucR involved in higher-order oligomer formation by analysing deletion and point mutants of this protein by Light Scattering, and to determine the role that MucR oligomerization plays in the regulatory function of this protein. Here we demonstrate that a conserved hydrophobic region at the N-terminus of MucR is responsible for higher-order oligomer formation and that MucR oligomerization is essential for its regulatory function in Brucella. All these features of MucR are shared by the histone-like nucleoid structuring protein, (H-NS), leading us to propose that the prokaryotic zinc-finger proteins in the MucR/Ros family control gene expression employing a mechanism similar to that used by the H-NS proteins, rather than working as classical transcriptional regulators.
Collapse
|
13
|
Baglivo I, Pirone L, Malgieri G, Fattorusso R, Roop II RM, Pedone EM, Pedone PV. MucR binds multiple target sites in the promoter of its own gene and is a heat-stable protein: Is MucR a H-NS-like protein? FEBS Open Bio 2018; 8:711-718. [PMID: 29632823 PMCID: PMC5881533 DOI: 10.1002/2211-5463.12411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/17/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
The protein MucR from Brucella spp. is involved in the expression regulation of genes necessary for host interaction and infection. MucR is a member of the Ros/MucR family, which comprises prokaryotic zinc-finger proteins and includes Ros from Agrobacterium tumefaciens and the Ml proteins from Mesorhizobium loti. MucR from Brucella spp. can regulate the expression of virulence genes and repress its own gene expression. Despite the well-known role played by MucR in the repression of its own gene, no target sequence has yet been identified in the mucR promoter gene. In this study, we provide the first evidence that MucR from Brucella abortus binds more than one target site in the promoter region of its own gene, suggesting a molecular mechanism by which this protein represses its own expression. Furthermore, a circular dichroism analysis reveals that MucR is a heat-stable protein. Overall, the results of this study suggest that MucR might resemble a H-NS protein.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania ‘Luigi Vanvitelli’CasertaItaly
| | - Luciano Pirone
- Institute of Biostructures and BioimagingC.N.R.NaplesItaly
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania ‘Luigi Vanvitelli’CasertaItaly
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania ‘Luigi Vanvitelli’CasertaItaly
| | - Roy Martin Roop II
- Department of Microbiology and ImmunologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | | | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania ‘Luigi Vanvitelli’CasertaItaly
| |
Collapse
|
14
|
Malgieri G, D'Abrosca G, Pirone L, Toto A, Palmieri M, Russo L, Sciacca MFM, Tatè R, Sivo V, Baglivo I, Majewska R, Coletta M, Pedone PV, Isernia C, De Stefano M, Gianni S, Pedone EM, Milardi D, Fattorusso R. Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chem Sci 2018; 9:3290-3298. [PMID: 29780459 PMCID: PMC5933289 DOI: 10.1039/c8sc00166a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular determinants of fibrillogenesis by studying the aggregation propensities of high homologous proteins with different folding pathways.
Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153–149 and zinc-lacking Ml452–151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153–149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452–151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452–151 and Ml153–149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153–149 has formed only amorphous aggregates and Ml452–151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Angelo Toto
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | | | - Rosarita Tatè
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" , CNR , Via P. Castellino 111 , 80131 Napoli , Italy
| | - Valeria Sivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Roksana Majewska
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine , University of Rome "Tor Vergata" , Via Montpellier 1 , 00133 , Roma , Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Mario De Stefano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Stefano Gianni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging , CNR , Viale A. Doria 6 , 95125 Catania , Italy .
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| |
Collapse
|
15
|
Baglivo I, Pirone L, Pedone EM, Pitzer JE, Muscariello L, Marino MM, Malgieri G, Freschi A, Chambery A, Roop Ii RM, Pedone PV. Ml proteins from Mesorhizobium loti and MucR from Brucella abortus: an AT-rich core DNA-target site and oligomerization ability. Sci Rep 2017; 7:15805. [PMID: 29150637 PMCID: PMC5693944 DOI: 10.1038/s41598-017-16127-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 11/09/2022] Open
Abstract
Mesorhizobium loti contains ten genes coding for proteins sharing high amino acid sequence identity with members of the Ros/MucR transcription factor family. Five of these Ros/MucR family members from Mesorhizobium loti (Ml proteins) have been recently structurally and functionally characterized demonstrating that Ml proteins are DNA-binding proteins. However, the DNA-binding studies were performed using the Ros DNA-binding site with the Ml proteins. Currently, there is no evidence as to when the Ml proteins are expressed during the Mesorhizobium lo ti life cycle as well as no information concerning their natural DNA-binding site. In this study, we examine the ml genes expression profile in Mesorhizobium loti and show that ml1, ml2, ml3 and ml5 are expressed during planktonic growth and in biofilms. DNA-binding experiments show that the Ml proteins studied bind a conserved AT-rich site in the promoter region of the exoY gene from Mesorhizobium loti and that the proteins make important contacts with the minor groove of DNA. Moreover, we demonstrate that the Ml proteins studied form higher-order oligomers through their N-terminal region and that the same AT-rich site is recognized by MucR from Brucella abortus using a similar mechanism involving contacts with the minor groove of DNA and oligomerization.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy.
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, C.N.R., Naples, 80134, Italy
| | | | - Joshua Edison Pitzer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lidia Muscariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Maria Michela Marino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Andrea Freschi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Roy-Martin Roop Ii
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy.
| |
Collapse
|
16
|
D'Abrosca G, Russo L, Palmieri M, Baglivo I, Netti F, de Paola I, Zaccaro L, Farina B, Iacovino R, Pedone PV, Isernia C, Fattorusso R, Malgieri G. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. J Inorg Biochem 2016; 161:91-8. [PMID: 27238756 DOI: 10.1016/j.jinorgbio.2016.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.
Collapse
Affiliation(s)
- Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fortuna Netti
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ivan de Paola
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Laura Zaccaro
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Biancamaria Farina
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
17
|
Jiao J, Wu LJ, Zhang B, Hu Y, Li Y, Zhang XX, Guo HJ, Liu LX, Chen WX, Zhang Z, Tian CF. MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:352-61. [PMID: 26883490 DOI: 10.1094/mpmi-01-16-0019-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation.
Collapse
Affiliation(s)
- Jian Jiao
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Juan Wu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Biliang Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Hu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Li
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Xing Xing Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Xue Liu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Ziding Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. FEBS J 2015; 282:4480-96. [PMID: 26365095 DOI: 10.1111/febs.13503] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
19
|
Russo L, Palmieri M, Caso JV, D'Abrosca G, Diana D, Malgieri G, Baglivo I, Isernia C, Pedone PV, Fattorusso R. Towards understanding the molecular recognition process in prokaryotic zinc-finger domain. Eur J Med Chem 2014; 91:100-8. [PMID: 25240418 DOI: 10.1016/j.ejmech.2014.09.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Eukaryotic Cys2His2 zinc finger domain is one of the most common and important structural motifs involved in protein-DNA interaction. The recognition motif is characterized by the tetrahedral coordination of a zinc ion by conserved cysteine and histidine residues. We have characterized the prokaryotic Cys2His2 zinc finger motif, included in the DNA binding region (Ros87) of Ros protein from Agrobacterium tumefaciens, demonstrating that, although possessing a similar zinc coordination sphere, this domain presents significant differences from its eukaryotic counterpart. Furthermore, basic residues flanking the zinc binding region on either side have been demonstrated, by Electrophoretic Mobility Shift Assay (EMSA) experiments, to be essential for Ros DNA binding. In spite of this wealth of knowledge, the structural details of the mechanism through which the prokaryotic zinc fingers recognize their target genes are still unclear. Here, to gain insights into the molecular DNA recognition process of prokaryotic zinc finger domains we applied a strategy in which we performed molecular docking studies using a combination of Nuclear Magnetic Resonance (NMR) and Molecular Dynamics (MD) simulations data. The results demonstrate that the MD ensemble provides a reasonable picture of Ros87 backbone dynamics in solution. The Ros87-DNA model indicates that the interaction involves the first two residue of the first α-helix, and several residues located in the basic regions flanking the zinc finger domain. Interestingly, the prokaryotic zinc finger domain, mainly with the C-terminal tail that is wrapped around the DNA, binds a more extended recognition site than the eukaryotic counterpart. Our analysis demonstrates that the introduction of the protein flexibility in docking studies can improve, in terms of accuracy, the quality of the obtained models and could be particularly useful for protein showing high conformational heterogeneity as well as for computational drug design applications.
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Jolanda Valentina Caso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Donatella Diana
- Institute of Biostructures and Bioimaging -CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
20
|
Malgieri G, Palmieri M, Esposito S, Maione V, Russo L, Baglivo I, de Paola I, Milardi D, Diana D, Zaccaro L, Pedone PV, Fattorusso R, Isernia C. Zinc to cadmium replacement in the prokaryotic zinc-finger domain. Metallomics 2014; 6:96-104. [PMID: 24287553 DOI: 10.1039/c3mt00208j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the similar chemical properties of zinc and cadmium, zinc finger domains have been often proposed as mediators of the toxic and carcinogenic effects exerted by this xenobiotic metal. The effects of zinc replacement by cadmium in different eukaryotic zinc fingers have been reported. In the present work, to evaluate the effects of such substitution in the prokaryotic zinc finger, we report a detailed study of its functional and structural consequences on the Ros DNA binding domain (Ros87). We show that this protein, which bears important structural differences with respect to the eukaryotic domains, appears to structurally tolerate the zinc to cadmium substitution and the presence of cadmium does not affect the DNA binding activity of the protein. Moreover, we show for the first time how zinc to cadmium replacement can also take place in a cellular context. Our findings both complement and extend previous results obtained for different eukaryotic zinc fingers, suggesting that metal substitution in zinc fingers may be of relevance to the toxicity and/or carcinogenicity mechanisms of this metal.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Palmieri M, Russo L, Malgieri G, Esposito S, Baglivo I, Rivellino A, Farina B, de Paola I, Zaccaro L, Milardi D, Isernia C, Pedone PV, Fattorusso R. Deciphering the zinc coordination properties of the prokaryotic zinc finger domain: The solution structure characterization of Ros87 H42A functional mutant. J Inorg Biochem 2014; 131:30-6. [DOI: 10.1016/j.jinorgbio.2013.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/26/2022]
|
22
|
Baglivo I, Palmieri M, Rivellino A, Netti F, Russo L, Esposito S, Iacovino R, Farina B, Isernia C, Fattorusso R, Pedone PV, Malgieri G. Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:497-504. [PMID: 24389235 DOI: 10.1016/j.bbapap.2013.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/18/2022]
Abstract
The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a β-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a βββαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessia Rivellino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fortuna Netti
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Biancamaria Farina
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|