1
|
Tressel LG, Shrestha B, Lee C, Choi IS, Ruhlman TA, Cardoso D, Wojciechowski MF, Jansen RK. Plastid-nuclear coevolution of ribosomal protein genes in papilionoid legumes. Mol Phylogenet Evol 2025; 204:108281. [PMID: 39733867 DOI: 10.1016/j.ympev.2024.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
In plants, cellular function is orchestrated by three distinct genomes located within the nucleus, mitochondrion, and plastid. These genomes are interdependent, requiring tightly coordinated maintenance and expression. Plastids host several multisubunit protein complexes encoded by both the plastid and nuclear genomes. To investigate plastid-nuclear coevolution, this study focused on plastid ribosomal protein genes that are encoded by both plastid and nuclear genomes from 50 taxa across 15 of the 22 early branching major clades of the legume subfamily Papilionoideae. Comparative analysis of substitution rates was conducted across five gene sets: nuclear-encoded plastid-targeted ribosomal protein genes (NuCpRP), nuclear-encoded cytosol-targeted ribosomal genes (NuCyRP), other nuclear-encoded plastid-targeted genes that are not involved in ribosomes (NuCpOT), plastid-encoded ribosomal protein genes (CpRP) and plastid-encoded photosynthesis genes (CpPS).1 Elevated nonsynonymous substitution rates (dN) and ratios of nonsynonymous to synonymous substitution rates (dN/dS; ω) were observed in both CpRP and NuCpRP compared to the other gene sets. Significant differences in dN for CpRP and NuCpRP were found between the papilionoid 50-kb inversion clade and other legumes. Using coevolution statistics and evolutionary rate covariation, strong signals of cytonuclear coevolution were identified, where nonsynonymous substitutions in CpRP and NuCpRP genes co-occur along the same branches of the Papilionoideae phylogeny. Increased ω in a few CpRP genes was due to intensified positive selection whereas most of the CpRP and NuCpRP increased ω was caused by relaxed purifying selection. This pattern not only underscores the role of cytonuclear incompatibility in driving speciation but also highlights its constraints on the genetic enhancement of papilionoid crop species.
Collapse
Affiliation(s)
- Lydia G Tressel
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Bikash Shrestha
- DOE, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chaehee Lee
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - In-Su Choi
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, South Korea
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Domingos Cardoso
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, RJ, Brazil
| | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Guo X, Wang H, Lin D, Wang Y, Jin X. Cytonuclear evolution in fully heterotrophic plants: lifestyles and gene function determine scenarios. BMC PLANT BIOLOGY 2024; 24:989. [PMID: 39428472 PMCID: PMC11492565 DOI: 10.1186/s12870-024-05702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Evidence shows that full mycoheterotrophs and holoparasites often have reduced plastid genomes with rampant gene loss, elevated substitution rates, and deeply altered to conventional evolution in mitochondrial genomes, but mechanisms of cytonuclear evolution is unknown. Endoparasitic Sapria himalayana and mycoheterotrophic Gastrodia and Platanthera guangdongensis represent different heterotrophic types, providing a basis to illustrate cytonuclear evolution. Here, we focused on nuclear-encoded plastid / mitochondrial (N-pt / mt) -targeting protein complexes, including caseinolytic protease (ClpP), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), oxidative phosphorylation system (OXPHOS), DNA recombination, replication, and repair (DNA-RRR) system, and pentatricopeptide repeat (PPR) proteins, to identify evolutionary drivers for cytonuclear interaction. RESULTS The severity of gene loss of N-pt PPR and pt-RRR genes was positively associated with increased degree of heterotrophy in full mycoheterotrophs and S. himalayana, while N-mt PPR and mt-RRR genes were retained. Substitution rates of organellar and nuclear genes encoding N-pt/mt subunits in protein complexes were evaluated, cytonuclear coevolution was identified in S. himalayana, whereas disproportionate rates of evolution were observed in the OXPHOS complex in full mycoheterotrophs, only slight accelerations in substitution rates were identified in N-mt genes of full mycoheterotrophs. CONCLUSIONS Nuclear compensatory evolution was identified in protein complexes encoded by plastid and N-pt genes. Selection shaping codon preferences, functional constraint, mt-RRR gene regulation, and post-transcriptional regulation of PPR genes all facilitate mito-nuclear evolution. Our study enriches our understanding of genomic coevolution scenarios in fully heterotrophic plants.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
3
|
Zhang X, Wolinska J, Blair D, Hu W, Yin M. Responses to predation pressure involve similar sets of genes in two divergent species of Daphnia. J Anim Ecol 2023; 92:1743-1758. [PMID: 37337454 DOI: 10.1111/1365-2656.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Species that are not closely related can express similar inducible traits, but molecular mechanisms underlying the observed responses are often unknown, nor is it known if these mechanisms are shared between such species. Here, we compared transcriptional profiles of two Daphnia species (D. mitsukuri and D. sinensis) from different subgenera, at both juvenile and adult developmental stages. Both species were exposed to the same predation threat (fish kairomones), and both showed similar induced morphological changes (reduced body length). At the early developmental stage, response to predation risk resulted in similar changes in expression levels of 23 orthologues in both species. These orthologues, involved in 107 GO categories, changed in the same direction in both species (over- or underexpressed), in comparison to non-exposed controls. Several of these orthologues were associated with DNA replication, structural constituents of cuticle or innate immune response. In both species, the differentially expressed (DE) genes on average had higher ω (dN /dS ) values than non-DE genes, suggesting that these genes had experienced greater positive selection or lower purifying selection than non-DE genes. Overall, our results suggest that similar suites of genes, responding in similar ways to predation pressure, have been retained in Daphnia for many millions of years.
Collapse
Affiliation(s)
- Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
- Department of Microbiology and Bioengineering, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Yang Y, Forsythe ES, Ding YM, Zhang DY, Bai WN. Genomic Analysis of Plastid-Nuclear Interactions and Differential Evolution Rates in Coevolved Genes across Juglandaceae Species. Genome Biol Evol 2023; 15:evad145. [PMID: 37515592 PMCID: PMC10410296 DOI: 10.1093/gbe/evad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
The interaction between the nuclear and chloroplast genomes in plants is crucial for preserving essential cellular functions in the face of varying rates of mutation, levels of selection, and modes of transmission. Despite this, identifying nuclear genes that coevolve with chloroplast genomes at a genome-wide level has remained a challenge. In this study, we conducted an evolutionary rate covariation analysis to identify candidate nuclear genes coevolving with chloroplast genomes in Juglandaceae. Our analysis was based on 4,894 orthologous nuclear genes and 76 genes across seven chloroplast partitions in nine Juglandaceae species. Our results indicated that 1,369 (27.97%) of the nuclear genes demonstrated signatures of coevolution, with the Ycf1/2 partition yielding the largest number of hits (765) and the ClpP1 partition yielding the fewest (13). These hits were found to be significantly enriched in biological processes related to leaf development, photoperiodism, and response to abiotic stress. Among the seven partitions, AccD, ClpP1, MatK, and RNA polymerase partitions and their respective hits exhibited a narrow range, characterized by dN/dS values below 1. In contrast, the Ribosomal, Photosynthesis, Ycf1/2 partitions and their corresponding hits, displayed a broader range of dN/dS values, with certain values exceeding 1. Our findings highlight the differences in the number of candidate nuclear genes coevolving with the seven chloroplast partitions in Juglandaceae species and the correlation between the evolution rates of these genes and their corresponding chloroplast partitions.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Evan S Forsythe
- Department of Biology, Oregon State University-Cascades, Bend, Oregon, USA
- Integrative Biology Department, Oregon State University, Corvallis, Oregon, USA
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- South China Botanical Garden, The Chinese Academy of Sciences, Guangdong, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Lynch M. Mutation pressure, drift, and the pace of molecular coevolution. Proc Natl Acad Sci U S A 2023; 120:e2306741120. [PMID: 37364099 PMCID: PMC10319038 DOI: 10.1073/pnas.2306741120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Most aspects of the molecular biology of cells involve tightly coordinated intermolecular interactions requiring specific recognition at the nucleotide and/or amino acid levels. This has led to long-standing interest in the degree to which constraints on interacting molecules result in conserved vs. accelerated rates of sequence evolution, with arguments commonly being made that molecular coevolution can proceed at rates exceeding the neutral expectation. Here, a fairly general model is introduced to evaluate the degree to which the rate of evolution at functionally interacting sites is influenced by effective population sizes (Ne), mutation rates, strength of selection, and the magnitude of recombination between sites. This theory is of particular relevance to matters associated with interactions between organelle- and nuclear-encoded proteins, as the two genomic environments often exhibit dramatic differences in the power of mutation and drift. Although genes within low Ne environments can drive the rate of evolution of partner genes experiencing higher Ne, rates exceeding the neutral expectation require that the former also have an elevated mutation rate. Testable predictions, some counterintuitive, are presented on how patterns of coevolutionary rates should depend on the relative intensities of drift, selection, and mutation.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ85287
| |
Collapse
|
6
|
Sloan DB, DeTar RA, Warren JM. Aminoacyl-tRNA Synthetase Evolution within the Dynamic Tripartite Translation System of Plant Cells. Genome Biol Evol 2023; 15:evad050. [PMID: 36951086 PMCID: PMC10098043 DOI: 10.1093/gbe/evad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Eukaryotes maintain separate protein translation systems for nuclear and organellar genes, including distinct sets of tRNAs and aminoacyl-tRNA synthetases (aaRSs). In animals, mitochondrial-targeted aaRSs are expressed at lower levels and are less conserved in sequence than cytosolic aaRSs involved in translation of nuclear mRNAs, likely reflecting lower translational demands in mitochondria. In plants, translation is further complicated by the presence of plastids, which share most aaRSs with mitochondria. In addition, plant mitochondrial tRNA pools have a dynamic history of gene loss and functional replacement by tRNAs from other compartments. To investigate the consequences of these distinctive features of translation in plants, we analyzed sequence evolution in angiosperm aaRSs. In contrast to previously studied eukaryotic systems, we found that plant organellar and cytosolic aaRSs exhibit only a small difference in expression levels, and organellar aaRSs are slightly more conserved than cytosolic aaRSs. We hypothesize that these patterns result from high translational demands associated with photosynthesis in mature chloroplasts. We also investigated aaRS evolution in Sileneae, an angiosperm lineage with extensive mitochondrial tRNA replacement and aaRS retargeting. We predicted positive selection for changes in aaRS sequence resulting from these recent changes in subcellular localization and tRNA substrates but found little evidence for accelerated sequence divergence. Overall, the complex tripartite translation system in plant cells appears to have imposed more constraints on the long-term evolutionary rates of organellar aaRSs compared with other eukaryotic lineages, and plant aaRS protein sequences appear largely robust to more recent perturbations in subcellular localization and tRNA interactions.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins
| | - Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
7
|
Enabulele EE, Lawton SP, Walker AJ, Kirk RS. Molecular epidemiological analyses reveal extensive connectivity between Echinostoma revolutum (sensu stricto) populations across Eurasia and species richness of zoonotic echinostomatids in England. PLoS One 2023; 18:e0270672. [PMID: 36745633 PMCID: PMC9901765 DOI: 10.1371/journal.pone.0270672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Echinostoma revolutum (sensu stricto) is a widely distributed member of the Echinostomatidae, a cosmopolitan family of digenetic trematodes with complex life cycles involving a wide range of definitive hosts, particularly aquatic birds. Integrative taxonomic studies, notably those utilising nad1 barcoding, have been essential in discrimination of E. revolutum (s.s.) within the 'Echinostoma revolutum' species complex and investigation of its molecular diversity. No studies, however, have focussed on factors affecting population genetic structure and connectivity of E. revolutum (s.s.) in Eurasia. Here, we used morphology combined with nad1 and cox1 barcoding to determine the occurrence of E. revolutum (s.s.) and its lymnaeid hosts in England for the first time, in addition to other echinostomatid species Echinoparyphium aconiatum, Echinoparyphium recurvatum and Hypoderaeum conoideum. Analysis of genetic diversity in E. revolutum (s.s.) populations across Eurasia demonstrated haplotype sharing and gene flow, probably facilitated by migratory bird hosts. Neutrality and mismatch distribution analyses support possible recent demographic expansion of the Asian population of E. revolutum (s.s.) (nad1 sequences from Bangladesh and Thailand) and stability in European (nad1 sequences from this study, Iceland and continental Europe) and Eurasian (combined data sets from Europe and Asia) populations with evidence of sub-population structure and selection processes. This study provides new molecular evidence for a panmictic population of E. revolutum (s.s.) in Eurasia and phylogeographically expands the nad1 database for identification of echinostomatids.
Collapse
Affiliation(s)
- Egie E. Enabulele
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Scott P. Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- Epidemiology Research Unit, Department of Veterinary and Animal Sciences, Northern Faculty, Scotland’s Rural College, Inverness, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Nikelski E, Rubtsov AS, Irwin D. High heterogeneity in genomic differentiation between phenotypically divergent songbirds: a test of mitonuclear co-introgression. Heredity (Edinb) 2023; 130:1-13. [PMID: 36463372 PMCID: PMC9814147 DOI: 10.1038/s41437-022-00580-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Comparisons of genomic variation among closely related species often show more differentiation in mitochondrial DNA (mtDNA) and sex chromosomes than in autosomes, a pattern expected due to the differing effective population sizes and evolutionary dynamics of these genomic components. Yet, introgression can cause species pairs to deviate dramatically from general differentiation trends. The yellowhammer (Emberiza citrinella) and pine bunting (E. leucocephalos) are hybridizing avian sister species that differ greatly in appearance and moderately in nuclear DNA, but that show no mtDNA differentiation. This discordance is best explained by adaptive mtDNA introgression-a process that can select for co-introgression at nuclear genes with mitochondrial functions (mitonuclear genes). To better understand these discordant differentiation patterns and characterize nuclear differentiation in this system, we investigated genome-wide differentiation between allopatric yellowhammers and pine buntings and compared it to what was seen previously in mtDNA. We found significant nuclear differentiation that was highly heterogeneous across the genome, with a particularly wide differentiation peak on the sex chromosome Z. We further investigated mitonuclear gene co-introgression between yellowhammers and pine buntings and found support for this process in the direction of pine buntings into yellowhammers. Genomic signals indicative of co-introgression were common in mitonuclear genes coding for subunits of the mitoribosome and electron transport chain complexes. Such introgression of mitochondrial DNA and mitonuclear genes provides a possible explanation for the patterns of high genomic heterogeneity in genomic differentiation seen among some species groups.
Collapse
Affiliation(s)
- Ellen Nikelski
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | - Darren Irwin
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Weaver RJ, Rabinowitz S, Thueson K, Havird JC. Genomic Signatures of Mitonuclear Coevolution in Mammals. Mol Biol Evol 2022; 39:6775223. [PMID: 36288802 PMCID: PMC9641969 DOI: 10.1093/molbev/msac233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome. Nuclear compensation, in which deleterious mtDNA changes are offset by compensatory nuclear changes, is often invoked as the primary mechanism for mitonuclear coevolution. Yet, direct evidence supporting nuclear compensation is rare. Here, we used data from 58 mammalian species representing eight orders to show strong correlations between evolutionary rates of mt and nuclear-encoded mt-targeted (N-mt) proteins, but not between mt and non-mt-targeted nuclear proteins, providing strong support for mitonuclear coevolution across mammals. N-mt genes with direct mt interactions also showed the strongest correlations. Although most N-mt genes had elevated dN/dS ratios compared to mt genes (as predicted under nuclear compensation), N-mt sites in close contact with mt proteins were not overrepresented for signs of positive selection compared to noncontact N-mt sites (contrary to predictions of nuclear compensation). Furthermore, temporal patterns of N-mt and mt amino acid substitutions did not support predictions of nuclear compensation, even in positively selected, functionally important residues with direct mitonuclear contacts. Overall, our results strongly support mitonuclear coevolution across ∼170 million years of mammalian evolution but fail to support nuclear compensation as the major mode of mitonuclear coevolution.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA.,Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA
| | | | - Kiley Thueson
- Department of Integrative Biology, University of Texas, Austin, TX
| | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin, TX
| |
Collapse
|
10
|
Grover CE, Forsythe ES, Sharbrough J, Miller ER, Conover JL, DeTar RA, Chavarro C, Arick MA, Peterson DG, Leal-Bertioli SCM, Sloan DB, Wendel JF. Variation in cytonuclear expression accommodation among allopolyploid plants. Genetics 2022; 222:iyac118. [PMID: 35951749 PMCID: PMC9526054 DOI: 10.1093/genetics/iyac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict (i.e. cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for 6 allopolyploid lineages that represent 4 genera (i.e. Arabidopsis, Arachis, Chenopodium, and Gossypium) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression-level dominance in cytonuclear genes relative to the background of noncytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression evolution may be subtle and variable among genera and genes, likely reflecting a diversity of mechanisms to resolve nuclear-cytoplasmic incompatibilities in allopolyploid species.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Justin L Conover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carolina Chavarro
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Soraya C M Leal-Bertioli
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
11
|
Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Cytonuclear coevolution in a holoparasitic plant with highly disparate organellar genomes. PLANT MOLECULAR BIOLOGY 2022; 109:673-688. [PMID: 35359176 DOI: 10.1007/s11103-022-01266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Contrasting substitution rates in the organellar genomes of Lophophytum agree with the DNA repair, replication, and recombination gene content. Plastid and nuclear genes whose products form multisubunit complexes co-evolve. The organellar genomes of the holoparasitic plant Lophophytum (Balanophoraceae) show disparate evolution. In the plastid, the genome has been severely reduced and presents a > 85% AT content, while in the mitochondria most protein-coding genes have been replaced by homologs acquired by horizontal gene transfer (HGT) from their hosts (Fabaceae). Both genomes carry genes whose products form multisubunit complexes with those of nuclear genes, creating a possible hotspot of cytonuclear coevolution. In this study, we assessed the evolutionary rates of plastid, mitochondrial and nuclear genes, and their impact on cytonuclear evolution of genes involved in multisubunit complexes related to lipid biosynthesis and proteolysis in the plastid and those in charge of the oxidative phosphorylation in the mitochondria. Genes from the plastid and the mitochondria (both native and foreign) of Lophophytum showed extremely high and ordinary substitution rates, respectively. These results agree with the biased loss of plastid-targeted proteins involved in angiosperm organellar repair, replication, and recombination machinery. Consistent with the high rate of evolution of plastid genes, nuclear-encoded subunits of plastid complexes showed disproportionate increases in non-synonymous substitution rates, while those of the mitochondrial complexes did not show different rates than the control (i.e. non-organellar nuclear genes). Moreover, the increases in the nuclear-encoded subunits of plastid complexes were positively correlated with the level of physical interaction they possess with the plastid-encoded ones. Overall, these results suggest that a structurally-mediated compensatory factor may be driving plastid-nuclear coevolution in Lophophytum, and that mito-nuclear coevolution was not altered by HGT.
Collapse
Affiliation(s)
- Luis F Ceriotti
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina.
| |
Collapse
|
12
|
Freitas AV, Herb JT, Pan M, Chen Y, Gucek M, Jin T, Xu H. Generation of a mitochondrial protein compendium in Dictyostelium discoideum. iScience 2022; 25:104332. [PMID: 35602934 PMCID: PMC9118663 DOI: 10.1016/j.isci.2022.104332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
The social ameba Dictyostelium discoideum has emerged as a powerful model to study mitochondrial genetics and bioenergetics. However, a comprehensive inventory of mitochondrial proteins that is critical to understanding mitochondrial processes has yet to be curated. Here, we utilized high-throughput multiplexed protein quantitation and homology analyses to generate a high-confidence mitochondrial protein compendium consisting of 936 proteins. Our proteomic approach, which utilizes mass spectrometry in combination with mathematical modeling, was validated through mitochondrial targeting sequence prediction and live-cell imaging. Our final compendium consists of 936 proteins. Nearly, a third of D. discoideum mitochondrial proteins do not have homologs in humans, budding yeasts, or an ancestral alphaproteobacteria. Additionally, we leverage our compendium to highlight the complexity of metabolic reprogramming during starvation-induced development. Our compendium lays a foundation to investigate mitochondrial processes that are unique in ameba and to understand the functions of conserved mitochondrial proteins in D. discoideum.
Collapse
Affiliation(s)
- Anna V. Freitas
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Jake T. Herb
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Miao Pan
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Yong Chen
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Marjan Gucek
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Tian Jin
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Hong Xu
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Du XY, Kuo LY, Zuo ZY, Li DZ, Lu JM. Structural Variation of Plastomes Provides Key Insight Into the Deep Phylogeny of Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:862772. [PMID: 35645990 PMCID: PMC9134734 DOI: 10.3389/fpls.2022.862772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 06/02/2023]
Abstract
Structural variation of plastid genomes (plastomes), particularly large inversions and gene losses, can provide key evidence for the deep phylogeny of plants. In this study, we investigated the structural variation of fern plastomes in a phylogenetic context. A total of 127 plastomes representing all 50 recognized families and 11 orders of ferns were sampled, making it the most comprehensive plastomic analysis of fern lineages to date. The samples included 42 novel plastomes of 15 families with a focus on Hymenophyllales and Gleicheniales. We reconstructed a well-supported phylogeny of all extant fern families, detected significant structural synapomorphies, including 9 large inversions, 7 invert repeat region (IR) boundary shifts, 10 protein-coding gene losses, 7 tRNA gene losses or anticodon changes, and 19 codon indels (insertions or deletions) across the deep phylogeny of ferns, particularly on the backbone nodes. The newly identified inversion V5, together with the newly inferred expansion of the IR boundary R5, can be identified as a synapomorphy of a clade composed of Dipteridaceae, Matoniaceae, Schizaeales, and the core leptosporangiates, while a unique inversion V4, together with an expansion of the IR boundary R4, was verified as a synapomorphy of Gleicheniaceae. This structural evidence is in support of our phylogenetic inference, thus providing key insight into the paraphyly of Gleicheniales. The inversions of V5 and V7 together filled the crucial gap regarding how the "reversed" gene orientation in the IR region characterized by most extant ferns (Schizaeales and the core leptosporangiates) evolved from the inferred ancestral type as retained in Equisetales and Osmundales. The tRNA genes trnR-ACG and trnM-CAU were assumed to be relicts of the early-divergent fern lineages but intact in most Polypodiales, particularly in eupolypods; and the loss of the tRNA genes trnR-CCG, trnV-UAC, and trnR-UCU in fern plastomes was much more prevalent than previously thought. We also identified several codon indels in protein-coding genes within the core leptosporangiates, which may be identified as synapomorphies of specific families or higher ranks. This study provides an empirical case of integrating structural and sequence information of plastomes to resolve deep phylogeny of plants.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
14
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Gatica-Soria LM, Ceriotti LF, Garcia LE, Virginia Sanchez-Puerta M. Native and foreign mitochondrial and nuclear encoded proteins conform the OXPHOS complexes of a holoparasitic plant. Gene 2022; 817:146176. [PMID: 35031426 DOI: 10.1016/j.gene.2021.146176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The intimate contact between the holoparasitic plant Lophophytum mirabile (Balanophoraceae) and its host plant (Fabaceae) facilitates the exchange of genetic information, increasing the frequency of horizontal gene transfer (HGT). Lophophytum stands out because it acquired a large number of mitochondrial genes (greater than 20) from its legume host that replaced the majority of the native homologs. These foreign genes code for proteins that form multisubunit enzyme complexes, such as those in the oxidative phosphorylation system (OXPHOS) and cytochrome c maturation (ccm) system, together with dozens of nuclear-encoded subunits. However, the existence and the origin of the nuclear subunits that form the major part of the OXPHOS and ccm system in Lophophytum remain unknown. It was proposed that nuclear-encoding genes whose products interact with foreign mitochondrial proteins are also foreign, minimizing the incompatibilities that could arise in the assembly and functioning of these multiprotein complexes. We identified a nearly complete set of OXPHOS and ccm system subunits evolving under selective constraints in the transcriptome of Lophophytum, indicating that OXPHOS is functional and resembles that of free-living angiosperms. Maximum Likelihood phylogenetic analyses revealed a single case of HGT in the nuclear genes, which results in mosaic OXPHOS and ccm system in Lophophytum. These observations raise new questions about the evolution and physiology of this parasitic plant. A putative case of cooperation between two foreign (one mitochondrial and one nuclear) genes is presented.
Collapse
Affiliation(s)
- Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
16
|
Postel Z, Poux C, Gallina S, Varré JS, Godé C, Schmitt E, Meyer E, Van Rossum F, Touzet P. Reproductive isolation among lineages of Silene nutans (Caryophyllaceae): A potential involvement of plastid-nuclear incompatibilities. Mol Phylogenet Evol 2022; 169:107436. [DOI: 10.1016/j.ympev.2022.107436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
17
|
Abdel-Ghany SE, LaManna LM, Harroun HT, Maliga P, Sloan DB. Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. PLANT MOLECULAR BIOLOGY 2022; 108:277-287. [PMID: 35039977 DOI: 10.1007/s11103-022-01241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Replacing the native clpP1 gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution. The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native clpP1 gene in tobacco (Nicotiana tabacum) with counterparts from another angiosperm genus (Silene) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic clpP1 replacement from a slowly evolving donor species (S. latifolia) to homoplasmy but that clpP1 copies from Silene species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco clpP1 gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Lisa M LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Haleakala T Harroun
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Piccinini G, Iannello M, Puccio G, Plazzi F, Havird JC, Ghiselli F. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Mol Biol Evol 2021; 38:2597-2614. [PMID: 33616640 PMCID: PMC8136519 DOI: 10.1093/molbev/msab054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
Collapse
Affiliation(s)
- Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Greimann ES, Ward SF, Woodell JD, Hennessey S, Kline MR, Moreno JA, Peters M, Cruise JL, Montooth KL, Neiman M, Sharbrough J. Phenotypic Variation in Mitochondria-Related Performance Traits Across New Zealand Snail Populations. Integr Comp Biol 2021; 60:275-287. [PMID: 32589742 DOI: 10.1093/icb/icaa066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial function is critical for energy homeostasis and should shape how genetic variation in metabolism is transmitted through levels of biological organization to generate stability in organismal performance. Mitochondrial function is encoded by genes in two distinct and separately inherited genomes-the mitochondrial genome and the nuclear genome-and selection is expected to maintain functional mito-nuclear interactions. The documented high levels of polymorphism in genes involved in these mito-nuclear interactions and wide variation for mitochondrial function demands an explanation for how and why variability in such a fundamental trait is maintained. Potamopyrgus antipodarum is a New Zealand freshwater snail with coexisting sexual and asexual individuals and, accordingly, contrasting systems of separate vs. co-inheritance of nuclear and mitochondrial genomes. As such, this snail provides a powerful means to dissect the evolutionary and functional consequences of mito-nuclear variation. The lakes inhabited by P. antipodarum span wide environmental gradients, with substantial across-lake genetic structure and mito-nuclear discordance. This situation allows us to use comparisons across reproductive modes and lakes to partition variation in cellular respiration across genetic and environmental axes. Here, we integrated cellular, physiological, and behavioral approaches to quantify variation in mitochondrial function across a diverse set of wild P. antipodarum lineages. We found extensive across-lake variation in organismal oxygen consumption and behavioral response to heat stress and differences across sexes in mitochondrial membrane potential but few global effects of reproductive mode. Taken together, our data set the stage for applying this important model system for sexual reproduction and polyploidy to dissecting the complex relationships between mito-nuclear variation, performance, plasticity, and fitness in natural populations.
Collapse
Affiliation(s)
- Emma S Greimann
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Samuel F Ward
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - James D Woodell
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Michael R Kline
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Jorge A Moreno
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Madeline Peters
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Jennifer L Cruise
- Department of Biology, University of St. Thomas, Saint Paul, MN, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Joel Sharbrough
- Department of Biology, University of Iowa, Iowa City, IA, USA
- Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
20
|
Forsythe ES, Williams AM, Sloan DB. Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. THE PLANT CELL 2021; 33:980-997. [PMID: 33764472 PMCID: PMC8226287 DOI: 10.1093/plcell/koab021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of selection, and transmission modes, yet key cellular functions depend on their coordinated interactions. Functionally related proteins often show correlated changes in rates of sequence evolution across a phylogeny [evolutionary rate covariation (ERC)], offering a means to detect previously unidentified suites of coevolving and cofunctional genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits were highly enriched for genes encoding plastid-targeted proteins, providing evidence that cytonuclear interactions affect rates of molecular evolution at genome-wide scales. Many identified nuclear genes functioned in post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis), including protein translation (in both the plastid and cytosol), import, quality control, and turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the plastid genome, but their encoded proteins lack organellar-targeting annotations, making them candidates for having previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-nuclear coevolution extends beyond the intimate molecular interactions within chloroplast enzyme complexes and may be driven by frequent rewiring of the machinery responsible for maintenance of plastid proteostasis in angiosperms.
Collapse
Affiliation(s)
- Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
21
|
Pereira RJ, Lima TG, Pierce-Ward NT, Chao L, Burton RS. Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities. Mol Ecol 2021; 30:6403-6416. [PMID: 34003535 DOI: 10.1111/mec.15985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Reproductive isolation is often achieved when genes that are neutral or beneficial in their genomic background become functionally incompatible in a foreign genomic background, causing inviability, sterility or other forms of low fitness in hybrids. Recent studies suggest that mitonuclear interactions are among the initial incompatibilities to evolve at early stages of population divergence across taxa. Yet, the genomic architecture of mitonuclear incompatibilities has rarely been elucidated. We employ an experimental evolution approach starting with low-fitness F2 interpopulation hybrids of the copepod Tigriopus californicus, in which frequencies of compatible and incompatible nuclear alleles change in response to an alternative mitochondrial background. After about nine generations, we observe a generalized increase in population size and in survivorship, suggesting efficiency of selection against maladaptive phenotypes. Whole genome sequencing of evolved populations showed some consistent allele frequency changes across three replicates of each reciprocal cross, but markedly different patterns between mitochondrial backgrounds. In only a few regions (~6.5% of the genome), the same parental allele was overrepresented irrespective of the mitochondrial background. About 33% of the genome showed allele frequency changes consistent with divergent selection, with the location of these genomic regions strongly differing between mitochondrial backgrounds. In 87% and 89% of these genomic regions, the dominant nuclear allele matched the associated mitochondrial background, consistent with mitonuclear co-adaptation. These results suggest that mitonuclear incompatibilities have a complex polygenic architecture that differs between populations, potentially generating genome-wide barriers to gene flow between closely related taxa.
Collapse
Affiliation(s)
- Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thiago G Lima
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - N Tessa Pierce-Ward
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lin Chao
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Broz AK, Waneka G, Wu Z, Fernandes Gyorfy M, Sloan DB. Detecting de novo mitochondrial mutations in angiosperms with highly divergent evolutionary rates. Genetics 2021; 218:iyab039. [PMID: 33704433 PMCID: PMC8128415 DOI: 10.1093/genetics/iyab039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Although plant mitochondrial genomes typically show low rates of sequence evolution, levels of divergence in certain angiosperm lineages suggest anomalously high mitochondrial mutation rates. However, de novo mutations have never been directly analyzed in such lineages. Recent advances in high-fidelity DNA sequencing technologies have enabled detection of mitochondrial mutations when still present at low heteroplasmic frequencies. To date, these approaches have only been performed on a single plant species (Arabidopsis thaliana). Here, we apply a high-fidelity technique (Duplex Sequencing) to multiple angiosperms from the genus Silene, which exhibits extreme heterogeneity in rates of mitochondrial sequence evolution among close relatives. Consistent with phylogenetic evidence, we found that Silene latifolia maintains low mitochondrial variant frequencies that are comparable with previous measurements in Arabidopsis. Silene noctiflora also exhibited low variant frequencies despite high levels of historical sequence divergence, which supports other lines of evidence that this species has reverted to lower mitochondrial mutation rates after a past episode of acceleration. In contrast, S. conica showed much higher variant frequencies in mitochondrial (but not in plastid) DNA, consistent with an ongoing bout of elevated mitochondrial mutation rates. Moreover, we found an altered mutational spectrum in S. conica heavily biased towards AT→GC transitions. We also observed an unusually low number of mitochondrial genome copies per cell in S. conica, potentially pointing to reduced opportunities for homologous recombination to accurately repair mismatches in this species. Overall, these results suggest that historical fluctuations in mutation rates are driving extreme variation in rates of plant mitochondrial sequence evolution.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | | | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Lopez KA, McDiarmid CS, Griffith SC, Lovette IJ, Hooper DM. Evaluating evidence of mitonuclear incompatibilities with the sex chromosomes in an avian hybrid zone. Evolution 2021; 75:1395-1414. [PMID: 33908624 DOI: 10.1111/evo.14243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/15/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The exploration of hybrid zones and the intergenomic conflicts exposed through hybridization provide windows into the processes of divergence and speciation. Sex chromosomes and mitonuclear incompatibilities have strong associations with the genetics of hybrid dysfunction. In ZW sex-determining systems, maternal co-inheritance of the mitochondrial and W chromosomes immediately exposes incompatibilities between these maternal contributions of one species and the Z chromosome of another. We analyze mitochondrial and Z chromosome admixture in the long-tailed finch (Poephila acuticauda) of Australia, where hybridizing subspecies differ prominently in Z chromosome genotype and in bill color, yet the respective centers of geographic admixture for these two traits are offset by 350 km. We report two well-defined mitochondrial clades that diverged ∼0.5 million years ago. Mitochondrial contact is geographically co-located within a hybrid zone of Z chromosome admixture and is displaced from bill color admixture by nearly 400 km. Consistent with Haldane's rule expectations, hybrid zone females are significantly less likely than males to carry an admixed Z chromosome or have mismatched Z-mitochondrial genotypes. Furthermore, there are significantly fewer than expected mitonuclear mismatches in hybrid zone females and paternal backcross males. Results suggest a potential for mitonuclear/sex chromosome incompatibilities in the emergence of reproductive isolation in this system.
Collapse
Affiliation(s)
- Kelsie A Lopez
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Callum S McDiarmid
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Irby J Lovette
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Daniel M Hooper
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA.,Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
24
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
25
|
Li C, Wang X, Xiao Y, Sun X, Wang J, Yang X, Sun Y, Sha Y, Lv R, Yu Y, Ding B, Zhang Z, Li N, Wang T, Wendel JF, Liu B, Gong L. Coevolution in Hybrid Genomes: Nuclear-Encoded Rubisco Small Subunits and Their Plastid-Targeting Translocons Accompanying Sequential Allopolyploidy Events in Triticum. Mol Biol Evol 2020; 37:3409-3422. [PMID: 32602899 PMCID: PMC7743682 DOI: 10.1093/molbev/msaa158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Triticum/Aegilops complex includes hybrid species resulting from homoploid hybrid speciation and allopolyploid speciation. Sequential allotetra- and allohexaploidy events presumably result in two challenges for the hybrids, which involve 1) cytonuclear stoichiometric disruptions caused by combining two diverged nuclear genomes with the maternal inheritance of the cytoplasmic organellar donor; and 2) incompatibility of chimeric protein complexes with diverged subunits from nuclear and cytoplasmic genomes. Here, we describe coevolution of nuclear rbcS genes encoding the small subunits of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) and nuclear genes encoding plastid translocons, which mediate recognition and translocation of nuclear-encoded proteins into plastids, in allopolyploid wheat species. We demonstrate that intergenomic paternal-to-maternal gene conversion specifically occurred in the genic region of the homoeologous rbcS3 gene from the D-genome progenitor of wheat (abbreviated as rbcS3D) such that it encodes a maternal-like or B-subgenome-like SSU3D transit peptide in allohexaploid wheat but not in allotetraploid wheat. Divergent and limited interaction between SSU3D and the D-subgenomic TOC90D translocon subunit is implicated to underpin SSU3D targeting into the chloroplast of hexaploid wheat. This implicates early selection favoring individuals harboring optimal maternal-like organellar SSU3D targeting in hexaploid wheat. These data represent a novel dimension of cytonuclear evolution mediated by organellar targeting and transportation of nuclear proteins.
Collapse
Affiliation(s)
- Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yaxian Xiao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xuhan Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xuan Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yuchen Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
26
|
Weaver RJ, Carrion G, Nix R, Maeda GP, Rabinowitz S, Iverson ENK, Thueson K, Havird JC. High mitochondrial mutation rates in Silene are associated with nuclear-mediated changes in mitochondrial physiology. Biol Lett 2020; 16:20200450. [PMID: 32933406 DOI: 10.1098/rsbl.2020.0450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial (mt) respiration depends on proteins encoded both by the mitochondrial and nuclear genomes. Variation in mt-DNA mutation rates exists across eukaryotes, although the functional consequences of elevated mt mutation rates in some lineages remain underexplored. In the angiosperm genus Silene, closely related, ecologically similar species have either 'fast' or 'slow' mt-DNA mutation rates. Here, we investigated the functional consequences of elevated mt-DNA mutation rates on mt respiration profiles of Silene mitochondria. Overall levels of respiration were similar among Species. Fast species had lower respiration efficiency than slow species and relied up to 48% more on nuclear-encoded respiratory enzymes alternative oxidase (AOX) and accessory dehydrogenases (DHex), which participate in stress responses in plants. However, not all fast species showed these trends. Respiratory profiles of some enzymes were correlated, most notably AOX and DHex. We conclude that subtle differences in mt physiology among Silene lineages with dramatically different mt mutation rates may underly similar phenotypes at higher levels of biological organization, betraying the consequences of mt mutations.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Gina Carrion
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel Nix
- Hankamer School of Business, Baylor University, Waco, TX 76798, USA
| | - Gerald P Maeda
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Samantha Rabinowitz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Erik N K Iverson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kiley Thueson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Nucleotide substitution rates of diatom plastid encoded protein genes are positively correlated with genome architecture. Sci Rep 2020; 10:14358. [PMID: 32873883 PMCID: PMC7462845 DOI: 10.1038/s41598-020-71473-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Diatoms are the largest group of heterokont algae with more than 100,000 species. As one of the single-celled photosynthetic organisms that inhabit marine, aquatic and terrestrial ecosystems, diatoms contribute ~ 45% of global primary production. Despite their ubiquity and environmental significance, very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored patterns of nucleotide substitution rates of diatom plastids across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. The highest substitution rate was lineage-specific within the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes and individual genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have lower synonymous and nonsynonymous substitutions rates than those involved in transcription and translation. Significant positive correlations were identified between substitution rates and measures of genomic rearrangements, including indels and inversions, which is a similar result to what was found in legume plants. This work advances the understanding of the molecular evolution of diatom plastomes and provides a foundation for future studies.
Collapse
|
28
|
Dapper AL, Wade MJ. Relaxed Selection and the Rapid Evolution of Reproductive Genes. Trends Genet 2020; 36:640-649. [PMID: 32713599 DOI: 10.1016/j.tig.2020.06.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Evolutionary genomic studies find that reproductive protein genes, those directly involved in reproductive processes, diversify more rapidly than most other gene categories. Strong postcopulatory sexual selection acting within species is the predominant hypothesis proposed to account for the observed pattern. Recently, relaxed selection due to sex-specific gene expression has also been put forward to explain the relatively rapid diversification. We contend that relaxed selection due to sex-limited gene expression is the correct null model for tests of molecular evolution of reproductive genes and argue that it may play a more significant role in the evolutionary diversification of reproductive genes than previously recognized. We advocate for a re-evaluation of adaptive explanations for the rapid diversification of reproductive genes.
Collapse
Affiliation(s)
- Amy L Dapper
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Department of Biology, Indiana University, Bloomington, IN 47401, USA.
| | - Michael J Wade
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
29
|
Liu S, Wang Z, Wang H, Su Y, Wang T. Patterns and Rates of Plastid rps12 Gene Evolution Inferred in a Phylogenetic Context using Plastomic Data of Ferns. Sci Rep 2020; 10:9394. [PMID: 32523061 PMCID: PMC7287138 DOI: 10.1038/s41598-020-66219-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The trans-splicing rps12 gene of fern plastomes (plastid genomes) exhibits a unique structure owing to its variations in intragenic exon location and intron content, and thus, it provides an excellent model system for examining the effect of plastid gene structure on rates and patterns of molecular evolution. In this study, 16 complete fern plastome sequences were newly generated via the Illumina HiSeq sequencing platform. We reconstructed the phylogeny of ferns and inferred the patterns and rates of plastid rps12 gene evolution in a phylogenetic context by combining these plastome data with those of previously published fern species. We uncovered the diversity of fern plastome evolution by characterizing the structures of these genomes and obtained a highly supported phylogenetic framework for ferns. Furthermore, our results revealed molecular evolutionary patterns that were completely different from the patterns revealed in previous studies. There were significant differences in the patterns and rates of nucleotide substitutions in both intron-containing and intron-less rps12 alleles. Rate heterogeneity between single-copy (SC) and inverted repeat (IR) exons was evident. Unexpectedly, however, IR exons exhibited significantly higher synonymous substitution rates (dS) than SC exons, a pattern that contrasts the regional effect responsible for decreased rates of nucleotide substitutions in IRs. Our results reveal that structural changes in plastid genes have important effects on evolutionary rates, and we propose possible mechanisms to explain the variations in the nucleotide substitution rates of this unusual gene.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hui Wang
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
31
|
Hill GE. Mitonuclear Compensatory Coevolution. Trends Genet 2020; 36:403-414. [PMID: 32396834 DOI: 10.1016/j.tig.2020.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
In bilaterian animals, the mitochondrial genome is small, haploid, does not typically recombine, and is subject to accumulation of deleterious alleles via Muller's ratchet. These basic features of the genomic architecture present a paradox: mutational erosion of these genomes should lead to decline in mitochondrial function over time, yet no such decline is observed. Compensatory coevolution, whereby the nuclear genome evolves to compensate for the deleterious alleles in the mitochondrial genome, presents a potential solution to the paradox of Muller's ratchet without loss of function. Here, I review different proposed forms of mitonuclear compensatory coevolution. Empirical evidence from diverse eukaryotic taxa supports the mitonuclear compensatory coevolution hypothesis, but the ubiquity and importance of such compensatory coevolution remains a topic of debate.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Science, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA.
| |
Collapse
|
32
|
Postel Z, Touzet P. Cytonuclear Genetic Incompatibilities in Plant Speciation. PLANTS 2020; 9:plants9040487. [PMID: 32290056 PMCID: PMC7238192 DOI: 10.3390/plants9040487] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation between organellar and nuclear genomes is required for proper cell function. In this review, we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species. We give examples of cases where species exhibit barriers to reproduction which involve plastid-nuclear or mito-nuclear genetic incompatibilities, and describe the evolutionary processes at play. We also discuss potential mechanisms of hybrid fitness recovery such as paternal leakage. Finally, we point out the possible interplay between plant mating systems and cytonuclear coevolution, and its consequence on plant speciation.
Collapse
|
33
|
Park S, An B, Park S. Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Sci Rep 2020; 10:2720. [PMID: 32066766 PMCID: PMC7026143 DOI: 10.1038/s41598-020-59547-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 01/08/2023] Open
Abstract
The study of intracellular gene transfer may allow for the detection of interesting evolutionary processes such as ancient polyploidization. We compared 24 plastid genomes (plastomes) from tribe Delphinieae, one from tribe Nigelleae and one from tribe Ranunculeae, including five newly sequenced genomes. The functional transfers of the plastids rpl32 and rps16 to the nucleus in tribe Delphinieae were identified. Unexpectedly, we discovered multiple divergent copies of the nuclear-encoded plastid rpl32 in the genus Aconitum. Phylogenetic and synonymous substitution rate analyses revealed that the nuclear-encoded plastid rpl32 underwent two major duplication events. These ancient gene duplication events probably occurred via multiple polyploidization events in Aconitum between 11.9 and 24.7 Mya. Furthermore, our sequence rate analysis indicated that the eight plastid-encoded rpl subunits in Aconitum had a significantly accelerated evolutionary rate compared to those in other genera, suggesting that highly divergent paralogs targeted to the plastid may contribute to an elevated rate of evolution in plastid rpl genes. In addition, heteroplasmy of the plastid matK from two Aconitum species suggested the existence of potentially functional plastid maturases in its plastome. Our results provide insight into the evolutionary history of the tribe Delphinieae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
34
|
Jones BP, Norman BF, Borrett HE, Attwood SW, Mondal MMH, Walker AJ, Webster JP, Rajapakse RPVJ, Lawton SP. Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale. Sci Rep 2020; 10:2480. [PMID: 32051431 PMCID: PMC7015907 DOI: 10.1038/s41598-020-57736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications.
Collapse
Affiliation(s)
- Ben P Jones
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Billie F Norman
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Hannah E Borrett
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Stephen W Attwood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Mohammed M H Mondal
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - R P V Jayanthe Rajapakse
- Faculty of Veterinary Medicine and Animal Science, Department of Veterinary Pathobiology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK.
| |
Collapse
|
35
|
Havird JC, Noe GR, Link L, Torres A, Logan DC, Sloan DB, Chicco AJ. Do angiosperms with highly divergent mitochondrial genomes have altered mitochondrial function? Mitochondrion 2019; 49:1-11. [PMID: 31229574 PMCID: PMC6885534 DOI: 10.1016/j.mito.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Angiosperm mitochondrial (mt) genes are generally slow-evolving, but multiple lineages have undergone dramatic accelerations in rates of nucleotide substitution and extreme changes in mt genome structure. While molecular evolution in these lineages has been investigated, very little is known about their mt function. Some studies have suggested altered respiration in individual taxa, although there are several reasons why mt variation might be neutral in others. Here, we develop a new protocol to characterize respiration in isolated plant mitochondria and apply it to species of Silene with mt genomes that are rapidly evolving, highly fragmented, and exceptionally large (~11 Mbp). This protocol, complemented with traditional measures of plant fitness, cytochrome c oxidase activity assays, and fluorescence microscopy, was also used to characterize inter- and intraspecific variation in mt function. Contributions of the individual "classic" OXPHOS complexes, the alternative oxidase, and external NADH dehydrogenases to overall mt respiratory flux were found to be similar to previously studied angiosperms with more typical mt genomes. Some differences in mt function could be explained by inter- and intraspecific variation. This study suggests that Silene species with peculiar mt genomes still show relatively normal mt respiration. This may be due to strong purifying selection on mt variants, coevolutionary responses in the nucleus, or a combination of both. Future experiments should explore such questions using a comparative framework and investigating other lineages with unusual mitogenomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Department of Integrative Biology, The University of Texas, Austin, TX, USA.
| | - Gregory R Noe
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Luke Link
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Amber Torres
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - David C Logan
- IRHS, INRA, Université d'Angers, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
36
|
Forsythe ES, Sharbrough J, Havird JC, Warren JM, Sloan DB. CyMIRA: The Cytonuclear Molecular Interactions Reference for Arabidopsis. Genome Biol Evol 2019; 11:2194-2202. [PMID: 31282937 PMCID: PMC6685490 DOI: 10.1093/gbe/evz144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The function and evolution of eukaryotic cells depend upon direct molecular interactions between gene products encoded in nuclear and cytoplasmic genomes. Understanding how these cytonuclear interactions drive molecular evolution and generate genetic incompatibilities between isolated populations and species is of central importance to eukaryotic biology. Plants are an outstanding system to investigate such effects because of their two different genomic compartments present in the cytoplasm (mitochondria and plastids) and the extensive resources detailing subcellular targeting of nuclear-encoded proteins. However, the field lacks a consistent classification scheme for mitochondrial- and plastid-targeted proteins based on their molecular interactions with cytoplasmic genomes and gene products, which hinders efforts to standardize and compare results across studies. Here, we take advantage of detailed knowledge about the model angiosperm Arabidopsis thaliana to provide a curated database of plant cytonuclear interactions at the molecular level. CyMIRA (Cytonuclear Molecular Interactions Reference for Arabidopsis) is available at http://cymira.colostate.edu/ and https://github.com/dbsloan/cymira and will serve as a resource to aid researchers in partitioning evolutionary genomic data into functional gene classes based on organelle targeting and direct molecular interaction with cytoplasmic genomes and gene products. It includes 11 categories (and 27 subcategories) of different cytonuclear complexes and types of molecular interactions, and it reports residue-level information for cytonuclear contact sites. We hope that this framework will make it easier to standardize, interpret, and compare studies testing the functional and evolutionary consequences of cytonuclear interactions.
Collapse
Affiliation(s)
| | | | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin
| | | | | |
Collapse
|
37
|
Yan Z, Ye G, Werren JH. Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects. Mol Biol Evol 2019; 36:1022-1036. [PMID: 30785203 DOI: 10.1093/molbev/msz036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion is a pivotal organelle for energy production, and includes components encoded by both the mitochondrial and nuclear genomes. Functional and evolutionary interactions are expected between the nuclear- and mitochondrial-encoded components. The topic is of broad interest in biology, with implications to genetics, evolution, and medicine. Here, we compare the evolutionary rates of mitochondrial proteins and ribosomal RNAs to rates of mitochondria-associated nuclear-encoded proteins, across the major orders of holometabolous insects. There are significant evolutionary rate correlations (ERCs) between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins, which are likely driven by different rates of mitochondrial sequence evolution and correlated changes in the interacting nuclear-encoded proteins. The pattern holds after correction for phylogenetic relationships and considering protein conservation levels. Correlations are stronger for both nuclear-encoded OXPHOS proteins that are in contact with mitochondrial OXPHOS proteins and for nuclear-encoded mitochondrial ribosomal amino acids directly contacting the mitochondrial rRNAs. We find that ERC between mitochondrial- and nuclear-encoded proteins is a strong predictor of nuclear-encoded proteins known to interact with mitochondria, and ERC shows promise for identifying new candidate proteins with mitochondrial function. Twenty-three additional candidate nuclear-encoded proteins warrant further study for mitochondrial function based on this approach, including proteins in the minichromosome maintenance helicase complex.
Collapse
Affiliation(s)
- Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Department of Biology, University of Rochester, Rochester, NY
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
38
|
Li C, Sun X, Conover JL, Zhang Z, Wang J, Wang X, Deng X, Wang H, Liu B, Wendel JF, Gong L. Cytonuclear Coevolution following Homoploid Hybrid Speciation in Aegilops tauschii. Mol Biol Evol 2019; 36:341-349. [PMID: 30445640 PMCID: PMC6367959 DOI: 10.1093/molbev/msy215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The diploid D-genome lineage of the Triticum/Aegilops complex has an evolutionary history involving genomic contributions from ancient A- and B/S-genome species. We explored here the possible cytonuclear evolutionary responses to this history of hybridization. Phylogenetic analysis of chloroplast DNAs indicates that the D-genome lineage has a maternal origin of the A-genome or some other closely allied lineage. Analyses of the nuclear genome in the D-genome species Aegilops tauschii indicate that accompanying and/or following this ancient hybridization, there has been biased maintenance of maternal A-genome ancestry in nuclear genes encoding cytonuclear enzyme complexes (CECs). Our study provides insights into mechanisms of cytonuclear coevolution accompanying the evolution and eventual stabilization of homoploid hybrid species. We suggest that this coevolutionary process includes likely rapid fixation of A-genome CEC orthologs as well as biased retention of A-genome nucleotides in CEC homologs following population level recombination during the initial generations.
Collapse
Affiliation(s)
- Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xuhan Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xin Deng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
39
|
Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK. Assessing the fitness consequences of mitonuclear interactions in natural populations. Biol Rev Camb Philos Soc 2019; 94:1089-1104. [PMID: 30588726 PMCID: PMC6613652 DOI: 10.1111/brv.12493] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, United States of America
| | - Justin C. Havird
- Department of Biology, Colorado State University, United States of America
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, United States of America
| | - Ronald S. Burton
- Scripps Institution of Oceanography, University of California, San Diego, United States of America
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Shrestha B, Weng ML, Theriot EC, Gilbert LE, Ruhlman TA, Krosnick SE, Jansen RK. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Mol Phylogenet Evol 2019; 138:53-64. [PMID: 31129347 DOI: 10.1016/j.ympev.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
Plastid genomes (plastomes) of photosynthetic angiosperms are for the most part highly conserved in their organization, mode of inheritance and rates of nucleotide substitution. A small number of distantly related lineages share a syndrome of features that deviate from this general pattern, including extensive genomic rearrangements, accelerated rates of nucleotide substitution, biparental inheritance and plastome-genome incompatibility. Previous studies of plastomes in Passiflora with limited taxon sampling suggested that the genus exhibits this syndrome. To examine this phenomenon further, 15 new plastomes from Passiflora were sequenced and combined with previously published data to examine the phylogenetic relationships, genome organization and evolutionary rates across all five subgenera and the sister genus Adenia. Phylogenomic analyses using 68 protein-coding genes shared by Passiflora generated a fully resolved and strongly supported tree that is congruent with previous phylogenies based on a few plastid and nuclear loci. This phylogeny was used to examine the distribution of plastome rearrangements across Passiflora. Multiple gene and intron losses and inversions were identified in Passiflora with some occurring in parallel and others that extended across the Passifloraceae. Furthermore, extensive expansions and contractions of the inverted repeat (IR) were uncovered and in some cases this resulted in exclusion of all ribosomal RNA genes from the IR. The most highly rearranged lineage was subgenus Decaloba, which experienced extensive IR expansion that incorporated up to 25 protein-coding genes usually located in large single copy region. Nucleotide substitution rate analyses of 68 protein-coding genes across the genus showed lineage- and locus-specific acceleration. Significant increase in dS, dN and dN/dS was detected for clpP across the genus and for ycf4 in certain lineages. Significant increases in dN and dN/dS for ribosomal subunits and plastid-encoded RNA polymerase genes were detected in the branch leading to the expanded IR-clade in subgenus Decaloba. This subgenus displays the syndrome of unusual features, making it an ideal system to investigate the dynamic evolution of angiosperm plastomes.
Collapse
Affiliation(s)
- Bikash Shrestha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Edward C Theriot
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Shawn E Krosnick
- Department of Biology, Tennessee Tech University, Cookeville, TN, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA; Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
41
|
Ferreira de Carvalho J, Lucas J, Deniot G, Falentin C, Filangi O, Gilet M, Legeai F, Lode M, Morice J, Trotoux G, Aury JM, Barbe V, Keller J, Snowdon R, He Z, Denoeud F, Wincker P, Bancroft I, Chèvre AM, Rousseau-Gueutin M. Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:434-447. [PMID: 30604905 DOI: 10.1111/tpj.14228] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species.
Collapse
Affiliation(s)
| | - Jérémy Lucas
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenaëlle Deniot
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Cyril Falentin
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Olivier Filangi
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Fabrice Legeai
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Maryse Lode
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Jean Keller
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Rennes, 35042, France
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | | |
Collapse
|
42
|
Williams AM, Friso G, van Wijk KJ, Sloan DB. Extreme variation in rates of evolution in the plastid Clp protease complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:243-259. [PMID: 30570818 DOI: 10.1111/tpj.14208] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 05/08/2023]
Abstract
Eukaryotic cells represent an intricate collaboration between multiple genomes, even down to the level of multi-subunit complexes in mitochondria and plastids. One such complex in plants is the caseinolytic protease (Clp), which plays an essential role in plastid protein turnover. The proteolytic core of Clp comprises subunits from one plastid-encoded gene (clpP1) and multiple nuclear genes. TheclpP1 gene is highly conserved across most green plants, but it is by far the fastest evolving plastid-encoded gene in some angiosperms. To better understand these extreme and mysterious patterns of divergence, we investigated the history ofclpP1 molecular evolution across green plants by extracting sequences from 988 published plastid genomes. We find thatclpP1 has undergone remarkably frequent bouts of accelerated sequence evolution and architectural changes (e.g. a loss of introns andRNA-editing sites) within seed plants. AlthoughclpP1 is often assumed to be a pseudogene in such cases, multiple lines of evidence suggest that this is rarely true. We applied comparative native gel electrophoresis of chloroplast protein complexes followed by protein mass spectrometry in two species within the angiosperm genusSilene, which has highly elevated and heterogeneous rates ofclpP1 evolution. We confirmed thatclpP1 is expressed as a stable protein and forms oligomeric complexes with the nuclear-encoded Clp subunits, even in one of the most divergentSilene species. Additionally, there is a tight correlation between amino acid substitution rates inclpP1 and the nuclear-encoded Clp subunits across a broad sampling of angiosperms, suggesting continuing selection on interactions within this complex.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Daniel B Sloan
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
43
|
Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Müller K, Walterová J, Pažoutová M. Homologous recombination changes the context of Cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genomics 2018; 19:874. [PMID: 30514207 PMCID: PMC6280394 DOI: 10.1186/s12864-018-5254-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Silene vulgaris (bladder campion) is a gynodioecious species existing as two genders – male-sterile females and hermaphrodites. Cytoplasmic male sterility (CMS) is generally encoded by mitochondrial genes, which interact with nuclear fertility restorer genes. Mitochondrial genomes of this species vary in DNA sequence, gene order and gene content. Multiple CMS genes are expected to exist in S. vulgaris, but little is known about their molecular identity. Results We assembled the complete mitochondrial genome from the haplotype KRA of S. vulgaris. It consists of five chromosomes, two of which recombine with each other. Two small non-recombining chromosomes exist in linear, supercoiled and relaxed circle forms. We compared the mitochondrial transcriptomes from females and hermaphrodites and confirmed the differentially expressed chimeric gene bobt as the strongest CMS candidate gene in S. vulgaris KRA. The chimeric gene bobt is co-transcribed with the Cytochrome b (cob) gene in some genomic configurations. The co-transcription of a CMS factor with an essential gene may constrain transcription inhibition as a mechanism for fertility restoration because of the need to maintain appropriate production of the necessary protein. Homologous recombination places the gene cob outside the control of bobt, which allows for the suppression of the CMS gene by the fertility restorer genes. We found the loss of three editing sites in the KRA mitochondrial genome and identified four sites with highly distinct editing rates between KRA and another S. vulgaris haplotypes (KOV). Three of these highly differentially edited sites were located in the transport membrane protein B (mttB) gene. They resulted in differences in MttB protein sequences between haplotypes. Conclusions Frequent homologous recombination events that are widespread in plant mitochondrial genomes may change chromosomal configurations and also the control of gene transcription including CMS gene expression. Posttranscriptional processes, e.g. RNA editing shall be evaluated in evolutionary and co-evolutionary studies of mitochondrial genes, because they may change protein composition despite the sequence identity of the respective genes. The investigation of natural populations of wild species such as S. vulgaris are necessary to reveal important aspects of CMS missed in domesticated crops, the traditional focus of the CMS studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5254-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - James D Stone
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Oushadee A J Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Karel Müller
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Jana Walterová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Marie Pažoutová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| |
Collapse
|
44
|
Campbell MA, Łukasik P, Meyer MC, Buckner M, Simon C, Veloso C, Michalik A, McCutcheon JP. Changes in Endosymbiont Complexity Drive Host-Level Compensatory Adaptations in Cicadas. mBio 2018; 9:e02104-18. [PMID: 30425149 PMCID: PMC6234865 DOI: 10.1128/mbio.02104-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
For insects that depend on one or more bacterial endosymbionts for survival, it is critical that these bacteria are faithfully transmitted between insect generations. Cicadas harbor two essential bacterial endosymbionts, "Candidatus Sulcia muelleri" and "Candidatus Hodgkinia cicadicola." In some cicada species, Hodgkinia has fragmented into multiple distinct but interdependent cellular and genomic lineages that can differ in abundance by more than two orders of magnitude. This complexity presents a potential problem for the host cicada, because low-abundance but essential Hodgkinia lineages risk being lost during the symbiont transmission bottleneck from mother to egg. Here we show that all cicada eggs seem to receive the full complement of Hodgkinia lineages, and that in cicadas with more complex Hodgkinia this outcome is achieved by increasing the number of Hodgkinia cells transmitted by up to 6-fold. We further show that cicada species with varying Hodgkinia complexity do not visibly alter their transmission mechanism at the resolution of cell biological structures. Together these data suggest that a major cicada adaptation to changes in endosymbiont complexity is an increase in the number of Hodgkinia cells transmitted to each egg. We hypothesize that the requirement to increase the symbiont titer is one of the costs associated with Hodgkinia fragmentation.IMPORTANCE Sap-feeding insects critically rely on one or more bacteria or fungi to provide essential nutrients that are not available at sufficient levels in their diets. These microbes are passed between insect generations when the mother places a small packet of microbes into each of her eggs before it is laid. We have previously described an unusual lineage fragmentation process in a nutritional endosymbiotic bacterium of cicadas called Hodgkinia In some cicadas, a single Hodgkinia lineage has split into numerous related lineages, each performing a subset of original function and therefore each required for normal host function. Here we test how this splitting process affects symbiont transmission to eggs. We find that cicadas dramatically increase the titer of Hodgkinia cells passed to each egg in response to lineage fragmentation, and we hypothesize that this increase in bacterial cell count is one of the major costs associated with endosymbiont fragmentation.
Collapse
Affiliation(s)
- Matthew A Campbell
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Mariah C Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Mark Buckner
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Claudio Veloso
- Department of Ecological Sciences, University of Chile, Santiago, Chile
| | - Anna Michalik
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
45
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Havird JC, Trapp P, Miller CM, Bazos I, Sloan DB. Causes and Consequences of Rapidly Evolving mtDNA in a Plant Lineage. Genome Biol Evol 2018; 9:323-336. [PMID: 28164243 PMCID: PMC5381668 DOI: 10.1093/gbe/evx010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding mechanisms of coevolution between nuclear and mitochondrial (mt) genomes is a defining challenge in eukaryotic genetics. The angiosperm genus Silene is a natural system to investigate the causes and consequences of mt mutation rate variation because closely related species have highly divergent rates. In Silene species with fast-evolving mtDNA, nuclear genes that encode mitochondrially targeted proteins (N-mt genes) are also fast-evolving. This correlation could indicate positive selection to compensate for mt mutations, but might also result from a recent relaxation of selection. To differentiate between these interpretations, we used phylogenetic and population-genetic methods to test for positive and relaxed selection in three classes of N-mt genes (oxidative phosphorylation genes, ribosomal genes, and “RRR” genes involved in mtDNA recombination, replication, and repair). In all three classes, we found that species with fast-evolving mtDNA had: 1) elevated dN/dS, 2) an excess of nonsynonymous divergence relative to levels of intraspecific polymorphism, which is a signature of positive selection, and 3) no clear signals of relaxed selection. “Control” genes exhibited comparatively few signs of positive selection. These results suggest that high mt mutation rates can create selection on N-mt genes and that relaxed selection is an unlikely cause of recent accelerations in the evolution of N-mt genes. Because mt-RRR genes were found to be under positive selection, it is unlikely that elevated mt mutation rates in Silene were caused by inactivation of these mt-RRR genes. Therefore, the causes of extreme increases in angiosperm mt mutation rates remain uncertain.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Paul Trapp
- Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Ioannis Bazos
- Department of Ecology and Systematics, National and Kapodistrian University of Athens, Panepistimiopolis, Greece
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
47
|
Sharbrough J, Cruise JL, Beetch M, Enright NM, Neiman M. Genetic Variation for Mitochondrial Function in the New Zealand Freshwater Snail Potamopyrgus antipodarum. J Hered 2018; 108:759-768. [PMID: 28460111 DOI: 10.1093/jhered/esx041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/26/2017] [Indexed: 02/04/2023] Open
Abstract
The proteins responsible for mitochondrial function are encoded by 2 different genomes with distinct inheritance regimes, rendering rigorous inference of genotype-phenotype connections intractable for all but a few model systems. Asexual organisms provide a powerful means to address these challenges because offspring produced without recombination inherit both nuclear and mitochondrial genomes from a single parent. As such, these offspring inherit mitonuclear genotypes that are identical to the mitonuclear genotypes of their parents and siblings but different from those of other asexual lineages. Here, we compared mitochondrial function across distinct asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail model for understanding the evolutionary consequences of asexuality. Our analyses revealed substantial phenotypic variation across asexual lineages at 3 levels of biological organization: mitogenomic, organellar, and organismal. These data demonstrate that different asexual lineages have different mitochondrial function phenotypes, likely reflecting heritable variation (i.e., the raw material for evolution) for mitochondrial function in P. antipodarum. The discovery of this variation combined with the methods developed here sets the stage to use P. antipodarum to study central evolutionary questions involving mitochondrial function, including whether mitochondrial mutation accumulation influences the maintenance of sexual reproduction in natural populations.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Megan Beetch
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, University of St. Thomas, Saint Paul, MN
| | | | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| |
Collapse
|
48
|
Jiang P, Shi FX, Li MR, Liu B, Wen J, Xiao HX, Li LF. Positive Selection Driving Cytoplasmic Genome Evolution of the Medicinally Important Ginseng Plant Genus Panax. FRONTIERS IN PLANT SCIENCE 2018; 9:359. [PMID: 29670636 PMCID: PMC5893753 DOI: 10.3389/fpls.2018.00359] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 05/30/2023]
Abstract
Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Feng-Xue Shi
- Northeast Normal University Natural History Museum, Changchun, China
| | - Ming-Rui Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Hong-Xing Xiao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
49
|
He P, Xiao G, Liu H, Zhang L, Zhao L, Tang M, Huang S, An Y, Yu J. Two pivotal RNA editing sites in the mitochondrial atp1mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. THE NEW PHYTOLOGIST 2018; 218:167-182. [PMID: 29417579 DOI: 10.1111/nph.14999] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
RNA editing is a post-transcriptional maturation process affecting organelle transcripts in land plants. However, the molecular functions and physiological roles of RNA editing are still poorly understood. Using high-throughput sequencing, we identified 692 RNA editing sites in the Gossypium hirsutum mitochondrial genome. A total of 422 editing sites were found in the coding regions and all the edits are cytidine (C) to uridine (U) conversions. Comparative analysis showed that two editing sites in Ghatp1, C1292 and C1415, had a prominent difference in editing efficiency between fiber and ovule. Biochemical and genetic analyses revealed that the two vital editing sites were important for the interaction between the α and β subunits of ATP synthase, which resulted in ATP accumulation and promoted cell growth in yeast. Ectopic expression of C1292, C1415, or doubly edited Ghatp1 in Arabidopsis caused a significant increase in the number of trichomes in leaves and root length. Our results indicate that editing at C1292 and C1415 sites in Ghatp1 is crucial for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. This work extends our understanding of RNA editing in atp1 and ATP synthesis, and provides insights into the function of mitochondrial edited Atp1 protein in higher plants.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihua Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Li Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Sheng Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingjie An
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
50
|
Li Y, Zhang R, Liu S, Donath A, Peters RS, Ware J, Misof B, Niehuis O, Pfrender ME, Zhou X. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evol Biol 2017; 17:269. [PMID: 29281964 PMCID: PMC5745899 DOI: 10.1186/s12862-017-1111-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/08/2017] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The primary energy-producing pathway in eukaryotic cells, the oxidative phosphorylation (OXPHOS) system, comprises proteins encoded by both mitochondrial and nuclear genes. To maintain the function of the OXPHOS system, the pattern of substitutions in mitochondrial and nuclear genes may not be completely independent. It has been suggested that slightly deleterious substitutions in mitochondrial genes are compensated by substitutions in the interacting nuclear genes due to positive selection. Among the four largest insect orders, Coleoptera (beetles), Hymenoptera (sawflies, wasps, ants, and bees), Diptera (midges, mosquitoes, and flies) and Lepidoptera (moths and butterflies), the mitochondrial genes of Hymenoptera exhibit an exceptionally high amino acid substitution rate while the evolution of nuclear OXPHOS genes is largely unknown. Therefore, Hymenoptera is an excellent model group for testing the hypothesis of positive selection driving the substitution rate of nuclear OXPHOS genes. In this study, we report the evolutionary rate of OXPHOS genes in Hymenoptera and test for evidence of positive selection in nuclear OXPHOS genes of Hymenoptera. RESULTS Our analyses revealed that the amino acid substitution rate of mitochondrial and nuclear OXPHOS genes in Hymenoptera is higher than that in other studied insect orders. In contrast, the amino acid substitution rate of non-OXPHOS genes in Hymenoptera is lower than the rate in other insect orders. Overall, we found the dN/dS ratio of the nuclear OXPHOS genes to be higher in Hymenoptera than in other insect orders. However, nuclear OXPHOS genes with high dN/dS ratio did not always exhibit a high amino acid substitution rate. Using branch-site and site model tests, we identified various codon sites that evolved under positive selection in nuclear OXPHOS genes. CONCLUSIONS Our results showed that nuclear OXPHOS genes in Hymenoptera are evolving faster than the genes in other three insect orders. The branch test suggested that while some nuclear OXPHOS genes in Hymenoptera show a signature of positive selection, the pattern is not consistent across all nuclear OXPHOS genes. As only few codon sites were under positive selection, we suggested that positive selection might not be the only factor contributing to the rapid evolution of nuclear OXPHOS genes in Hymenoptera.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN USA
- Environmental Change Initiative, Notre Dame, IN USA
| | - Rui Zhang
- China National GeneBank, BGI-Shenzhen, Guangdong Province, Shenzhen, China
| | - Shanlin Liu
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Donath
- Zoologisches Forschungsmuseum Alexander Koenig, Zentrum für Molekulare Biodiversitätsforschung (zmb), Bonn, Germany
| | - Ralph S. Peters
- Zoologisches Forschungsmuseum Alexander Koenig, Abteilung Arthropoda, Bonn, Germany
| | - Jessica Ware
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102 USA
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Evolutionary Biology and Animal Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Hauptstr. 1, 79104 Freiburg, Germany
| | - Michael E. Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN USA
- Environmental Change Initiative, Notre Dame, IN USA
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193 China
- Department of Entomology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|