1
|
Igwe MC, Ogbuabor OA, Obeagu EI. Evolutionary biology of antimalarial drug resistance: Understanding of the evolutionary dynamics. Medicine (Baltimore) 2025; 104:e41878. [PMID: 40101051 PMCID: PMC11922465 DOI: 10.1097/md.0000000000041878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Anti-malarial drug resistance poses a significant challenge to global malaria control efforts, necessitating a deeper understanding of the evolutionary dynamics underlying the emergence and spread of resistance. This study explores how evolutionary theory provides a framework for elucidating the molecular mechanisms and genetic variation within parasite populations that drive resistance evolution. Drawing on recent research findings, we discuss the role of natural selection, genetic diversity, and fitness costs in shaping resistance phenotypes. Additionally, we highlight the implications of evolutionary insights for antimalarial drug policy, treatment guidelines, and future research directions. By integrating evolutionary biology principles with molecular epidemiology, this review aims to inform strategies for combating antimalarial drug resistance and advancing malaria treatment efforts. Using evolutionary theory to understand the dynamics of antimalarial drug resistance at the molecular level, we explored the influence of genetic variation within parasite populations on the emergence and spread of resistance. Antimalarial drug resistance poses a formidable challenge to global malaria control. By applying evolutionary theory to understand the dynamics of resistance emergence and spread at the molecular level, researchers can develop more effective strategies for surveillance, prevention, and treatment of drug-resistant malaria.
Collapse
Affiliation(s)
- Matthew Chibunna Igwe
- Department of Public Health, School of Allied Health Sciences, Kampala International University, Kansanga, Uganda
| | - Ogbonna Alphonsus Ogbuabor
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Emmanuel Ifeanyi Obeagu
- Department of Medical Laboratory Science, School of Allied Health Sciences, Kampala International University, Kansanga, Uganda
| |
Collapse
|
2
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Suwanakitti N, Talawanich Y, Vanichtanankul J, Taweechai S, Yuthavong Y, Kamchonwongpaisan S, Kongkasuriyachai D. folA thyA knockout E. coli as a suitable surrogate model for evaluation of antifolate sensitivity against PfDHFR-TS. Acta Trop 2024; 258:107360. [PMID: 39142549 DOI: 10.1016/j.actatropica.2024.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
A new superior bacteria complementation model was achieved for testing antifolate compounds and investigating antifolate resistance in the dihydrofolate reductase (DHFR) enzyme of the malaria parasite. Earlier models depended on the addition of trimethoprim (TMP) to chemically suppress the host Escherichia coli (Ec) DHFR function. However, incomplete suppression of EcDHFR and potential interference of antibiotics needed to maintain plasmids for complementary gene expression can complicate the interpretations. To overcome such limitations, the folA (F) and thyA (T) genes were genetically knocked out (Δ) in E. coli BL21(DE3). The resulting EcΔFΔT cells were thymidine auxotroph where thymidine supplementation or functional complementation with heterologous DHFR-thymidylate synthase (TS) is needed to restore the loss of gene functions. When tested against pyrimethamine (PYR) and its analogs designed to target Plasmodium falciparum (Pf) DHFR-TS, the 50 % inhibitory concentration values obtained from EcΔFΔT surrogates expressing wildtype (PfTM4) or double mutant (PfK1) DHFR-TS showed strong correlations to the results obtained from the standard in vitro P. falciparum growth inhibition assay. Interestingly, while TMP had little effect on the susceptibility to PYR and analogs in EcΔFΔT expressing PfDHFR-TS, it hypersensitized the chemically knockdown E. coli BL21(DE3) expressing PfTM4 DHFR-TS but desensitized the one carrying PfK1 DHFR-TS. The low intrinsic expression level of PfTM4 in E. coli BL21(DE3) by western blot analysis may explain the hypersensitive to antifolates of chemical knockdown bacteria surrogate. These results demonstrated the usefulness of EcΔFΔT surrogate as a new tool for antifolate antimalarial screening with potential application for investigation of antifolate resistance mechanism.
Collapse
Affiliation(s)
- Nattida Suwanakitti
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Yuwadee Talawanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Supannee Taweechai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand.
| |
Collapse
|
4
|
Guo B, Borda V, Laboulaye R, Spring MD, Wojnarski M, Vesely BA, Silva JC, Waters NC, O'Connor TD, Takala-Harrison S. Strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in Plasmodium falciparum. Nat Commun 2024; 15:2499. [PMID: 38509066 PMCID: PMC10954658 DOI: 10.1038/s41467-024-46659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates. We demonstrate that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discover that the removal of IBD peak regions partially restores the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness and extent of inbreeding. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
Collapse
Affiliation(s)
- Bing Guo
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victor Borda
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roland Laboulaye
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), Lisbon, Portugal
| | - Norman C Waters
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Liu S, Ebel ER, Luniewski A, Zulawinska J, Simpson ML, Kim J, Ene N, Braukmann TWA, Congdon M, Santos W, Yeh E, Guler JL. Direct long read visualization reveals metabolic interplay between two antimalarial drug targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528367. [PMID: 36824743 PMCID: PMC9948948 DOI: 10.1101/2023.02.13.528367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Increases in the copy number of large genomic regions, termed genome amplification, are an important adaptive strategy for malaria parasites. Numerous amplifications across the Plasmodium falciparum genome contribute directly to drug resistance or impact the fitness of this protozoan parasite. During the characterization of parasite lines with amplifications of the dihydroorotate dehydrogenase (DHODH) gene, we detected increased copies of an additional genomic region that encompassed 3 genes (~5 kb) including GTP cyclohydrolase I (GCH1 amplicon). While this gene is reported to increase the fitness of antifolate resistant parasites, GCH1 amplicons had not previously been implicated in any other antimalarial resistance context. Here, we further explored the association between GCH1 and DHODH copy number. Using long read sequencing and single read visualization, we directly observed a higher number of tandem GCH1 amplicons in parasites with increased DHODH copies (up to 9 amplicons) compared to parental parasites (3 amplicons). While all GCH1 amplicons shared a consistent structure, expansions arose in 2-unit steps (from 3 to 5 to 7, etc copies). Adaptive evolution of DHODH and GCH1 loci was further bolstered when we evaluated prior selection experiments; DHODH amplification was only successful in parasite lines with pre-existing GCH1 amplicons. These observations, combined with the direct connection between metabolic pathways that contain these enzymes, lead us to propose that the GCH1 locus is beneficial for the fitness of parasites exposed to DHODH inhibitors. This finding highlights the importance of studying variation within individual parasite genomes as well as biochemical connections of drug targets as novel antimalarials move towards clinical approval.
Collapse
Affiliation(s)
- Shiwei Liu
- University of Virginia, Department of Biology, Charlottesville, VA, USA
- Current affiliation: Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily R. Ebel
- Stanford, Departments of Pediatrics and Microbiology & Immunology, Stanford, CA, USA
| | | | - Julia Zulawinska
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | | | - Jane Kim
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Nnenna Ene
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | | | - Molly Congdon
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Webster Santos
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Ellen Yeh
- Stanford University, Departments of Pathology and Microbiology & Immunology, Stanford, CA, USA
| | - Jennifer L. Guler
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| |
Collapse
|
6
|
Guo B, Borda V, Laboulaye R, Spring MD, Wojnarski M, Vesely BA, Silva JC, Waters NC, O'Connor TD, Takala-Harrison S. Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549114. [PMID: 37502843 PMCID: PMC10370022 DOI: 10.1101/2023.07.14.549114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies. We analyzed whole genome sequence data generated from 640 new and 4,026 publicly available Plasmodium falciparum clinical isolates. Our findings demonstrated that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discovered that the removal of IBD peak regions partially restored the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
Collapse
Affiliation(s)
- Bing Guo
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Victor Borda
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roland Laboulaye
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Norman C Waters
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
7
|
Leski TA, Taitt CR, Colston SM, Bangura U, Holtz A, Yasuda CY, Reynolds ND, Lahai J, Lamin JM, Baio V, Ansumana R, Stenger DA, Vora GJ. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front Microbiol 2022; 13:1059695. [DOI: 10.3389/fmicb.2022.1059695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionIn spite of promising medical, sociological, and engineering strategies and interventions to reduce the burden of disease, malaria remains a source of significant morbidity and mortality, especially among children in sub-Saharan Africa. In particular, progress in the development and administration of chemotherapeutic agents is threatened by evolved resistance to most of the antimalarials currently in use, including artemisinins.MethodsThis study analyzed the prevalence of mutations associated with antimalarial resistance in Plasmodium falciparum from 95 clinical samples collected from individuals with clinically confirmed malaria at a hospital in Bo, Sierra Leone between May 2017 and December 2018. The combination of polymerase chain reaction amplification and subsequent high throughput DNA sequencing was used to determine the presence of resistance-associated mutations in five P. falciparum genes – pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13. The geographic origin of parasites was assigned using mitochondrial sequences.ResultsRelevant mutations were detected in the pfcrt (22%), pfmdr1 (>58%), pfdhfr (100%) and pfdhps (>80%) genes while no resistance-associated mutations were found in the pfkelch13 gene. The mitochondrial barcodes were consistent with a West African parasite origin with one exception indicating an isolate imported from East Africa.DiscussionDetection of the pfmdr1 NFSND haplotype in 50% of the samples indicated the increasing prevalence of strains with elevated tolerance to artemeter + lumefantrine (AL) threatening the combination currently used to treat uncomplicated malaria in Sierra Leone. The frequency of mutations linked to resistance to antifolates suggests widespread resistance to the drug combination used for intermittent preventive treatment during pregnancy.
Collapse
|
8
|
Issa I, Lamine MM, Hubert V, Ilagouma A, Adehossi E, Mahamadou A, Lobo NF, Sarr D, Shollenberger LM, Sandrine H, Jambou R, Laminou IM. Prevalence of Mutations in the Pfdhfr, Pfdhps, and Pfmdr1 Genes of Malarial Parasites Isolated from Symptomatic Patients in Dogondoutchi, Niger. Trop Med Infect Dis 2022; 7:tropicalmed7080155. [PMID: 36006247 PMCID: PMC9413624 DOI: 10.3390/tropicalmed7080155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of artemisinin-based combination therapies (ACTs) depends not only on that of artemisinin but also on that of partner molecules. This study aims to evaluate the prevalence of mutations in the Pfdhfr, Pfdhps, and Pfmdr1 genes from isolates collected during a clinical study. Plasmodium genomic DNA samples extracted from symptomatic malaria patients from Dogondoutchi, Niger, were sequenced by the Sanger method to determine mutations in the Pfdhfr (codons 51, 59, 108, and 164), Pfdhps (codons 436, 437, 540, 581, and 613), and Pfmdr1 (codons 86, 184, 1034, and 1246) genes. One hundred fifty-five (155) pre-treatment samples were sequenced for the Pfdhfr, Pfdhps, and Pfmdr1 genes. A high prevalence of mutations in the Pfdhfr gene was observed at the level of the N51I (84.97%), C59R (92.62%), and S108N (97.39%) codons. The key K540E mutation in the Pfdhps gene was not observed. Only one isolate was found to harbor a mutation at codon I431V. The most common mutation on the Pfmdr1 gene was Y184F in 71.43% of the mutations found, followed by N86Y in 10.20%. The triple-mutant haplotype N51I/C59R/S108N (IRN) was detected in 97% of the samples. Single-mutant (ICS and NCN) and double-mutant (IRS, NRN, and ICN) haplotypes were prevalent at 97% and 95%, respectively. Double-mutant haplotypes of the Pfdhps (581 and 613) and Pfmdr (86 and 184) were found in 3% and 25.45% of the isolates studied, respectively. The study focused on the molecular analysis of the sequencing of the Pfdhfr, Pfdhps, and Pfmdr1 genes. Although a high prevalence of mutations in the Pfdhfr gene have been observed, there is a lack of sulfadoxine pyrimethamine resistance. There is a high prevalence of mutation in the Pfmdr184 codon associated with resistance to amodiaquine. These data will be used by Niger’s National Malaria Control Program to better monitor the resistance of Plasmodium to partner molecules in artemisinin-based combination therapies.
Collapse
Affiliation(s)
- Ibrahima Issa
- Centre de Recherche Médicale et Sanitaire, Niamey P.O. Box 10887, Niger; (I.I.); (A.M.); (R.J.)
| | | | - Veronique Hubert
- Centre National de Référence du Paludisme à Paris en France, 75013 Paris, France; (V.H.); (H.S.)
| | - Amadou Ilagouma
- Faculty of Sciences, University Abdou Moumouni of Niamey, Niamey P.O. Box 10662, Niger; (A.I.); (E.A.)
| | - Eric Adehossi
- Faculty of Sciences, University Abdou Moumouni of Niamey, Niamey P.O. Box 10662, Niger; (A.I.); (E.A.)
| | - Aboubacar Mahamadou
- Centre de Recherche Médicale et Sanitaire, Niamey P.O. Box 10887, Niger; (I.I.); (A.M.); (R.J.)
| | - Neil F. Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Demba Sarr
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA;
| | | | - Houze Sandrine
- Centre National de Référence du Paludisme à Paris en France, 75013 Paris, France; (V.H.); (H.S.)
| | - Ronan Jambou
- Centre de Recherche Médicale et Sanitaire, Niamey P.O. Box 10887, Niger; (I.I.); (A.M.); (R.J.)
| | - Ibrahim Maman Laminou
- Centre de Recherche Médicale et Sanitaire, Niamey P.O. Box 10887, Niger; (I.I.); (A.M.); (R.J.)
- Correspondence: ; Tel.: +227-80-88-20-22
| |
Collapse
|
9
|
Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Anderson T. Nutrient Limitation Magnifies Fitness Costs of Antimalarial Drug Resistance Mutations. Antimicrob Agents Chemother 2022; 66:e0152921. [PMID: 35465723 PMCID: PMC9112896 DOI: 10.1128/aac.01529-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Drug resistance mutations tend to disrupt key physiological processes and frequently carry fitness costs, which are a central determinant of the rate of spread of these mutations in natural populations. Head-to-head competition assays provide a standard approach to measuring fitness for malaria parasites. These assays typically use a standardized culture medium containing RPMI 1640, which has a 1.4- to 5.5-fold higher concentration of amino acids than human blood. In this rich medium, we predict that fitness costs will be underestimated because resource competition is weak. We tested this prediction using an artemisinin-sensitive parasite edited to contain kelch-C580Y or R561H mutations conferring resistance to artemisinin or synonymous control mutations. We examined the impact of these single amino acid mutations on fitness, using replicated head-to-head competition experiments conducted in media containing (i) normal RPMI, (ii) modified RPMI with reduced amino acid concentration, (iii) RPMI containing only isoleucine, or (iv) 3-fold diluted RPMI. We found a significant 1.3- to 1.4-fold increase in fitness costs measured in modified and isoleucine-only media relative to normal media, while fitness costs were 2.5-fold higher in diluted media. We conclude that fitness costs are strongly affected by media composition and will be significantly underestimated in normal RPMI. Several components differed between media, including pABA and sodium bicarbonate concentrations, so we cannot directly determine which is responsible. Elevated fitness costs in nature will limit spread of artemisinin (ART) resistance but will also promote evolution of compensatory mutations that restore fitness and can be exploited to maximize selection in laboratory experiments.
Collapse
Affiliation(s)
- Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Grace A. Arya
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tim Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
10
|
Small-Saunders JL, Hagenah LM, Wicht KJ, Dhingra SK, Deni I, Kim J, Vendome J, Gil-Iturbe E, Roepe PD, Mehta M, Mancia F, Quick M, Eppstein MJ, Fidock DA. Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathog 2022; 18:e1010278. [PMID: 35130315 PMCID: PMC8853508 DOI: 10.1371/journal.ppat.1010278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy. The recent emergence of Plasmodium falciparum parasite resistance to the antimalarial drug piperaquine (PPQ) has contributed to frequent treatment failures across Southeast Asia, originating in Cambodia. Here, we show that earlier reports of PPQ resistance in Yunnan Province, China could be explained by the unique China C variant of the P. falciparum chloroquine resistance transporter PfCRT. Gene-edited parasites show a loss of fitness and parasite resensitization to the chemically related former first-line antimalarial chloroquine, while acquiring PPQ resistance via drug efflux. Molecular features of drug resistance were examined using biochemical assays to measure mutant PfCRT-mediated drug transport and molecular dynamics simulations with the recently solved PfCRT structure to assess changes in the central drug-binding cavity. We also describe a new computational model that incorporates parasite mutation rates, fitness costs, antimalarial susceptibilities, and drug pharmacological profiles to predict how infections with parasite strains expressing distinct PfCRT variants can evolve and be selected in response to different drug pressures and regimens. Simulations predict that a three-day regimen of PPQ plus chloroquine would be fully effective at preventing recrudescence of drug-resistant infections.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Jeremie Vendome
- Schrödinger, Inc., New York, New York, United States of America
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, Washington, DC, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Monica Mehta
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Center for Molecular Recognition, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Margaret J Eppstein
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, United States of America
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Translational Global Infectious Diseases Research Center, University of Vermont, Burlington, Vermont, United States of America
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
11
|
Khairallah A, Ross CJ, Tastan Bishop Ö. GTP Cyclohydrolase I as a Potential Drug Target: New Insights into Its Allosteric Modulation via Normal Mode Analysis. J Chem Inf Model 2021; 61:4701-4719. [PMID: 34450011 DOI: 10.1021/acs.jcim.1c00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP into dihydroneopterin triphosphate (DHNP). DHNP is the first intermediate of the folate de novo biosynthesis pathway in prokaryotic and lower eukaryotic microorganisms and the tetrahydrobiopterin (BH4) biosynthesis pathway in higher eukaryotes. The de novo folate biosynthesis provides essential cofactors for DNA replication, cell division, and synthesis of key amino acids in rapidly replicating pathogen cells, such as Plasmodium falciparum (P. falciparum), a causative agent of malaria. In eukaryotes, the product of the BH4 biosynthesis pathway is essential for the production of nitric oxide and several neurotransmitter precursors. An increased copy number of the malaria parasite P. falciparum GCH1 gene has been reported to influence antimalarial antifolate drug resistance evolution, whereas mutations in the human GCH1 are associated with neuropathic and inflammatory pain disorders. Thus, GCH1 stands as an important and attractive drug target for developing therapeutics. The GCH1 intrinsic dynamics that modulate its activity remains unclear, and key sites that exert allosteric effects across the structure are yet to be elucidated. This study employed the anisotropic network model to analyze the intrinsic motions of the GCH1 structure alone and in complex with its regulatory partner protein. We showed that the GCH1 tunnel-gating mechanism is regulated by a global shear motion and an outward expansion of the central five-helix bundle. We further identified hotspot residues within sites of structural significance for the GCH1 intrinsic allosteric modulation. The obtained results can provide a solid starting point to design novel antineuropathic treatments for humans and novel antimalarial drugs against the malaria parasite P. falciparum GCH1 enzyme.
Collapse
Affiliation(s)
- Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Caroline J Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
12
|
Kreutzfeld O, Tumwebaze PK, Byaruhanga O, Katairo T, Okitwi M, Orena S, Rasmussen SA, Legac J, Conrad MD, Nsobya SL, Aydemir O, Bailey JA, Duffey M, Cooper RA, Rosenthal PJ. Decreased Susceptibility to Dihydrofolate Reductase Inhibitors Associated With Genetic Polymorphisms in Ugandan Plasmodium falciparum Isolates. J Infect Dis 2021; 225:696-704. [PMID: 34460932 PMCID: PMC8844592 DOI: 10.1093/infdis/jiab435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors pyrimethamine and cycloguanil (the active metabolite of proguanil) have important roles in malaria chemoprevention, but drug resistance challenges their efficacies. A new compound, P218, was designed to overcome resistance, but drug-susceptibility data for P falciparum field isolates are limited. METHODS We studied ex vivo PfDHFR inhibitor susceptibilities of 559 isolates from Tororo and Busia districts, Uganda, from 2016 to 2020, sequenced 383 isolates, and assessed associations between genotypes and drug-susceptibility phenotypes. RESULTS Median half-maximal inhibitory concentrations (IC50s) were 42 100 nM for pyrimethamine, 1200 nM for cycloguanil, 13000 nM for proguanil, and 0.6 nM for P218. Among sequenced isolates, 3 PfDHFR mutations, 51I (100%), 59R (93.7%), and 108N (100%), were very common, as previously seen in Uganda, and another mutation, 164L (12.8%), had moderate prevalence. Increasing numbers of mutations were associated with decreasing susceptibility to pyrimethamine, cycloguanil, and P218, but not proguanil, which does not act directly against PfDHFR. Differences in P218 susceptibilities were modest, with median IC50s of 1.4 nM for parasites with mixed genotype at position 164 and 5.7 nM for pure quadruple mutant (51I/59R/108N/164L) parasites. CONCLUSIONS Resistance-mediating PfDHFR mutations were common in Ugandan isolates, but P218 retained excellent activity against mutant parasites.
Collapse
Affiliation(s)
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Jennifer Legac
- University of California, San Francisco, California, USA
| | | | - Sam L Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Roland A Cooper
- Dominican University of California, San Rafael, California, USA
| | - Philip J Rosenthal
- Correspondence: Philip J. Rosenthal, MD, Department of Medicine, University of California, Box 0811, San Francisco, CA 94143 USA ()
| |
Collapse
|
13
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
14
|
Asua V, Conrad MD, Aydemir O, Duvalsaint M, Legac J, Duarte E, Tumwebaze P, Chin DM, Cooper RA, Yeka A, Kamya MR, Dorsey G, Nsobya SL, Bailey J, Rosenthal PJ. Changing Prevalence of Potential Mediators of Aminoquinoline, Antifolate, and Artemisinin Resistance Across Uganda. J Infect Dis 2021; 223:985-994. [PMID: 33146722 PMCID: PMC8006419 DOI: 10.1093/infdis/jiaa687] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs.
Collapse
Affiliation(s)
- Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Marvin Duvalsaint
- University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Elias Duarte
- University of California, San Francisco, San Francisco, California, USA
| | | | | | - Roland A Cooper
- Dominican University of California, San Rafael, California, USA
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- University of California, San Francisco, San Francisco, California, USA
| | - Sam L Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | |
Collapse
|
15
|
Ugwuja DI, Okoro U, Soman S, Ibezim A, Ugwu D, Soni R, Obi B, Ezugwu J, Ekoh O. New glycine derived peptides bearing benzenesulphonamide as an antiplasmodial agent. NEW J CHEM 2021. [DOI: 10.1039/d0nj04387g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the tropics, malaria is among the most serious infectious diseases in developing countries. The discovery of the artemesinin antimalarial drug not too long ago was a major breakthrough in the effort to combat the malaria disease.
Collapse
Affiliation(s)
| | - Uchechukwu Okoro
- Department of Pure and Industrial Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | - Shubhanji Soman
- Department of Chemistry, The Maharaja Sayajirao University of Baroda
- Vadodara
- India
| | - Akachukwu Ibezim
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | - David Ugwu
- Department of Pure and Industrial Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | - Rina Soni
- Department of Chemistry, The Maharaja Sayajirao University of Baroda
- Vadodara
- India
| | - Bonaventure Obi
- Department of Pharmacology and Toxicology, University of Nigeria
- Nsukka
- Nigeria
| | - James Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | | |
Collapse
|
16
|
Turkiewicz A, Manko E, Sutherland CJ, Diez Benavente E, Campino S, Clark TG. Genetic diversity of the Plasmodium falciparum GTP-cyclohydrolase 1, dihydrofolate reductase and dihydropteroate synthetase genes reveals new insights into sulfadoxine-pyrimethamine antimalarial drug resistance. PLoS Genet 2020; 16:e1009268. [PMID: 33382691 PMCID: PMC7774857 DOI: 10.1371/journal.pgen.1009268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum parasites resistant to antimalarial treatments have hindered malaria disease control. Sulfadoxine-pyrimethamine (SP) was used globally as a first-line treatment for malaria after wide-spread resistance to chloroquine emerged and, although replaced by artemisinin combinations, is currently used as intermittent preventive treatment of malaria in pregnancy and in young children as part of seasonal malaria chemoprophylaxis in sub-Saharan Africa. The emergence of SP-resistant parasites has been predominantly driven by cumulative build-up of mutations in the dihydrofolate reductase (pfdhfr) and dihydropteroate synthetase (pfdhps) genes, but additional amplifications in the folate pathway rate-limiting pfgch1 gene and promoter, have recently been described. However, the genetic make-up and prevalence of those amplifications is not fully understood. We analyse the whole genome sequence data of 4,134 P. falciparum isolates across 29 malaria endemic countries, and reveal that the pfgch1 gene and promoter amplifications have at least ten different forms, occurring collectively in 23% and 34% in Southeast Asian and African isolates, respectively. Amplifications are more likely to be present in isolates with a greater accumulation of pfdhfr and pfdhps substitutions (median of 1 additional mutations; P<0.00001), and there was evidence that the frequency of pfgch1 variants may be increasing in some African populations, presumably under the pressure of SP for chemoprophylaxis and anti-folate containing antibiotics used for the treatment of bacterial infections. The selection of P. falciparum with pfgch1 amplifications may enhance the fitness of parasites with pfdhfr and pfdhps substitutions, potentially threatening the efficacy of this regimen for prevention of malaria in vulnerable groups. Our work describes new pfgch1 amplifications that can be used to inform the surveillance of SP drug resistance, its prophylactic use, and future experimental work to understand functional mechanisms.
Collapse
Affiliation(s)
- Anna Turkiewicz
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emilia Manko
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J. Sutherland
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
17
|
Zhou X, Zhang J, Hu X, He P, Guo J, Li J, Lan T, Liu J, Peng L, Li H. Pyrimethamine Elicits Antitumor Effects on Prostate Cancer by Inhibiting the p38-NF-κB Pathway. Front Pharmacol 2020; 11:758. [PMID: 32523533 PMCID: PMC7261869 DOI: 10.3389/fphar.2020.00758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Since incurable castration-resistant prostate cancer (CRPC) inevitably develops following treatment with androgen deprivation therapy, there is an urgent need to devise new therapeutic strategies to treat this cancer. Pyrimethamine, an FDA-approved antimalarial drug, is known to exert an antitumor activity in various types of human cancer cells. However, whether pyrimethamine can inhibit prostate cancer is not well established. Hence, the present study aimed to characterize the mechanism of action of pyrimethamine on prostate cancer. We investigated the potential effect of pyrimethamine on cell proliferation, cell cycle, and apoptosis in metastatic DU145 and PC3 prostate cancer cells. We found that pyrimethamine inhibited cell proliferation, induced cell cycle arrest in the S phase, and promoted cell apoptosis of prostate cells in vitro; it also suppressed tumor growth in xenograft models. In addition, we observed that pyrimethamine suppressed prostate cancer growth by inhibiting the p38-NF-κB axis in vitro and in vivo. Thus, this study demonstrates that pyrimethamine is a novel p38 inhibitor that can exert antiproliferative and proapoptotic effects in prostate cancer by affecting cell cycle and intrinsic apoptotic signaling, thereby providing a novel strategy for using pyrimethamine in CRPC treatment.
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Department of Respiration, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Hu
- Department of Pharmacy, Affiliated Tumor Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peiqing He
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianyu Guo
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tian Lan
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jumei Liu
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lilan Peng
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hua Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Romphosri S, Changruenngam S, Chookajorn T, Modchang C. Role of a Concentration Gradient in Malaria Drug Resistance Evolution: A Combined within- and between-Hosts Modelling Approach. Sci Rep 2020; 10:6219. [PMID: 32277158 PMCID: PMC7148383 DOI: 10.1038/s41598-020-63283-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Resistance to antimalarial drugs is currently a growing public health problem, resulting in more cases with treatment failure. Although previous studies suggested that a concentration gradient facilitates the antibiotic resistance evolution in bacteria, no attempt has been made to investigate the roles of a concentration gradient in malaria drug resistance. Unlike the person-to-person mode of transmission of bacteria, the malaria parasites need to switch back and forth between the human and mosquito hosts to complete the life cycle and to spread the resistant alleles. Here we developed a stochastic combined within- and between-hosts evolutionary dynamics model specific to malaria parasites in order to investigate the influence of an antimalarial concentration gradient on the evolutionary dynamics of malaria drug resistance. Every stage of malaria development in both human and mosquito hosts are individually modelled using the tau-leaping algorithm. We found that the concentration gradient can accelerate antimalarial resistance evolution. The gain in resistance evolution was improved by the increase in the parasite mutation rate and the mosquito biting rate. In addition, even though the rate of resistance evolution is not sensitive to the changes in parasite reduction ratios (PRRs) of antimalarial drugs, the probability of finding the antimalarial drug resistant parasites decreases when the PRR increases.
Collapse
Affiliation(s)
- Suwat Romphosri
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suttikiat Changruenngam
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit (GEM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Centre of Excellence in Mathematics, CHE, Bangkok, 10400, Thailand.
- Thailand Center of Excellence in Physics, CHE, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand.
| |
Collapse
|
19
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
20
|
Stokes BH, Yoo E, Murithi JM, Luth MR, Afanasyev P, da Fonseca PCA, Winzeler EA, Ng CL, Bogyo M, Fidock DA. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog 2019; 15:e1007722. [PMID: 31170268 PMCID: PMC6553790 DOI: 10.1371/journal.ppat.1007722] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/21/2019] [Indexed: 01/12/2023] Open
Abstract
Therapeutics with novel modes of action and a low risk of generating resistance are urgently needed to combat drug-resistant Plasmodium falciparum malaria. Here, we report that the peptide vinyl sulfones WLL-vs (WLL) and WLW-vs (WLW), highly selective covalent inhibitors of the P. falciparum proteasome, potently eliminate genetically diverse parasites, including K13-mutant, artemisinin-resistant lines, and are particularly active against ring-stage parasites. Selection studies reveal that parasites do not readily acquire resistance to WLL or WLW and that mutations in the β2, β5 or β6 subunits of the 20S proteasome core particle or in components of the 19S proteasome regulatory particle yield only <five-fold decreases in parasite susceptibility. This result compares favorably against previously published non-covalent inhibitors of the Plasmodium proteasome that can select for resistant parasites with >hundred-fold decreases in susceptibility. We observed no cross-resistance between WLL and WLW. Moreover, most mutations that conferred a modest loss of parasite susceptibility to one inhibitor significantly increased sensitivity to the other. These inhibitors potently synergized multiple chemically diverse classes of antimalarial agents, implicating a shared disruption of proteostasis in their modes of action. These results underscore the potential of targeting the Plasmodium proteasome with covalent small molecule inhibitors as a means of combating multidrug-resistant malaria. The spread of artemisinin-resistant Plasmodium falciparum malaria across Southeast Asia creates an imperative to develop new treatment options with compounds that are not susceptible to existing mechanisms of antimalarial drug resistance. Recent work has identified the P. falciparum proteasome as a promising drug target. Here, we report potent antimalarial activity of highly selective vinyl sulfone-conjugated peptide proteasome inhibitors, including against artemisinin-resistant P. falciparum early ring-stage parasites that are traditionally difficult to treat. Unlike many advanced antimalarial candidates, these covalent proteasome inhibitors do not readily select for resistance. Selection studies with cultured parasites reveal infrequent and minor decreases in susceptibility resulting from point mutations in components of the 26S proteasome, which we model using cryo-electron microscopy-based structural data. No parasites were observed to be cross-resistant to both compounds; in fact, partial resistance to one compound often created hypersensitivity to the other. We also document potent synergy between these covalent proteasome inhibitors and multiple classes of antimalarial agents, including dihydroartemisinin, the clinical candidate OZ439, and the parasite transmission-blocking agent methylene blue. Proteasome inhibitors have significant promise as components of novel combination therapies to treat multidrug-resistant malaria.
Collapse
Affiliation(s)
- Barbara H. Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Euna Yoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Madeline R. Luth
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, School of Medicine, San Diego, CA, United States of America
| | - Pavel Afanasyev
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Paula C. A. da Fonseca
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Elizabeth A. Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, School of Medicine, San Diego, CA, United States of America
| | - Caroline L. Ng
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
- * E-mail: (CLN); (MB); (DAF)
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail: (CLN); (MB); (DAF)
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
- * E-mail: (CLN); (MB); (DAF)
| |
Collapse
|
21
|
Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments-a WWARN individual patient data meta-analysis. BMC Med 2019; 17:1. [PMID: 30651111 PMCID: PMC6335805 DOI: 10.1186/s12916-018-1207-3] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/01/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Plasmodium falciparum infections with slow parasite clearance following artemisinin-based therapies are widespread in the Greater Mekong Subregion. A molecular marker of the slow clearance phenotype has been identified: single genetic changes within the propeller region of the Kelch13 protein (pfk13; Pf3D7_1343700). Global searches have identified almost 200 different non-synonymous mutant pfk13 genotypes. Most mutations occur at low prevalence and have uncertain functional significance. To characterize the impact of different pfk13 mutations on parasite clearance, we conducted an individual patient data meta-analysis of the associations between parasite clearance half-life (PC1/2) and pfk13 genotype based on a large set of individual patient records from Asia and Africa. METHODS A systematic literature review following the PRISMA protocol was conducted to identify studies published between 2000 and 2017 which included frequent parasite counts and pfk13 genotyping. Four databases (Ovid Medline, PubMed, Ovid Embase, and Web of Science Core Collection) were searched. Eighteen studies (15 from Asia, 2 from Africa, and one multicenter study with sites on both continents) met inclusion criteria and were shared. Associations between the log transformed PC1/2 values and pfk13 genotype were assessed using multivariable regression models with random effects for study site. RESULTS Both the pfk13 genotypes and the PC1/2 were available from 3250 (95%) patients (n = 3012 from Asia (93%), n = 238 from Africa (7%)). Among Asian isolates, all pfk13 propeller region mutant alleles observed in five or more specific isolates were associated with a 1.5- to 2.7-fold longer geometric mean PC1/2 compared to the PC1/2 of wild type isolates (all p ≤ 0.002). In addition, mutant allele E252Q located in the P. falciparum region of pfk13 was associated with 1.5-fold (95%CI 1.4-1.6) longer PC1/2. None of the isolates from four countries in Africa showed a significant difference between the PC1/2 of parasites with or without pfk13 propeller region mutations. Previously, the association of six pfk13 propeller mutant alleles with delayed parasite clearance had been confirmed. This analysis demonstrates that 15 additional pfk13 alleles are associated strongly with the slow-clearing phenotype in Southeast Asia. CONCLUSION Pooled analysis associated 20 pfk13 propeller region mutant alleles with the slow clearance phenotype, including 15 mutations not confirmed previously.
Collapse
|
22
|
Liu H, Qin Y, Zhai D, Zhang Q, Gu J, Tang Y, Yang J, Li K, Yang L, Chen S, Zhong W, Meng J, Liu Y, Sun T, Yang C. Antimalarial Drug Pyrimethamine Plays a Dual Role in Antitumor Proliferation and Metastasis through Targeting DHFR and TP. Mol Cancer Ther 2019; 18:541-555. [DOI: 10.1158/1535-7163.mct-18-0936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022]
|
23
|
Loesbanluechai D, Kotanan N, de Cozar C, Kochakarn T, Ansbro MR, Chotivanich K, White NJ, Wilairat P, Lee MCS, Gamo FJ, Sanz LM, Chookajorn T, Kümpornsin K. Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 9:16-22. [PMID: 30580023 PMCID: PMC6304341 DOI: 10.1016/j.ijpddr.2018.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 01/31/2023]
Abstract
Artemisinin derivatives and their partner drugs in artemisinin combination therapies (ACTs) have played a pivotal role in global malaria mortality reduction during the last two decades. The loss of artemisinin efficacy due to evolving drug-resistant parasites could become a serious global health threat. Dihydroartemisinin-piperaquine is a well tolerated and generally highly effective ACT. The implementation of a partner drug in ACTs is critical in the control of emerging artemisinin resistance. Even though artemisinin is highly effective in parasite clearance, it is labile in the human body. A partner drug is necessary for killing the remaining parasites when the pulses of artemisinin have ceased. A population of Plasmodium falciparum parasites in Cambodia and adjacent countries has become resistant to piperaquine. Increased copy number of the genes encoding the haemoglobinases Plasmepsin II and Plasmepsin III has been linked with piperaquine resistance by genome-wide association studies and in clinical trials, leading to the use of increased plasmepsin II/plasmepsin III copy number as a molecular marker for piperaquine resistance. Here we demonstrate that overexpression of plasmepsin II and plasmepsin III in the 3D7 genetic background failed to change the susceptibility of P. falciparum to artemisinin, chloroquine and piperaquine by both a standard dose-response analysis and a piperaquine survival assay. Whilst plasmepsin copy number polymorphism is currently implemented as a molecular surveillance resistance marker, further studies to discover the molecular basis of piperaquine resistance and potential epistatic interactions are needed.
Collapse
Affiliation(s)
- Duangkamon Loesbanluechai
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand; Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Namfon Kotanan
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Cristina de Cozar
- Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain
| | - Theerarat Kochakarn
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Megan R Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA; Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Prapon Wilairat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Francisco Javier Gamo
- Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain
| | - Laura Maria Sanz
- Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Krittikorn Kümpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| |
Collapse
|
24
|
Cowell A, Winzeler E. Exploration of the Plasmodium falciparum Resistome and Druggable Genome Reveals New Mechanisms of Drug Resistance and Antimalarial Targets. Microbiol Insights 2018; 11:1178636118808529. [PMID: 30505148 PMCID: PMC6259053 DOI: 10.1177/1178636118808529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022] Open
Abstract
Plasmodium parasites, the causative agent of malaria infections, rapidly evolve drug resistance and escape detection by the human immune response via the incredible mutability of its genome. Understanding the genetic mechanisms by which Plasmodium parasites develop antimalarial resistance is essential to understanding why most drugs fail in the clinic and designing the next generation of therapies. A systematic genomic analysis of 262 Plasmodium falciparum clones with stable in vitro resistance to 37 diverse compounds with potent antimalarial activity was undertaken with the main goal of identifying new drug targets. Despite several challenges inherent to this method of in vitro drug resistance generation followed by whole genome sequencing, the study was able to identify a likely drug target or resistance gene for every compound for which resistant parasites could be generated. Known and novel P falciparum resistance mediators were discovered along with several new promising antimalarial drug targets. Surprisingly, gene amplification events contributed to one-third of the drug resistance acquisition events. The study can serve as a model for drug discovery and resistance analyses in other similar microbial pathogens amenable to in vitro culture.
Collapse
Affiliation(s)
- Annie Cowell
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Elizabeth Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
25
|
Osei M, Ansah F, Matrevi SA, Asante KP, Awandare GA, Quashie NB, Duah NO. Amplification of GTP-cyclohydrolase 1 gene in Plasmodium falciparum isolates with the quadruple mutant of dihydrofolate reductase and dihydropteroate synthase genes in Ghana. PLoS One 2018; 13:e0204871. [PMID: 30265714 PMCID: PMC6162080 DOI: 10.1371/journal.pone.0204871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Sulfadoxine-pyrimethamine (SP) is used as malaria chemoprophylaxis for pregnant women and children in Ghana. Plasmodium falciparum resistance to SP is linked to mutations in the dihydropteroate synthase gene (pfdhps), dihydrofolate reductase gene (pfdhfr) and amplification of GTP cyclohydrolase 1 (pfgch1) gene. The pfgch1 duplication is associated with pfdhfr L164, a crucial mutant for high level pyrimethamine resistance which is rare in Ghana. The presence of amplified pfgch1 in Ghanaian isolates could be an indicator of the evolution of the L164 mutant. This study therefore determined the pfgch1 copy number variations and SP resistance mutations in clinical isolates from Ghana. One hundred and ninety-two (192) blood samples collected from children aged ≤14 years with uncomplicated malaria in 2013-14 and 2015-16 were used. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the pfgch1 copy number and nested PCR-Sanger sequencing used to detect mutations in pfdhps and pfdhfr genes. Twelve parasites (6.3%) harbored double copies of the pfgch1 gene out of the 192 samples. Of the 12, 75% had the pfdhfr I51-R59-N108, 92% had the pfdhps G437 mutant, 8% had the pfdhps E540 and 67% had the SP resistance haplotype IRNG. No L164 was detected in samples with amplified pfgch1. The rare T108 mutant associated with cycloguanil resistance showed predominance (60%) over N108 in the 2015-16 isolates. The observation of parasites with increased copy number of pfgch1 gene is indicative of the future evolution of the rare quadruple pfdhfr mutant, I51-R59-N108-L164, in Ghanaian parasites. Mutant pfdhps isolates also had increased gch1 copy number suggestive that it may also facilitate sulphadoxine resistance. The selection of parasites with pfgch1 gene amplification will enhance the sustenance and persistence of parasites with SP resistance in the country. Policy makers need to begin the search for a replacement chemoprophylaxis drug for malaria vulnerable groups in Ghana.
Collapse
Affiliation(s)
- Musah Osei
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sena A. Matrevi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Neils B. Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nancy O. Duah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
26
|
Fitness Loss under Amino Acid Starvation in Artemisinin-Resistant Plasmodium falciparum Isolates from Cambodia. Sci Rep 2018; 8:12622. [PMID: 30135481 PMCID: PMC6105667 DOI: 10.1038/s41598-018-30593-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
Artemisinin is the most rapidly effective drug for Plasmodium falciparum malaria treatment currently in clinical use. Emerging artemisinin-resistant parasites pose a great global health risk. At present, the level of artemisinin resistance is still relatively low with evidence pointing towards a trade-off between artemisinin resistance and fitness loss. Here we show that artemisinin-resistant P. falciparum isolates from Cambodia manifested fitness loss, showing fewer progenies during the intra-erythrocytic developmental cycle. The loss in fitness was exacerbated under the condition of low exogenous amino acid supply. The resistant parasites failed to undergo maturation, whereas their drug-sensitive counterparts were able to complete the erythrocytic cycle under conditions of amino acid deprivation. The artemisinin-resistant phenotype was not stable, and loss of the phenotype was associated with changes in the expression of a putative target, Exp1, a membrane glutathione transferase. Analysis of SNPs in haemoglobin processing genes revealed associations with parasite clearance times, suggesting changes in haemoglobin catabolism may contribute to artemisinin resistance. These findings on fitness and protein homeostasis could provide clues on how to contain emerging artemisinin-resistant parasites.
Collapse
|
27
|
Abstract
It is rare to come across an Aesop’s fable in respectable journals. It might catch scientists outside the malaria field by surprise to learn that the famous story of “The Boy Who Cried Wolf” has been repeatedly compared to the threat from artemisinin-resistant malaria parasites, including the two latest reports on the rise of a specific haplotype in Cambodia and Thailand, sensationally dubbed “Super Malaria” by the media [1, 2]. The comparison to a children’s tale should not negate the fact that malaria drug resistance is one of the most pressing threats to the global public health community. Here, the findings leading to this contentious discourse will be delineated in order to provide a perspective. Possible solutions will be presented to stimulate further research and discussion to solve one of the greatest public health challenges of our lifetime.
Collapse
Affiliation(s)
- Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit (GEM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
28
|
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23:917-928. [PMID: 28777791 DOI: 10.1038/nm.4381] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.
Collapse
Affiliation(s)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
29
|
Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J 2017; 16:152. [PMID: 28420389 PMCID: PMC5395969 DOI: 10.1186/s12936-017-1806-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/07/2017] [Indexed: 12/29/2022] Open
Abstract
Background Parasite resistance to anti-malarials represents a great obstacle for malaria elimination. The majority of studies have investigated the association between single-nucleotide polymorphisms (SNPs) and drug resistance; however, it is becoming clear that the copy number variation (CNV) is also associated with this parasite phenotype. To provide a baseline for molecular surveillance of anti-malarial drug resistance in the Brazilian Amazon, the present study characterized the genetic profile of both markers in the most common genes associated with drug resistance in Plasmodium falciparum and Plasmodium vivax isolates. Additionally, these data were compared to data published elsewhere applying a systematic review of the literature published over a 20-year time period. Methods The genomic DNA of 67 patients infected by P. falciparum and P. vivax from three Brazilian States was obtained between 2002 and 2012. CNV in P. falciparum multidrug resistance gene-1 (pfmdr1), GTP cyclohydrolase 1 (pfgch1) and P. vivax multidrug resistance gene-1 (pvmdr1) were assessed by real-time PCR assays. SNPs in the pfmdr1 and pfcrt genes were assessed by PCR–RFLP. A literature search for studies that analysed CNP in the same genes of P. falciparum and P. vivax was conducted between May 2014 and March 2017 across four databases. Results All analysed samples of P. falciparum carried only one copy of pfmdr1 or pfgch1. Although the pfcrt K76T polymorphism, a determinant of CQ resistance, was present in all samples genotyped, the pfmdr1 N86Y was absent. For P. vivax isolates, an amplification rate of 20% was found for the pvmdr1 gene. The results of the study are in agreement with the low amplification rates for pfmdr1 gene evidenced in the Americas and Africa, while higher rates have been described in Southeast Asia. For P. vivax, very low rates of amplification for pvmdr1 have been described worldwide, with exceptions in French Guiana, Cambodia, Thailand and Brazil. Conclusions The present study was the first to evaluate gch1 CNV in P. falciparum isolates from Brazil, showing an absence of amplification of this gene more than 20 years after the withdrawal of the Brazilian antifolates therapeutic scheme. Furthermore, the rate of pvmdr1 amplification was significantly higher than that previously reported for isolates circulating in Northern Brazil. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1806-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Luíz Costa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Lara Cotta Amaral
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
30
|
Nicoleti NH, Batagin-Neto A, Lavarda FC. Electronic descriptors for the antimalarial activity of sulfonamides. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1596-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Aroonsri A, Akinola O, Posayapisit N, Songsungthong W, Uthaipibull C, Kamchonwongpaisan S, Gbotosho GO, Yuthavong Y, Shaw PJ. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling. Int J Parasitol 2016; 46:527-35. [PMID: 27150044 DOI: 10.1016/j.ijpara.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites.
Collapse
Affiliation(s)
- Aiyada Aroonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Olugbenga Akinola
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand; Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Navaporn Posayapisit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Warangkhana Songsungthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Grace O Gbotosho
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Philip J Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
32
|
Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, Vaughan AM, Springer TA, Moritz RL, Kappe SHI, Sinnis P. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathog 2016; 12:e1005606. [PMID: 27128092 PMCID: PMC4851412 DOI: 10.1371/journal.ppat.1005606] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens. Malaria remains one of the most important infectious diseases in the world, responsible for an estimated 500 million new cases and 600,000 deaths annually. The etiologic agents of the disease are protozoan parasites of the genus Plasmodium that have a complex cycle between mosquito and mammalian hosts. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages that we can make an impact on the economic and health burdens of malaria. Infection is initiated when mosquitoes inoculate sporozoites into the skin as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. The inoculum is low and these early stages of infection are asymptomatic. Though the small amounts of material available for study has made large scale -omics studies difficult, killing the parasite at this stage would prevent infection and block downstream transmission to mosquitoes, thus preventing spread of disease. Here we use state-of-the-art biochemistry tools to identify the proteins on the sporozoite surface and find that two of the most studied proteins, CSP and TRAP, have post-translational modifications. These studies will aid investigations into the novel biology of sporozoites and importantly, significantly expand the pool of potential vaccine candidates.
Collapse
Affiliation(s)
| | - Scott E. Lindner
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lirong Shi
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melanie J. Shears
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anke Harupa
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Christine S. Hopp
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ashley M. Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Stefan H. I. Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Photini Sinnis
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| |
Collapse
|
33
|
Bushman M, Morton L, Duah N, Quashie N, Abuaku B, Koram KA, Dimbu PR, Plucinski M, Gutman J, Lyaruu P, Kachur SP, de Roode JC, Udhayakumar V. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum. Proc Biol Sci 2016; 283:20153038. [PMID: 26984625 PMCID: PMC4810865 DOI: 10.1098/rspb.2015.3038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/16/2016] [Indexed: 11/12/2022] Open
Abstract
Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.
Collapse
Affiliation(s)
- Mary Bushman
- Department of Biology, Emory University, Atlanta, GA 30322, USA Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Lindsay Morton
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Nancy Duah
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Neils Quashie
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana
| | - Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Mateusz Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Julie Gutman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Peter Lyaruu
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - S Patrick Kachur
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
34
|
Gabryszewski SJ, Modchang C, Musset L, Chookajorn T, Fidock DA. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum. Mol Biol Evol 2016; 33:1554-70. [PMID: 26908582 PMCID: PMC4868112 DOI: 10.1093/molbev/msw037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum. A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field.
Collapse
Affiliation(s)
| | - Charin Modchang
- Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lise Musset
- Laboratoire de Parasitologie, WHO Collaborating Center for Surveillance of Anti-Malarial Drug Resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit, Center of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
35
|
Ponsuwanna P, Kochakarn T, Bunditvorapoom D, Kümpornsin K, Otto TD, Ridenour C, Chotivanich K, Wilairat P, White NJ, Miotto O, Chookajorn T. Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites. Malar J 2016; 15:51. [PMID: 26821618 PMCID: PMC4731938 DOI: 10.1186/s12936-016-1097-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/12/2016] [Indexed: 11/25/2022] Open
Abstract
Background Malaria parasites have evolved a series of intricate mechanisms to survive and propagate within host red blood cells. Intra-erythrocytic parasitism requires these organisms to digest haemoglobin and detoxify iron-bound haem. These tasks are executed by haemoglobin-specific proteases and haem biocrystallization factors that are components of a large multi-subunit complex. Since haemoglobin processing machineries are functionally and genetically linked to the modes of action and resistance mechanisms of several anti-malarial drugs, an understanding of their evolutionary history is important for drug development and drug resistance prevention. Methods Maximum likelihood trees of genetic repertoires encoding haemoglobin processing machineries within Plasmodium species, and with the representatives of Apicomplexan species with various host tropisms, were created. Genetic variants were mapped onto existing three-dimensional structures. Genome-wide single nucleotide polymorphism data were used to analyse the selective pressure and the effect of these mutations at the structural level. Results Recent expansions in the falcipain and plasmepsin repertoires are unique to human malaria parasites especially in the Plasmodium falciparum and P. reichenowi lineage. Expansion of haemoglobin-specific plasmepsins occurred after the separation event of Plasmodium species, but the other members of the plasmepsin family were evolutionarily conserved with one copy for each sub-group in every Apicomplexan species. Haemoglobin-specific falcipains are separated from invasion-related falcipain, and their expansions within one specific locus arose independently in both P. falciparum and P. vivax lineages. Gene conversion between P. falciparum falcipain 2A and 2B was observed in artemisinin-resistant strains. Comparison between the numbers of non-synonymous and synonymous mutations suggests a strong selective pressure at falcipain and plasmepsin genes. The locations of amino acid changes from non-synonymous mutations mapped onto protein structures revealed clusters of amino acid residues in close proximity or near the active sites of proteases. Conclusion A high degree of polymorphism at the haemoglobin processing genes implicates an imposition of selective pressure. The identification in recent years of functional redundancy of haemoglobin-specific proteases makes them less appealing as potential drug targets, but their expansions, especially in the human malaria parasite lineages, unequivocally point toward their functional significance during the independent and repetitive adaptation events in malaria parasite evolutionary history. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1097-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrath Ponsuwanna
- Genomic and Evolutionary Medicine Unit, Centre of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Theerarat Kochakarn
- Genomic and Evolutionary Medicine Unit, Centre of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Duangkamon Bunditvorapoom
- Genomic and Evolutionary Medicine Unit, Centre of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand. .,Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Krittikorn Kümpornsin
- Genomic and Evolutionary Medicine Unit, Centre of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| | - Chase Ridenour
- Genomic and Evolutionary Medicine Unit, Centre of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Kesinee Chotivanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Prapon Wilairat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Wellcome Trust Sanger Institute, Hinxton, UK. .,Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK.
| | - Thanat Chookajorn
- Genomic and Evolutionary Medicine Unit, Centre of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
36
|
Adjalley SH, Scanfeld D, Kozlowski E, Llinás M, Fidock DA. Genome-wide transcriptome profiling reveals functional networks involving the Plasmodium falciparum drug resistance transporters PfCRT and PfMDR1. BMC Genomics 2015; 16:1090. [PMID: 26689807 PMCID: PMC4687325 DOI: 10.1186/s12864-015-2320-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The acquisition of multidrug resistance by Plasmodium falciparum underscores the need to understand the underlying molecular mechanisms so as to counter their impact on malaria control. For the many antimalarials whose mode of action relates to inhibition of heme detoxification inside infected erythrocytes, the digestive vacuole transporters PfCRT and PfMDR1 constitute primary resistance determinants. RESULTS Using gene expression microarrays over the course of the parasite intra-erythrocytic developmental cycle, we compared the transcriptomic profiles between P. falciparum strains displaying mutant or wild-type pfcrt or varying in pfcrt or pfmdr1 expression levels. To account for differences in the time of sampling, we developed a computational method termed Hypergeometric Analysis of Time Series, which combines Fast Fourier Transform with a modified Gene Set Enrichment Analysis. Our analysis revealed coordinated changes in genes involved in protein catabolism, translation initiation and DNA/RNA metabolism. We also observed differential expression of genes with a role in transport or coding for components of the digestive vacuole. Interestingly, a global comparison of all profiled transcriptomes uncovered a tight correlation between the transcript levels of pfcrt and pfmdr1, extending to dozens of other genes, suggesting an intricate regulatory balance in order to maintain optimal physiological processes. CONCLUSIONS This study provides insight into the mechanisms by which P. falciparum adjusts to the acquisition of mutations or gene amplification in key transporter loci that mediate drug resistance. Our results implicate several biological pathways that may be differentially regulated to compensate for impaired transporter function and alterations in parasite vacuole physiology.
Collapse
Affiliation(s)
- Sophie H Adjalley
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Present addresses: Wellcome Trust Sanger Institute, Hinxton, UK.
| | - Daniel Scanfeld
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Present addresses: Google Inc., New York, NY, 10011, USA.
| | - Elyse Kozlowski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Present addresses: Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Biochemistry and Molecular Biology, Department of Chemistry, Center for Malaria Research and Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, PA, 16802, USA.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
37
|
Cheeseman IH, Miller B, Tan JC, Tan A, Nair S, Nkhoma SC, De Donato M, Rodulfo H, Dondorp A, Branch OH, Mesia LR, Newton P, Mayxay M, Amambua-Ngwa A, Conway DJ, Nosten F, Ferdig MT, Anderson TJC. Population Structure Shapes Copy Number Variation in Malaria Parasites. Mol Biol Evol 2015; 33:603-20. [PMID: 26613787 PMCID: PMC4760083 DOI: 10.1093/molbev/msv282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.
Collapse
Affiliation(s)
- Ian H Cheeseman
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Becky Miller
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - John C Tan
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - Asako Tan
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Marcos De Donato
- Lab. Genetica Molecular, IIBCAUDO, Universidad De Oriente, Cumana, Venezuela
| | - Hectorina Rodulfo
- Lab. Genetica Molecular, IIBCAUDO, Universidad De Oriente, Cumana, Venezuela
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Oralee H Branch
- Division of Parasitology, Department of Microbiology, New York University School of Medicine
| | - Lastenia Ruiz Mesia
- Laboratorio De Investigaciones De Productos Naturales Y Antiparasitarios, Universidad Nacional De La Amazonia Peruana, Iquitos, Peru
| | - Paul Newton
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR
| | | | - David J Conway
- Medical Research Council Unit, Fajara, Banjul, The Gambia Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Michael T Ferdig
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame
| | - Tim J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
38
|
Hughes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet 2015; 16:459-71. [DOI: 10.1038/nrg3922] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci 2015; 1342:10-8. [PMID: 25694157 DOI: 10.1111/nyas.12662] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drugs that target the folate-synthesis pathway have a long history of effectiveness against a variety of pathogens. As antimalarials, the antifolates were safe and well tolerated, but resistance emerged quickly and has persisted even with decreased drug pressure. The primary determinants of resistance in Plasmodium falciparum are well-described point mutations in the enzymes dihydropteroate synthase and dihydrofolate reductase targeted by the combination sulfadoxine-pyrimethamine. Recent work has highlighted the contributions of additional parasite adaptation to antifolate resistance. In fact, the evolution of antifolate-resistant parasites is multifaceted and complex. Gene amplification of the first enzyme in the parasite folate synthesis pathway, GTP-cyclohydrolase, is strongly associated with resistant parasites and potentially contributes to persistence of resistant parasites. Further understanding of how parasites adjust flux through the folate pathway is important to the further development of alternative agents targeting this crucial synthesis pathway.
Collapse
|
40
|
Derényi I, Szöllősi GJ. Effective temperature of mutations. PHYSICAL REVIEW LETTERS 2015; 114:058101. [PMID: 25699467 DOI: 10.1103/physrevlett.114.058101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 06/04/2023]
Abstract
Biological macromolecules experience two seemingly very different types of noise acting on different time scales: (i) point mutations corresponding to changes in molecular sequence and (ii) thermal fluctuations. Examining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins, we show that the effects of single point mutations are statistically indistinguishable from those of an increase in temperature by a few tens of kelvins. The existence of such an effective mutational temperature establishes a quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.
Collapse
Affiliation(s)
- Imre Derényi
- ELTE-MTA "Lendulet" Biophysics Research Group, Department of Biological Physics, Eötvös University, Pázmány Peter Setany 1A, H-1117 Budapest, Hungary
| | - Gergely J Szöllősi
- ELTE-MTA "Lendulet" Biophysics Research Group, Department of Biological Physics, Eötvös University, Pázmány Peter Setany 1A, H-1117 Budapest, Hungary
| |
Collapse
|
41
|
Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I. Malar J 2014; 13:150. [PMID: 24745605 PMCID: PMC4005822 DOI: 10.1186/1475-2875-13-150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022] Open
Abstract
Background Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. Methods Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. Results Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. Conclusions Functional assays for P. falciparum GCH1 based on enzymatic activity and genetic complementation were successfully developed. The assays in combination with a homology model characterized the enzymatic activity of P. falciparum GCH1 and the importance of its key amino acid residues. The potential to use the assay for inhibitor screening was validated by 8-oxo-GTP, a known GTP analogue inhibitor.
Collapse
|