1
|
Pérez-Morales G, Martínez-Conde KV, Caspeta L, Merino E, Cevallos MA, Gosset G, Martinez A. Thermally adapted Escherichia coli keeps transcriptomic response during temperature upshift exposure. Appl Microbiol Biotechnol 2025; 109:120. [PMID: 40360840 PMCID: PMC12075407 DOI: 10.1007/s00253-025-13495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
The heat shock response is a cellular protection mechanism against sudden temperature upshifts extensively studied in Escherichia coli. However, the effects of thermal evolution on this response remain largely unknown. In this study, we investigated the early and late physiological and transcriptional responses to temperature upshift in a thermotolerant strain under continuous culture conditions. Adaptive laboratory evolution was performed on a metabolically engineered E. coli strain (JU15), designed for D-lactic acid production, to enable cellular growth and fermentation of glucose at 45 °C in batch cultures. The resulting homofermentative strain, ECL45, successfully adapted to 45 °C in a glucose-mineral medium at pH 7 under non-aerated conditions. The thermal-adapted ECL45 retained the parental strain's high volumetric productivity and product/substrate yield. Genomic sequencing of ECL45 revealed eight mutations, including one in a non-coding region and six within the coding regions of genes associated with metabolic, transport, and regulatory functions. Transcriptomic analysis comparing the evolved strain with its parental counterpart under early and late temperature upshifts indicated that the adaptation involved a controlled stringent response. This mechanism likely contributes to the strain's ability to maintain growth capacity at high temperatures. KEY POINTS: • The temperature upshift response of a thermally adapted strain in continuous culture was studied for the first time. • Genomic analyses revealed the presence of a double point mutation in the spoT gene. • The thermally adapted strain maintained underexpression of the spoT gene at high temperatures. • Supplementation of 0.15 g/L of hydrolyzed protein favored thermal adaptation at 45 °C.
Collapse
Affiliation(s)
- Gilberto Pérez-Morales
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Karla V Martínez-Conde
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Luis Caspeta
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Miguel A Cevallos
- Program of Evolutionary Genomics, Centro de Ciencias Genómicas, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2000, Cuernavaca, Morelos, 62210, Mexico
| | - Guillermo Gosset
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Alfredo Martinez
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
2
|
Pattanakittivorakul S, Kato S, Kuga T, Kosaka T, Matsutani M, Murata M, Ishikawa M, Charoenpunthuwong K, Thanonkeo P, Yamada M. Limited Diversity of Thermal Adaptation to a Critical Temperature in Zymomonas mobilis: Evidence from Multiple-Parallel Laboratory Evolution Experiments. Int J Mol Sci 2025; 26:3052. [PMID: 40243698 PMCID: PMC11989028 DOI: 10.3390/ijms26073052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Laboratory evolution is an effective means of understanding microbial adaptation to the environment. We previously isolated four thermoadapted Zymomonas mobilis mutants, which showed a 2 °C rise in the critical high temperature (CHT), by performing multiple-parallel adaptation experiments. In the present study, the individual mutations in these mutants were intensively analyzed. Two mutations in each adapted mutant were found to primarily contribute to the increase in the upper temperature limit. RNA sequencing (RNA-seq) analysis revealed that the two mutations led to the upregulation of 79-185 genes and the downregulation of 242-311 genes. The findings from transcriptomic and physiological experiments suggest two common and primary mechanisms for thermal resistance: a decrease in the activity of diacylglycerol kinase, which may change the structure of lipopolysaccharide (LPS) probably to strengthen the membrane structure, and an increase in the expression of genes for GroEL/GroES or cell wall hydrolase to repair the protein or membrane damage that occurs at such critical temperatures. Additionally, transporters including efflux pumps may contribute to intracellular homeostasis by expelling toxic compounds such as ethanol and acetate or by maintaining the K+ concentration. The results of this study on four independently thermoadapted mutants led to the conclusion that the mutants have almost the same thermal adaptation strategies and thus their molecular diversity is limited.
Collapse
Affiliation(s)
- Sornsiri Pattanakittivorakul
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (S.P.); (S.K.); (T.K.); (T.K.); (M.M.)
| | - Shun Kato
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (S.P.); (S.K.); (T.K.); (T.K.); (M.M.)
| | - Takashi Kuga
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (S.P.); (S.K.); (T.K.); (T.K.); (M.M.)
| | - Tomoyuki Kosaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (S.P.); (S.K.); (T.K.); (T.K.); (M.M.)
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Minenosuke Matsutani
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan;
| | - Masayuki Murata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (S.P.); (S.K.); (T.K.); (T.K.); (M.M.)
| | - Morio Ishikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan;
| | - Kankanok Charoenpunthuwong
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (K.C.); (P.T.)
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (K.C.); (P.T.)
- Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mamoru Yamada
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (S.P.); (S.K.); (T.K.); (T.K.); (M.M.)
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
3
|
Widney KA, Phillips LC, Rusch LM, Copley SD. A cheater founds the winning lineages during evolution of a novel metabolic pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634942. [PMID: 39990456 PMCID: PMC11844401 DOI: 10.1101/2025.01.26.634942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Underground metabolic pathways-leaks in the metabolic network caused by promiscuous enzyme activities and non-enzymatic transformations-can provide the starting point for emergence of novel protopathways if a mutation or environmental change increases flux to a physiologically significant level. This early stage in the evolution of metabolic pathways is typically hidden from our view. We have evolved a novel protopathway in ΔpdxB E. coli, which lacks an enzyme required for synthesis of the essential cofactor pyridoxal 5'-phosphate (PLP). This protopathway is comprised of four steps catalyzed by promiscuous enzymes that are still serving their native functions. Complex population dynamics occurred during the evolution experiment. The dominant strain after 150 population doublings, JK1, had acquired four mutations. We constructed every intermediate between the ΔpdxB strain and JK1 and identified the order in which mutations arose in JK1 and the physiological effect of each. Three of the mutations together increased the PLP accumulation rate by 32-fold. The second mutation created a cheater that was less fit on its own but thrived in the population by scavenging nutrients released from the fragile parental cells. Notably, the dominant lineages at the end of the experiment all derived from this cheater strain.
Collapse
Affiliation(s)
- Karl A Widney
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80205, USA
| | - Lauren C Phillips
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80205, USA
| | - Leo M Rusch
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80205, USA
| | - Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80205, USA
| |
Collapse
|
4
|
Pagan E, Merino N, Berdejo D, Campillo R, Gayan E, García-Gonzalo D, Pagan R. Adaptive evolution of Salmonella Typhimurium LT2 exposed to carvacrol lacks a uniform pattern. Appl Microbiol Biotechnol 2024; 108:38. [PMID: 38175235 PMCID: PMC10766787 DOI: 10.1007/s00253-023-12840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024]
Abstract
Emergence of genetic variants with increased resistance/tolerance to natural antimicrobials, such as essential oils, has been previously evidenced; however, it is unknown whether mutagenesis follows a general or a specific pattern. For this purpose, we carried out four adaptive laboratory evolutions (ALE) in parallel of Salmonella enterica Typhimurium with carvacrol. After 10 evolution steps, we selected and characterized one colony from each lineage (SeCarA, SeCarB, SeCarC, and SeCarD). Phenotypic characterization of the four evolved strains revealed enhanced survival to lethal treatments; two of them (SeCarA and SeCarB) showed an increase of minimum inhibitory concentration of carvacrol and a better growth fitness in the presence of carvacrol compared to wild-type strain. Whole genome sequencing revealed 10 mutations, of which four (rrsH, sseG, wbaV, and flhA) were present in more than one strain, whereas six (nirC, fliH, lon, rob, upstream yfhP, and upstream argR) were unique to individual strains. Single-mutation genetic constructs in SeWT confirmed lon and rob as responsible for the increased resistance to carvacrol as well as to antibiotics (ampicillin, ciprofloxacin, chloramphenicol, nalidixic acid, rifampicin, tetracycline, and trimethoprim). wbaV played an important role in increased tolerance against carvacrol and chloramphenicol, and flhA in cross-tolerance to heat treatments. As a conclusion, no common phenotypical or genotypical pattern was observed in the isolated resistant variants of Salmonella Typhimurium emerged under carvacrol stress. Furthermore, the demonstration of cross-resistance against heat and antibiotics exhibited by resistant variants raises concerns regarding food safety. KEY POINTS: • Stable resistant variants of Salmonella Typhimurium emerged under carvacrol stress • No common pattern of mutagenesis after cyclic exposures to carvacrol was observed • Resistant variants to carvacrol showed cross-resistance to heat and to antibiotics.
Collapse
Affiliation(s)
- Elisa Pagan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Raul Campillo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Elisa Gayan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Rafael Pagan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain.
| |
Collapse
|
5
|
Türkyılmaz O, Darcan C. Resistance mechanism of Escherichia coli strains with different ampicillin resistance levels. Appl Microbiol Biotechnol 2024; 108:5. [PMID: 38165477 DOI: 10.1007/s00253-023-12929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024]
Abstract
Antibiotic resistance is an important problem that threatens medical treatment. Differences in the resistance levels of microorganisms cause great difficulties in understanding the mechanisms of antibiotic resistance. Therefore, the molecular reasons underlying the differences in the level of antibiotic resistance need to be clarified. For this purpose, genomic and transcriptomic analyses were performed on three Escherichia coli strains with varying degrees of adaptive resistance to ampicillin. Whole-genome sequencing of strains with different levels of resistance detected five mutations in strains with 10-fold resistance and two additional mutations in strains with 95-fold resistance. Overall, three of the seven mutations occurred as a single base change, while the other four occurred as insertions or deletions. While it was thought that 10-fold resistance was achieved by the effect of mutations in the ftsI, marAR, and rpoC genes, it was found that 95-fold resistance was achieved by the synergistic effect of five mutations and the ampC mutation. In addition, when the general transcriptomic profiles were examined, it was found that similar transcriptomic responses were elicited in strains with different levels of resistance. This study will improve our view of resistance mechanisms in bacteria with different levels of resistance and provide the basis for our understanding of the molecular mechanism of antibiotic resistance in ampicillin-resistant E. coli strains. KEY POINTS: •The mutation of the ampC promoter may act synergistically with other mutations and lead to higher resistance. •Similar transcriptomic responses to ampicillin are induced in strains with different levels of resistance. •Low antibiotic concentrations are the steps that allow rapid achievement of high antibiotic resistance.
Collapse
Affiliation(s)
- Osman Türkyılmaz
- Biotechnology Application & Research Centre, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
6
|
Jiang B, Xiao C, Liu L. Progressive transcriptomic shifts in evolved yeast strains following gene knockout. iScience 2024; 27:111219. [PMID: 39559754 PMCID: PMC11570485 DOI: 10.1016/j.isci.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Gene knockout disrupts cellular homeostasis, altering gene expression, and phenotypes. We investigated whether cells return to their pre-knockout transcriptomic state through adaptive evolution experiments on hap4Δ and ade1Δ yeast strains. Analysis revealed that genes with higher expression levels and more physical interaction partners in wild-type strains were more likely to be restored, suggesting that genes of significant functional importance have increased resilience to genetic perturbations. However, as the experiment progressed, most initially restored genes became unrestored. Over 60% of differentially expressed genes in knockout strains remained unrestored in evolved strains. Evolved strains exhibited distinct transcriptomic states, diverging from the original strain over time. Ribosome biogenesis components exhibited systematic sequential changes during the evolution. Our findings suggest the knockout strain transcriptomes struggle to return to the original state even after 28 days of culture. Instead, compensatory mechanisms lead to distinct suboptimal states, highlighting the complex transcriptomic dynamics following genetic perturbations.
Collapse
Affiliation(s)
- Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chuyao Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511400, China
- Institute of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Pérez-Morales G, Caspeta L, Merino E, Cevallos MA, Gosset G, Martinez A. Simultaneous saccharification and fermentation for D-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:132. [PMID: 39488702 PMCID: PMC11531696 DOI: 10.1186/s13068-024-02579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Escherichia coli JU15 is a metabolically engineered strain capable to metabolize C5 and C6 sugars with a high yield of D-lactic acid production at its optimal growth temperature (37 °C). The simultaneous saccharification and fermentation process allow to use lignocellulosic biomass as a cost-effective and high-yield strategy. However, this process requires microorganisms capable of growth at a temperature close to 50 °C, at which the activity of cellulolytic enzymes works efficiently. RESULTS The thermotolerant strain GT48 was generated by adaptive laboratory evolution in batch and chemostat cultures under temperature increments until 48 °C. The strain GT48 was able to grow and ferment glucose to D-lactate at 47 °C. It was found that a pH of 6.3 conciliated with GT48 growth and cellulase activity of a commercial cocktail. Hence, this pH was used for the SSF of a diluted acid-pretreated corn stover (DAPCS) at a solid load of 15% (w/w), 15 FPU/g-DAPCS, and 47 °C. Under such conditions, the strain GT48 exhibited remarkable performance, producing D-lactate at a level of 1.41, 1.42, and 1.48-fold higher in titer, productivity, and yield, respectively, compared to parental strain at 45 °C. CONCLUSIONS In general, our results show for the first time that a thermal-adapted strain of E. coli is capable of being used in the simultaneous saccharification and fermentation process without pre-saccharification stage at high temperatures.
Collapse
Affiliation(s)
- Gilberto Pérez-Morales
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Luis Caspeta
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Miguel A Cevallos
- Program of Evolutionary Genomics, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2000, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Alfredo Martinez
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
8
|
González-González A, Batarseh TN, Rodríguez-Verdugo A, Gaut BS. Patterns of Fitness and Gene Expression Epistasis Generated by Beneficial Mutations in the rho and rpoB Genes of Escherichia coli during High-Temperature Adaptation. Mol Biol Evol 2024; 41:msae187. [PMID: 39235107 PMCID: PMC11414761 DOI: 10.1093/molbev/msae187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Epistasis is caused by genetic interactions among mutations that affect fitness. To characterize properties and potential mechanisms of epistasis, we engineered eight double mutants that combined mutations from the rho and rpoB genes of Escherichia coli. The two genes encode essential functions for transcription, and the mutations in each gene were chosen because they were beneficial for adaptation to thermal stress (42.2 °C). The double mutants exhibited patterns of fitness epistasis that included diminishing returns epistasis at 42.2 °C, stronger diminishing returns between mutations with larger beneficial effects and both negative and positive (sign) epistasis across environments (20.0 °C and 37.0 °C). By assessing gene expression between single and double mutants, we detected hundreds of genes with gene expression epistasis. Previous work postulated that highly connected hub genes in coexpression networks have low epistasis, but we found the opposite: hub genes had high epistasis values in both coexpression and protein-protein interaction networks. We hypothesized that elevated epistasis in hub genes reflected that they were enriched for targets of Rho termination but that was not the case. Altogether, gene expression and coexpression analyses revealed that thermal adaptation occurred in modules, through modulation of ribonucleotide biosynthetic processes and ribosome assembly, the attenuation of expression in genes related to heat shock and stress responses, and with an overall trend toward restoring gene expression toward the unstressed state.
Collapse
Affiliation(s)
- Andrea González-González
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Tiffany N Batarseh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA
| | | | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Dalldorf C, Rychel K, Szubin R, Hefner Y, Patel A, Zielinski DC, Palsson BO. The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions. mSystems 2024; 9:e0030524. [PMID: 38829048 PMCID: PMC11264592 DOI: 10.1128/msystems.00305-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Fast growth phenotypes are achieved through optimal transcriptomic allocation, in which cells must balance tradeoffs in resource allocation between diverse functions. One such balance between stress readiness and unbridled growth in E. coli has been termed the fear versus greed (f/g) tradeoff. Two specific RNA polymerase (RNAP) mutations observed in adaptation to fast growth have been previously shown to affect the f/g tradeoff, suggesting that genetic adaptations may be primed to control f/g resource allocation. Here, we conduct a greatly expanded study of the genetic control of the f/g tradeoff across diverse conditions. We introduced 12 RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and obtained expression profiles of each. We found that these single RNAP mutation strains resulted in large shifts in the f/g tradeoff primarily in the RpoS regulon and ribosomal genes, likely through modifying RNAP-DNA interactions. Two of these mutations additionally caused condition-specific transcriptional adaptations. While this tradeoff was previously characterized by the RpoS regulon and ribosomal expression, we find that the GAD regulon plays an important role in stress readiness and ppGpp in translation activity, expanding the scope of the tradeoff. A phylogenetic analysis found the greed-related genes of the tradeoff present in numerous bacterial species. The results suggest that the f/g tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions.IMPORTANCETo increase growth, E. coli must raise ribosomal content at the expense of non-growth functions. Previous studies have linked RNAP mutations to this transcriptional shift and increased growth but were focused on only two mutations found in the protein's central region. RNAP mutations, however, commonly occur over a large structural range. To explore RNAP mutations' impact, we have introduced 12 RNAP mutations found in laboratory evolution experiments and obtained expression profiles of each. The mutations nearly universally increased growth rates by adjusting said tradeoff away from non-growth functions. In addition to this shift, a few caused condition-specific adaptations. We explored the prevalence of this tradeoff across phylogeny and found it to be a widespread and conserved trend among bacteria.
Collapse
Affiliation(s)
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Ying Hefner
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Arjun Patel
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Zhou X, Zhang X, Wang D, Luo R, Qin Z, Lin F, Xia X, Liu X, Hu G. Efficient Biosynthesis of Salidroside via Artificial in Vivo enhanced UDP-Glucose System Using Cheap Sucrose as Substrate. ACS OMEGA 2024; 9:22386-22397. [PMID: 38799314 PMCID: PMC11112596 DOI: 10.1021/acsomega.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.
Collapse
Affiliation(s)
- Xiaojie Zhou
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoxiao Zhang
- AgroParisTech, 22 place de l’Agronomie, 91120 Palaiseau, France
| | - Dan Wang
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ruoshi Luo
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhao Qin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Fanzhen Lin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xue Xia
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xuemei Liu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ge Hu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
12
|
Kim HS, Noh MH, White EM, Kandefer MV, Wright AF, Datta D, Lim HG, Smiggs E, Locklin JJ, Rahman MA, Feist AM, Pokorski JK. Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration. Nat Commun 2024; 15:3338. [PMID: 38688899 PMCID: PMC11061138 DOI: 10.1038/s41467-024-47132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
The field of hybrid engineered living materials seeks to pair living organisms with synthetic materials to generate biocomposite materials with augmented function since living systems can provide highly-programmable and complex behavior. Engineered living materials have typically been fabricated using techniques in benign aqueous environments, limiting their application. In this work, biocomposite fabrication is demonstrated in which spores from polymer-degrading bacteria are incorporated into a thermoplastic polyurethane using high-temperature melt extrusion. Bacteria are engineered using adaptive laboratory evolution to improve their heat tolerance to ensure nearly complete cell survivability during manufacturing at 135 °C. Furthermore, the overall tensile properties of spore-filled thermoplastic polyurethanes are substantially improved, resulting in a significant improvement in toughness. The biocomposites facilitate disintegration in compost in the absence of a microbe-rich environment. Finally, embedded spores demonstrate a rationally programmed function, expressing green fluorescent protein. This research provides a scalable method to fabricate advanced biocomposite materials in industrially-compatible processes.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Myung Hyun Noh
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30 Jongga-ro, Ulsan, 44429, Republic of Korea
| | - Evan M White
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | | | - Austin F Wright
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Debika Datta
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ethan Smiggs
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jason J Locklin
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Md Arifur Rahman
- Thermoplastic Polyurethane Research, BASF Corporation, 1609 Biddle Ave., Wyandotte, MI, 48192, USA.
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Yang Z, Zhao A, Teng M, Li M, Wang H, Wang X, Liu Z, Zeng Q, Hu L, Hu J, Bao Z, Huang X. Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions. Evol Appl 2024; 17:e13657. [PMID: 38357357 PMCID: PMC10866071 DOI: 10.1111/eva.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Yantai Marine Economic Research InstituteYantaiChina
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
14
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
15
|
Gao S, Liao Y, He H, Yang H, Yang X, Xu S, Wang X, Chen K, Ouyang P. Advance of tolerance engineering on microbes for industrial production. Synth Syst Biotechnol 2023; 8:697-707. [PMID: 38025766 PMCID: PMC10656194 DOI: 10.1016/j.synbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Industrial microbes have become the core of biological manufacturing, which utilized as the cell factory for production of plenty of chemicals, fuels and medicine. However, the challenge that the extreme stress conditions exist in production is unavoidable for cell factory. Consequently, to enhance robustness of the chassis cell lays the foundation for development of bio-manufacturing. Currently, the researches on cell tolerance covered various aspects, involving reshaping regulatory network, cell membrane modification and other stress response. In fact, the strategies employed to improve cell robustness could be summarized into two directions, irrational engineering and rational engineering. In this review, the metabolic engineering technologies on enhancement of microbe tolerance to industrial conditions are summarized. Meanwhile, the novel thoughts emerged with the development of biological instruments and synthetic biology are discussed.
Collapse
Affiliation(s)
- Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yang Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao He
- Petrochemical Research Institute of PetroChina Co. Ltd., Beijing, 102206, China
| | - Huiling Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xuewei Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
16
|
Yazdanpanah S, Motamedian E, Shojaosadati SA. Integrating gene expression data into a genome-scale metabolic model to identify reprogramming during adaptive evolution. PLoS One 2023; 18:e0292433. [PMID: 37788289 PMCID: PMC10547208 DOI: 10.1371/journal.pone.0292433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The development of a method for identifying latent reprogramming in gene expression data resulting from adaptive laboratory evolution (ALE) in response to genetic or environmental perturbations has been a challenge. In this study, a method called Metabolic Reprogramming Identifier (MRI), based on the integration of expression data to a genome-scale metabolic model has been developed. To identify key genes playing the main role in reprogramming, a MILP problem is presented and maximization of an adaptation score as a criterion indicating a pattern of using metabolism with maximum utilization of gene expression resources is defined as an objective function. Then, genes with complete expression usage and significant expression differences between wild-type and evolved strains were selected as key genes for reprogramming. This score is also applied to evaluate the compatibility of expression patterns with maximal use of key genes. The method was implemented to investigate the reprogramming of Escherichia coli during adaptive evolution caused by changing carbon sources. cyoC and cydB responsible for establishing proton gradient across the inner membrane were identified to be vital in the E. coli reprogramming when switching from glucose to lactate. These results indicate the importance of the inner membrane in reprogramming of E. coli to adapt to the new environment. The method predicts no reprogramming occurs during the evolution for growth on glycerol.
Collapse
Affiliation(s)
- Shaghayegh Yazdanpanah
- Faculty of Chemical Engineering, Department of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Faculty of Chemical Engineering, Department of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Faculty of Chemical Engineering, Department of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Rychel K, Tan J, Patel A, Lamoureux C, Hefner Y, Szubin R, Johnsen J, Mohamed ETT, Phaneuf PV, Anand A, Olson CA, Park JH, Sastry AV, Yang L, Feist AM, Palsson BO. Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance. Cell Rep 2023; 42:113105. [PMID: 37713311 PMCID: PMC10591938 DOI: 10.1016/j.celrep.2023.113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/09/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.
Collapse
Affiliation(s)
- Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Tan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cameron Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Josefin Johnsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Elsayed Tharwat Tolba Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Patrick V Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Amitesh Anand
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra, India
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Building 76, Cambridge, MA 02139, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laurence Yang
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Roig Molina FJ, Amaro González C, Alcaine Otín A, Carro Fernández J. Vibrio vulnificus mutation rate: an in vitro approach. Front Microbiol 2023; 14:1223293. [PMID: 37621400 PMCID: PMC10445137 DOI: 10.3389/fmicb.2023.1223293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Vibrio vulnificus is a multi-host pathogenic species currently subdivided into five phylogenetic lineages (L) plus one pathovar with the ability to infect fish due to a transmissible virulence plasmid. This plasmid (or a fragment of it) has been transmitted between lineages within the species, contributing to the evolution of V. vulnificus. This study aimed to provide an experimental approximation to the V. vulnificus mutation rate by determining spontaneous mutation rates from bacterial cultures of representants of the different lineages by whole-genome sequencing. To this purpose, synonymous SNP differences, i.e., spontaneous mutation not subjected to the evolutive forces, between initial and final culture after serial growth were evaluated and used for mutation rate calculation.
Collapse
Affiliation(s)
- Francisco Jose Roig Molina
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Carmen Amaro González
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain
| | - Alejandro Alcaine Otín
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Jesús Carro Fernández
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| |
Collapse
|
19
|
Driessen JL, Johnsen J, Pogrebnyakov I, Mohamed ET, Mussatto SI, Feist AM, Jensen SI, Nielsen AT. Adaptive laboratory evolution of Bacillus subtilis to overcome toxicity of lignocellulosic hydrolysate derived from Distiller's dried grains with solubles (DDGS). Metab Eng Commun 2023; 16:e00223. [PMID: 37234932 PMCID: PMC10206485 DOI: 10.1016/j.mec.2023.e00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Microbial tolerance to toxic compounds formed during biomass pretreatment is a significant challenge to produce bio-based products from lignocellulose cost effectively. Rational engineering can be problematic due to insufficient prerequisite knowledge of tolerance mechanisms. Therefore, adaptive laboratory evolution was applied to obtain 20 tolerant lineages of Bacillus subtilis strains able to utilize Distiller's Dried Grains with Solubles-derived (DDGS) hydrolysate. Evolved strains showed both improved growth performance and retained heterologous enzyme production using 100% hydrolysate-based medium, whereas growth of the starting strains was essentially absent. Whole-genome resequencing revealed that evolved isolates acquired mutations in the global regulator codY in 15 of the 19 sequenced isolates. Furthermore, mutations in genes related to oxidative stress (katA, perR) and flagella function appeared in both tolerance and control evolution experiments without toxic compounds. Overall, tolerance adaptive laboratory evolution yielded strains able to utilize DDGS-hydrolysate to produce enzymes and hence proved to be a valuable tool for the valorization of lignocellulose.
Collapse
Affiliation(s)
- Jasper L.S.P. Driessen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220, 2800, Kongens Lyngby, Denmark
| | - Josefin Johnsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220, 2800, Kongens Lyngby, Denmark
| | - Ivan Pogrebnyakov
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220, 2800, Kongens Lyngby, Denmark
| | - Elsayed T.T. Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220, 2800, Kongens Lyngby, Denmark
| | - Solange I. Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220, 2800, Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0412, USA
| | - Sheila I. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220, 2800, Kongens Lyngby, Denmark
| | - Alex T. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Dalldorf C, Rychel K, Szubin R, Hefner Y, Patel A, Zielinski DC, Palsson BO. The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions. RESEARCH SQUARE 2023:rs.3.rs-2729651. [PMID: 37090546 PMCID: PMC10120744 DOI: 10.21203/rs.3.rs-2729651/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fit phenotypes are achieved through optimal transcriptomic allocation. Here, we performed a high-resolution, multi-scale study of the transcriptomic tradeoff between two key fitness phenotypes, stress response (fear) and growth (greed), in Escherichia coli. We introduced twelve RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and found that single mutations resulted in large shifts in the fear vs. greed tradeoff, likely through destabilizing the rpoB-rpoC interface. RpoS and GAD regulons drive the fear response while ribosomal proteins and the ppGpp regulon underlie greed. Growth rate selection pressure during ALE results in endpoint strains that often have RNAP mutations, with synergistic mutations reflective of particular conditions. A phylogenetic analysis found the tradeoff in numerous bacteria species. The results suggest that the fear vs. greed tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions.
Collapse
Affiliation(s)
- Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
21
|
McGuire BE, Nano FE. Whole-genome sequencing analysis of two heat-evolved Escherichia coli strains. BMC Genomics 2023; 24:154. [PMID: 36973666 PMCID: PMC10044804 DOI: 10.1186/s12864-023-09266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND High temperatures cause a suite of problems for cells, including protein unfolding and aggregation; increased membrane fluidity; and changes in DNA supercoiling, RNA stability, transcription and translation. Consequently, enhanced thermotolerance can evolve through an unknown number of genetic mechanisms even in the simple model bacterium Escherichia coli. To date, each E. coli study exploring this question resulted in a different set of mutations. To understand the changes that can arise when an organism evolves to grow at higher temperatures, we sequenced and analyzed two previously described E. coli strains, BM28 and BM28 ΔlysU, that have been laboratory adapted to the highest E. coli growth temperature reported to date. RESULTS We found three large deletions in the BM28 and BM28 ΔlysU strains of 123, 15 and 8.5 kb in length and an expansion of IS10 elements. We found that BM28 and BM28 ΔlysU have considerably different genomes, suggesting that the BM28 culture that gave rise to BM28 and BM28 ΔlysU was a mixed population of genetically different cells. Consistent with published findings of high GroESL expression in BM28, we found that BM28 inexplicitly carries the groESL bearing plasmid pOF39 that was maintained simply by high-temperature selection pressure. We identified over 200 smaller insertions, deletions, single nucleotide polymorphisms and other mutations, including changes in master regulators such as the RNA polymerase and the transcriptional termination factor Rho. Importantly, this genome analysis demonstrates that the commonly cited findings that LysU plays a crucial role in thermotolerance and that GroESL hyper-expression is brought about by chromosomal mutations are based on a previous misinterpretation of the genotype of BM28. CONCLUSIONS This whole-genome sequencing study describes genetically distinct mechanisms of thermotolerance evolution from those found in other heat-evolved E. coli strains. Studying adaptive laboratory evolution to heat in simple model organisms is important in the context of climate change. It is important to better understand genetic mechanisms of enhancing thermotolerance in bacteria and other organisms, both in terms of optimizing laboratory evolution methods for various organisms and in terms of potential genetic engineering of organisms most at risk or most important to our societies and ecosystems.
Collapse
Affiliation(s)
- Bailey E McGuire
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada.
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada
| |
Collapse
|
22
|
Sun L, Zhang Q, Kong X, Liu Y, Li J, Du G, Lv X, Ledesma-Amaro R, Chen J, Liu L. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2023; 370:128580. [PMID: 36608859 DOI: 10.1016/j.biortech.2023.128580] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In industrial bioproduction of organic acids, numerous neutralizers are required which substantially increases production costs and burdens the environment. To address this challenge, a Saccharomyces cerevisiae mutant (named TAMC) with a low pH tolerance (pH 2.3) was isolated by adaptive laboratory evolution. Taking the synthesis of l-malic acid as an example, the malate dehydrogenase 3 without signal peptide (MDHΔSKL) and pyruvate carboxylase 2 (PYC2) were overexpressed in cytoplasmic synthesis pathway, and the l-malic acid titer increased 5.6-fold. Subsequently, the malic acid transporter SpMae1 was designed, and the extracellular l-malic acid titer was increased from 7.3 to 73.6 g/L. Furthermore, by optimizing the synthesis of the precursor pyruvate, the titer reached 81.8 g/L. Finally, without any neutralizer, the titer in the 3-L bioreactor reached 232.9 g/L, the highest l-malic acid titer reported to date. Herein, the engineered l-malic acid overproducer paves the way for the large-scale green production of l-malic acid.
Collapse
Affiliation(s)
- Li Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Quanwei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiao Kong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Accelerated Adaptive Laboratory Evolution by Automated Repeated Batch Processes in Parallelized Bioreactors. Microorganisms 2023; 11:microorganisms11020275. [PMID: 36838240 PMCID: PMC9965177 DOI: 10.3390/microorganisms11020275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Adaptive laboratory evolution (ALE) is a valuable complementary tool for modern strain development. Insights from ALE experiments enable the improvement of microbial cell factories regarding the growth rate and substrate utilization, among others. Most ALE experiments are conducted by serial passaging, a method that involves large amounts of repetitive manual labor and comes with inherent experimental design flaws. The acquisition of meaningful and reliable process data is a burdensome task and is often undervalued and neglected, but also unfeasible in shake flask experiments due to technical limitations. Some of these limitations are alleviated by emerging automated ALE methods on the μL and mL scale. A novel approach to conducting ALE experiments is described that is faster and more efficient than previously used methods. The conventional shake flask approach was translated to a parallelized, L scale stirred-tank bioreactor system that runs controlled, automated, repeated batch processes. The method was validated with a growth optimization experiment of E. coli K-12 MG1655 grown with glycerol minimal media as a benchmark. Off-gas analysis enables the continuous estimation of the biomass concentration and growth rate using a black-box model based on first principles (soft sensor). The proposed method led to the same stable growth rates of E. coli with the non-native carbon source glycerol 9.4 times faster than the traditional manual approach with serial passaging in uncontrolled shake flasks and 3.6 times faster than an automated approach on the mL scale. Furthermore, it is shown that the cumulative number of cell divisions (CCD) alone is not a suitable timescale for measuring and comparing evolutionary progress.
Collapse
|
24
|
Transcriptional Potential Determines the Adaptability of Escherichia coli Strains with Different Fitness Backgrounds. Microbiol Spectr 2022; 10:e0252822. [PMID: 36445144 PMCID: PMC9769844 DOI: 10.1128/spectrum.02528-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Adaptation through the fitness landscape may be influenced by the gene pool or expression network. However, genetic factors that determine the contribution of beneficial mutations during adaptive evolution are poorly understood. In this study, we experimentally evolved wild-type Escherichia coli K-12 MG1655 and its isogenic derivative that has two additional replication origins and shows higher background fitness. During the short time of experimental evolution, the fitness gains of the two E. coli strains with different fitness backgrounds converged. Populational genome sequencing revealed various mutations with different allele frequencies in evolved populations. Several mutations occurred in genes affecting transcriptional regulation (e.g., RNA polymerase subunit, RNase, ppGpp synthetase, and transcription termination/antitermination factor genes). When we introduced mutations into the ancestral E. coli strains, beneficial effects tended to be lower in the ancestor with higher initial fitness. Replication rate analysis showed that the various replication indices do not correlate with the growth rate. Transcriptome profiling showed that gene expression and gene ontology are markedly enriched in populations with lower background fitness after experimental evolution. Further, the degree of transcriptional change was proportional to the fitness gain. Thus, the evolutionary trajectories of bacteria with different fitness backgrounds can be complex and counterintuitive. Notably, transcriptional change is a major contributor to adaptability. IMPORTANCE Predicting the adaptive potential of bacterial populations can be difficult due to their complexity and dynamic environmental conditions. Also, epistatic interaction between mutations affects the adaptive trajectory. Nevertheless, next-generation sequencing sheds light on understanding evolutionary dynamics through high-throughput genome and transcriptome information. Experimental evolution of two E. coli strains with different background fitness showed that the trajectories of fitness gain, which slowed down during the later stages of evolution, became convergent. This suggests that the adaptability of bacteria can be counterintuitive and that predicting the evolutionary path of bacteria can be difficult even in a constant environment. In addition, transcriptional change is associated with fitness gain during the evolutionary process. Thus, the adaptability of cells depends on their intrinsic genetic capacity for a given evolutionary period. This should be considered when genetically engineered bacteria are optimized through adaptive evolution.
Collapse
|
25
|
Barten R, van Workum DJM, de Bakker E, Risse J, Kleisman M, Navalho S, Smit S, Wijffels RH, Nijveen H, Barbosa MJ. Genetic mechanisms underlying increased microalgal thermotolerance, maximal growth rate, and yield on light following adaptive laboratory evolution. BMC Biol 2022; 20:242. [PMID: 36303154 PMCID: PMC9615354 DOI: 10.1186/s12915-022-01431-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adaptive laboratory evolution (ALE) is a powerful method for strain optimization towards abiotic stress factors and for identifying adaptation mechanisms. In this study, the green microalga Picochlorum sp. BPE23 was cultured under supra-optimal temperature to force genetic adaptation. The robustness and adaptive capacity of Picochlorum strains turned them into an emerging model for evolutionary studies on abiotic stressors such as temperature, salinity, and light. RESULTS Mutant strains showed an expanded maximal growth temperature of 44.6 °C, whereas the maximal growth temperature of the wild-type strain was 42 °C. Moreover, at the optimal growth temperature of 38 °C, the biomass yield on light was 22.3% higher, and the maximal growth rate was 70.5% higher than the wild type. Genome sequencing and transcriptome analysis were performed to elucidate the mechanisms behind the improved phenotype. A de novo assembled phased reference genome allowed the identification of 21 genic mutations involved in various processes. Moreover, approximately half of the genome contigs were found to be duplicated or even triplicated in all mutants, suggesting a causal role in adaptation. CONCLUSIONS The developed tools and mutant strains provide a strong framework from whereupon Picochlorum sp. BPE23 can be further developed. Moreover, the extensive strain characterization provides evidence of how microalgae evolve to supra-optimal temperature and to photobioreactor growth conditions. With this study, microalgal evolutionary mechanisms were identified by combining ALE with genome sequencing.
Collapse
Affiliation(s)
- Robin Barten
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700 AA, The Netherlands.
| | - Dirk-Jan M van Workum
- Bioinformatics Group, Wageningen University and Research, PO Box 633, Wageningen, 6700 AP, The Netherlands
| | - Emma de Bakker
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700 AA, The Netherlands
| | - Judith Risse
- Bioinformatics Group, Wageningen University and Research, PO Box 633, Wageningen, 6700 AP, The Netherlands
| | - Michelle Kleisman
- Bioinformatics Group, Wageningen University and Research, PO Box 633, Wageningen, 6700 AP, The Netherlands
| | - Sofia Navalho
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700 AA, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University and Research, PO Box 633, Wageningen, 6700 AP, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700 AA, The Netherlands.,Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University and Research, PO Box 633, Wageningen, 6700 AP, The Netherlands
| | - Maria J Barbosa
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
26
|
Jouhten P, Konstantinidis D, Pereira F, Andrejev S, Grkovska K, Castillo S, Ghiachi P, Beltran G, Almaas E, Mas A, Warringer J, Gonzalez R, Morales P, Patil KR. Predictive evolution of metabolic phenotypes using model-designed environments. Mol Syst Biol 2022; 18:e10980. [PMID: 36201279 PMCID: PMC9536503 DOI: 10.15252/msb.202210980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Adaptive evolution under controlled laboratory conditions has been highly effective in selecting organisms with beneficial phenotypes such as stress tolerance. The evolution route is particularly attractive when the organisms are either difficult to engineer or the genetic basis of the phenotype is complex. However, many desired traits, like metabolite secretion, have been inaccessible to adaptive selection due to their trade-off with cell growth. Here, we utilize genome-scale metabolic models to design nutrient environments for selecting lineages with enhanced metabolite secretion. To overcome the growth-secretion trade-off, we identify environments wherein growth becomes correlated with a secondary trait termed tacking trait. The latter is selected to be coupled with the desired trait in the application environment where the trait manifestation is required. Thus, adaptive evolution in the model-designed selection environment and subsequent return to the application environment is predicted to enhance the desired trait. We experimentally validate this strategy by evolving Saccharomyces cerevisiae for increased secretion of aroma compounds, and confirm the predicted flux-rerouting using genomic, transcriptomic, and proteomic analyses. Overall, model-designed selection environments open new opportunities for predictive evolution.
Collapse
Affiliation(s)
- Paula Jouhten
- European Molecular Biology LaboratoryHeidelbergGermany
- VTT Technical Research Centre of Finland LtdEspooFinland
- Department of Bioproducts and BiosystemsAalto UniversityEspooFinland
| | | | | | | | | | | | - Payam Ghiachi
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Gemma Beltran
- Departament Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaSpain
| | - Eivind Almaas
- Department of Biotechnology and Food ScienceNTNU – Norwegian University of Science and TechnologyTrondheimNorway
| | - Albert Mas
- Departament Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaSpain
| | - Jonas Warringer
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y delVino (CSIC, Gobierno de la Rioja, Universidad de La Rioja) Finca La GrajeraLogroñoSpain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y delVino (CSIC, Gobierno de la Rioja, Universidad de La Rioja) Finca La GrajeraLogroñoSpain
| | - Kiran R Patil
- European Molecular Biology LaboratoryHeidelbergGermany
- Medical Research Council (MRC) Toxicology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
27
|
Yu J, Wang Z, Wang J, Mohisn A, Liu H, Zhang Y, Zhuang Y, Guo M. Physiological metabolic topology analysis of Halomonas elongata DSM 2581 T in response to sodium chloride stress. Biotechnol Bioeng 2022; 119:3509-3525. [PMID: 36062959 DOI: 10.1002/bit.28222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The halophilic bacterium Halomonas elongata DSM 2581T generally adapts well to high level of salinity by biosynthesizing ectoine, which functions as an important compatible solute protecting the cell against external salinity environment. Halophilic bacteria have specific metabolic activities under high-salt conditions and are gradually applied in various industries. The present study focuses on investigating the physiological and metabolic mechanism of Halomonas elongata DSM 2581T driven by the external salinity environment. The physiological metabolic dynamics under salt stress were investigated to evaluate the effect of NaCl stress on the metabolism of H. elongata. The obtained results demonstrated that ectoine biosynthesis transited from a non-growth-related process to a growth-related process when the NaCl concentration varied from 1% to 13% (w/v). The maximum biomass (Xm =41.37 g/L), and highest ectoine production (Pm =12.91 g/L) were achieved under 8% NaCl. Moreover, the maximum biomass (Xm ) and the maximum specific growth rates (μm ) showed a first rising and then declining trend with the increased NaCl stress. Furthermore, the transcriptome analysis of H. elongata under different NaCl concentrations demonstrated that both 8% and 13% NaCl conditions resulted in increased expressions of genes involved in the pentose phosphate pathway (PPP), Entner-Doudoroff (ED) pathway, Flagellar assembly pathway and ectoine metabolism, but negatively affected the tricarboxylic acid (TCA) cycle and Fatty acid metabolism. At last, the proposed possible adaptation mechanism under the optimum NaCl concentration in H. elongata was described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Jing Wang
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ali Mohisn
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Hao Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| |
Collapse
|
28
|
Kondratyeva L, Alekseenko I, Chernov I, Sverdlov E. Data Incompleteness May form a Hard-to-Overcome Barrier to Decoding Life's Mechanism. BIOLOGY 2022; 11:1208. [PMID: 36009835 PMCID: PMC9404739 DOI: 10.3390/biology11081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
In this brief review, we attempt to demonstrate that the incompleteness of data, as well as the intrinsic heterogeneity of biological systems, may form very strong and possibly insurmountable barriers for researchers trying to decipher the mechanisms of the functioning of live systems. We illustrate this challenge using the two most studied organisms: E. coli, with 34.6% genes lacking experimental evidence of function, and C. elegans, with identified proteins for approximately 50% of its genes. Another striking example is an artificial unicellular entity named JCVI-syn3.0, with a minimal set of genes. A total of 31.5% of the genes of JCVI-syn3.0 cannot be ascribed a specific biological function. The human interactome mapping project identified only 5-10% of all protein interactions in humans. In addition, most of the available data are static snapshots, and it is barely possible to generate realistic models of the dynamic processes within cells. Moreover, the existing interactomes reflect the de facto interaction but not its functional result, which is an unpredictable emerging property. Perhaps the completeness of molecular data on any living organism is beyond our reach and represents an unsolvable problem in biology.
Collapse
Affiliation(s)
- Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| |
Collapse
|
29
|
Toll-Riera M, Olombrada M, Castro-Giner F, Wagner A. A limit on the evolutionary rescue of an Antarctic bacterium from rising temperatures. SCIENCE ADVANCES 2022; 8:eabk3511. [PMID: 35857489 PMCID: PMC9286510 DOI: 10.1126/sciadv.abk3511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Climate change is gradual, but it can also cause brief extreme heat waves that can exceed the upper thermal limit of any one organism. To study the evolutionary potential of upper thermal tolerance, we evolved the cold-adapted Antarctic bacterium Pseudoalteromonas haloplanktis to survive at 30°C, beyond its ancestral thermal limit. This high-temperature adaptation occurred rapidly and in multiple populations. It involved genomic changes that occurred in a highly parallel fashion and mitigated the effects of protein misfolding. However, it also confronted a physiological limit, because populations failed to grow beyond 30°C. Our experiments aimed to facilitate evolutionary rescue by using a small organism with large populations living at temperatures several degrees below their upper thermal limit. Larger organisms with smaller populations and living at temperatures closer to their upper thermal tolerances are even more likely to go extinct during extreme heat waves.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Miriam Olombrada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
30
|
Li Y, Mensah EO, Fordjour E, Bai J, Yang Y, Bai Z. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnol Adv 2022; 59:107970. [PMID: 35550915 DOI: 10.1016/j.biotechadv.2022.107970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
The preparation of genetic libraries is an essential step to evolve microorganisms and study genotype-phenotype relationships by high-throughput screening/selection. As the large-scale synthesis of oligonucleotides becomes easy, cheap, and high-throughput, numerous novel strategies have been developed in recent years to construct high-quality oligo-mediated libraries, leveraging state-of-art molecular biology tools for genome editing and gene regulation. This review presents an overview of recent advances in creating and characterizing in vitro and in vivo genetic libraries, based on CRISPR/Cas, regulatory RNAs, and recombineering, primarily for Escherichia coli and Saccharomyces cerevisiae. These libraries' applications in high-throughput metabolic engineering, strain evolution and protein engineering are also discussed.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Emmanuel Osei Mensah
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Eric Fordjour
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Membrane transporter identification and modulation via adaptive laboratory evolution. Metab Eng 2022; 72:376-390. [DOI: 10.1016/j.ymben.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
|
32
|
Long-Term Heat Selection of the Coral Endosymbiont Cladocopium C1 acro (Symbiodiniaceae) Stabilizes Associated Bacterial Communities. Int J Mol Sci 2022; 23:ijms23094913. [PMID: 35563303 PMCID: PMC9101544 DOI: 10.3390/ijms23094913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Heat-tolerant strains of the coral endosymbiont, Cladocopium C1acro (Symbiodiniaceae), have previously been developed via experimental evolution. Here, we examine physiological responses and bacterial community composition (using 16S rRNA gene metabarcoding) in cultures of 10 heat-evolved (SS) and 9 wild-type (WT) strains, which had been exposed for 6 years to 31 °C and 27 °C, respectively. We also examine whether the associated bacterial communities were affected by a three-week reciprocal transplantation to both temperatures. The SS strains had bacterial communities with lower diversities that showed more stability and lower variability when exposed to elevated temperatures compared with the WT strains. Amplicon sequence variants (ASVs) of the bacterial genera Labrenzia, Algiphilus, Hyphobacterium and Roseitalea were significantly more associated with the SS strains compared with the WT strains. WT strains showed higher abundance of ASVs assigned to the genera Fabibacter and Tropicimonas. We hypothesize that these compositional differences in associated bacterial communities between SS and WT strains also contribute to the thermal tolerance of the microalgae. Future research should explore functional potential between bacterial communities using metagenomics to unravel specific genomic adaptations.
Collapse
|
33
|
Tan SY, Hong F, Ye C, Wang JJ, Wei D. Functional characterization of four Hsp70 genes involved in high-temperature tolerance in Aphis aurantii (Hemiptera: Aphididae). Int J Biol Macromol 2022; 202:141-149. [PMID: 35038465 DOI: 10.1016/j.ijbiomac.2022.01.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/04/2023]
Abstract
The tea aphid, Aphis aurantii (Boyer de Fonscolombe), is a serious pest that can infest many economically important plants. Tea aphids damage plants by directly sucking phloem sap, transmitting viruses, and secreting honeydew to cause sooty mold. At present, tea aphids has become one of the most important pests in tropical and subtropical tea plants. The heat shock protein 70 (Hsp70) is a key protein involved in heat stress tolerance. In this study, we cloned four Hsp70 genes that are highly expressed in tea aphids after heat shock. Bioinformatic analysis of the deduced amino acid sequences showed that these four AaHsp70s had a close genetic relationship to Hsp70 in Hemiptera insects and shared a conserved ATPase domain. After incubation at low (14 °C) or high (36 °C) temperature, the expression of four AaHsp70s was significantly up-regulated compared to the control (25 °C); however, the up-regulation of the AaHsp70s in the low-temperature treatment was far less than that of the high-temperature treatment. The ATPase activity of the four purified recombinant AaHsp70 proteins after high-temperature treatment was significantly increased compared to the control. In addition, these proteins effectively improved the heat tolerance of Escherichia coli in vivo. Our data indicate that AaHsp701, AaHsp702, AaHsp703, AaHsp704 play important roles in response to the high-temperature tolerance in tea aphids.
Collapse
Affiliation(s)
- Shan-Yuan Tan
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Feng Hong
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Chao Ye
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Pal A, Iyer MS, Srinivasan S, Narain Seshasayee AS, Venkatesh KV. Global pleiotropic effects in adaptively evolved Escherichia coli lacking CRP reveal molecular mechanisms that define the growth physiology. Open Biol 2022; 12:210206. [PMID: 35167766 PMCID: PMC8846999 DOI: 10.1098/rsob.210206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Evolution facilitates emergence of fitter phenotypes by efficient allocation of cellular resources in conjunction with beneficial mutations. However, system-wide pleiotropic effects that redress the perturbations to the apex node of the transcriptional regulatory networks remain unclear. Here, we elucidate that absence of global transcriptional regulator CRP in Escherichia coli results in alterations in key metabolic pathways under glucose respiratory conditions, favouring stress- or hedging-related functions over growth-enhancing functions. Further, we disentangle the growth-mediated effects from the CRP regulation-specific effects on these metabolic pathways. We quantitatively illustrate that the loss of CRP perturbs proteome efficiency, as evident from metabolic as well as ribosomal proteome fractions, that corroborated with intracellular metabolite profiles. To address how E. coli copes with such systemic defect, we evolved Δcrp mutant in the presence of glucose. Besides acquiring mutations in the promoter of glucose transporter ptsG, the evolved populations recovered the metabolic pathways to their pre-perturbed state coupled with metabolite re-adjustments, which altogether enabled increased growth. By contrast to Δcrp mutant, the evolved strains remodelled their proteome efficiency towards biomass synthesis, albeit at the expense of carbon efficiency. Overall, we comprehensively illustrate the genetic and metabolic basis of pleiotropic effects, fundamental for understanding the growth physiology.
Collapse
Affiliation(s)
- Ankita Pal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahesh S. Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Environmental dependence of competitive fitness in rifampin-resistant
rpoB
mutants of
Bacillus subtilis. Appl Environ Microbiol 2022; 88:e0242221. [DOI: 10.1128/aem.02422-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase (RNAP) is a highly conserved macromolecular machine that contributes to the flow of genetic information from genotype to phenotype. In
Bacillus subtilis
, mutations in the
rpoB
gene encoding the β-subunit of RNAP have been shown to alter a number of global phenotypes including growth, utilization of unusual nutrient sources, sporulation, germination, and production of secondary metabolites. In addition, the spectrum of mutations in
rpoB
leading to rifampin resistance (Rif
R
) can change dramatically depending upon the environment to which
B. subtilis
cells or spores are exposed. Rif
R
rpoB
mutations have historically been associated with slower growth and reduced fitness; however, these assessments of fitness were conducted on limited collections of mutants in rich laboratory media that poorly reflect natural environments typically inhabited by
B. subtilis
. Using a novel, deep-sequencing approach in addition to traditional measurements of growth rate, lag time, and pairwise competitions, we demonstrated the competitive advantage of specific
rpoB
alleles differs depending on the growth environment in which they are determined.
IMPORTANCE
Microbial resistance to antibiotics is a growing threat to public health across the world. Historically, resistance to antibiotics has been associated with reduced fitness. A growing body of evidence indicates that resistance to rifampin, a frontline antibiotic used to treat mycobacterial and biofilm-associated infections, may increase fitness given an appropriate environment even in the absence of the selective antibiotic. Here we experimentally confirm this phenomenon by directly comparing the fitness of multiple rifampin-resistant mutants of
Bacillus subtilis
in rich LB medium and an asparagine minimal medium. Our research demonstrates that the fitness cost of rifampin resistance can vary greatly depending upon the environment. This has important implications for understanding how microbes develop antimicrobial resistance in the absence of antibiotic selection.
Collapse
|
36
|
Phaneuf PV, Zielinski DC, Yurkovich JT, Johnsen J, Szubin R, Yang L, Kim SH, Schulz S, Wu M, Dalldorf C, Ozdemir E, Lennen RM, Palsson BO, Feist AM. Escherichia coli Data-Driven Strain Design Using Aggregated Adaptive Laboratory Evolution Mutational Data. ACS Synth Biol 2021; 10:3379-3395. [PMID: 34762392 PMCID: PMC8870144 DOI: 10.1021/acssynbio.1c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Microbes are being
engineered for an increasingly large and diverse
set of applications. However, the designing of microbial genomes remains
challenging due to the general complexity of biological systems. Adaptive
Laboratory Evolution (ALE) leverages nature’s problem-solving
processes to generate optimized genotypes currently inaccessible to
rational methods. The large amount of public ALE data now represents
a new opportunity for data-driven strain design. This study describes
how novel strain designs, or genome sequences not yet observed in
ALE experiments or published designs, can be extracted from aggregated
ALE data and demonstrates this by designing, building, and testing
three novel Escherichia coli strains with fitnesses
comparable to ALE mutants. These designs were achieved through a meta-analysis
of aggregated ALE mutations data (63 Escherichia coli K-12 MG1655 based ALE experiments, described by 93 unique environmental
conditions, 357 independent evolutions, and 13 957 observed
mutations), which additionally revealed global ALE mutation trends
that inform on ALE-derived strain design principles. Such informative
trends anticipate ALE-derived strain designs as largely gene-centric,
as opposed to noncoding, and composed of a relatively small number
of beneficial variants (approximately 6). These results demonstrate
how strain design efforts can be enhanced by the meta-analysis of
aggregated ALE data.
Collapse
Affiliation(s)
- Patrick V. Phaneuf
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - James T. Yurkovich
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Josefin Johnsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Lei Yang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sebastian Schulz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Muyao Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Emre Ozdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Rebecca M. Lennen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O. Palsson
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
Lambros M, Pechuan-Jorge X, Biro D, Ye K, Bergman A. Emerging Adaptive Strategies Under Temperature Fluctuations in a Laboratory Evolution Experiment of Escherichia Coli. Front Microbiol 2021; 12:724982. [PMID: 34745030 PMCID: PMC8569431 DOI: 10.3389/fmicb.2021.724982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Generalists and specialists are types of strategies individuals can employ that can evolve in fluctuating environments depending on the extremity and periodicity of the fluctuation. To evaluate whether the evolution of specialists or generalists occurs under environmental fluctuation regimes with different levels of periodicity, 24 populations of Escherichia coli underwent laboratory evolution with temperatures alternating between 15 and 43°C in three fluctuation regimes: two periodic regimes dependent on culture's cell density and one random (non-periodic) regime with no such dependency, serving as a control. To investigate contingencies on the genetic background, we seeded our experiment with two different strains. After the experiment, growth rate measurements at the two temperatures showed that the evolution of specialists was favored in the random regime, while generalists were favored in the periodic regimes. Whole genome sequencing demonstrated that several gene mutations were selected in parallel in the evolving populations with some dependency on the starting genetic background. Given the genes mutated, we hypothesized that the driving force behind the observed adaptations is the restoration of the internal physiology of the starting strains' unstressed states at 37°C, which may be a means of improving fitness in the new environments. Phenotypic array measurements supported our hypothesis by demonstrating a tendency of the phenotypic response of the evolved strains to move closer to the starting strains' response at the optimum of 37°C, especially for strains classified as generalists.
Collapse
Affiliation(s)
- Maryl Lambros
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ximo Pechuan-Jorge
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daniel Biro
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kenny Ye
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States.,Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
38
|
Maire J, van Oppen MJH. A role for bacterial experimental evolution in coral bleaching mitigation? Trends Microbiol 2021; 30:217-228. [PMID: 34429226 DOI: 10.1016/j.tim.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Coral reefs are rapidly declining because of widespread mass coral bleaching causing extensive coral mortality. Elevated seawater temperatures are the main drivers of coral bleaching, and climate change is increasing the frequency and severity of destructive marine heatwaves. Efforts to enhance coral thermal bleaching tolerance can be targeted at the coral host or at coral-associated microorganisms (e.g., dinoflagellate endosymbionts and bacteria). The literature on experimental evolution of bacteria suggests that it has value as a tool to increase coral climate resilience. We provide a workflow on how to experimentally evolve coral-associated bacteria to confer thermal tolerance to coral hosts and emphasize the value of implementing this approach in coral reef conservation and restoration efforts.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
39
|
Pentz JT, Lind PA. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens. PLoS Genet 2021; 17:e1009722. [PMID: 34351900 PMCID: PMC8370652 DOI: 10.1371/journal.pgen.1009722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/17/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Experimental evolution with microbes is often highly repeatable under identical conditions, suggesting the possibility to predict short-term evolution. However, it is not clear to what degree evolutionary forecasts can be extended to related species in non-identical environments, which would allow testing of general predictive models and fundamental biological assumptions. To develop an extended model system for evolutionary forecasting, we used previous data and models of the genotype-to-phenotype map from the wrinkly spreader system in Pseudomonas fluorescens SBW25 to make predictions of evolutionary outcomes on different biological levels for Pseudomonas protegens Pf-5. In addition to sequence divergence (78% amino acid and 81% nucleotide identity) for the genes targeted by mutations, these species also differ in the inability of Pf-5 to make cellulose, which is the main structural basis for the adaptive phenotype in SBW25. The experimental conditions were changed compared to the SBW25 system to test if forecasts were extendable to a non-identical environment. Forty-three mutants with increased ability to colonize the air-liquid interface were isolated, and the majority had reduced motility and was partly dependent on the Pel exopolysaccharide as a structural component. Most (38/43) mutations are expected to disrupt negative regulation of the same three diguanylate cyclases as in SBW25, with a smaller number of mutations in promoter regions, including an uncharacterized polysaccharide synthase operon. A mathematical model developed for SBW25 predicted the order of the three main pathways and the genes targeted by mutations, but differences in fitness between mutants and mutational biases also appear to influence outcomes. Mutated regions in proteins could be predicted in most cases (16/22), but parallelism at the nucleotide level was low and mutational hot spot sites were not conserved. This study demonstrates the potential of short-term evolutionary forecasting in experimental populations and provides testable predictions for evolutionary outcomes in other Pseudomonas species.
Collapse
Affiliation(s)
| | - Peter A. Lind
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
40
|
Zheng Y, Hong K, Wang B, Liu D, Chen T, Wang Z. Genetic Diversity for Accelerating Microbial Adaptive Laboratory Evolution. ACS Synth Biol 2021; 10:1574-1586. [PMID: 34129323 DOI: 10.1021/acssynbio.0c00589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adaptive laboratory evolution (ALE) is a widely used and highly effective tool for improving microbial phenotypes and investigating the evolutionary roots of biological phenomena. Serving as the raw materials of evolution, mutations have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. The generation of genetic diversity is therefore a core technology for accelerating ALE, and a high-quality mutant library is crucial to its success. Because of its importance, technologies for generating genetic diversity have undergone rapid development in recent years. Here, we review the existing techniques for the construction of mutant libraries, briefly introduce their mechanisms and applications, discuss ongoing and emerging efforts to apply engineering technologies in the construction of mutant libraries, and suggest future perspectives for library construction.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Kunqiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Baowei Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dingyu Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
41
|
Wang Y, Li Q, Tian P, Tan T. Charting the landscape of RNA polymerases to unleash their potential in strain improvement. Biotechnol Adv 2021; 54:107792. [PMID: 34216775 DOI: 10.1016/j.biotechadv.2021.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
One major mission of microbial cell factory is overproduction of desired chemicals. To this end, it is necessary to orchestrate enzymes that affect metabolic fluxes. However, only modification of a small number of enzymes in most cases cannot maximize desired metabolites, and global regulation is required. Of myriad enzymes influencing global regulation, RNA polymerase (RNAP) may be the most versatile enzyme in biological realm because it not only serves as the workhorse of central dogma but also participates in a plethora of biochemical events. In fact, recent years have witnessed extensive exploitation of RNAPs for phenotypic engineering. While a few impressive reviews showcase the structures and functionalities of RNAPs, this review not only summarizes the state-of-the-art advance in the structures of RNAPs but also points out their enormous potentials in metabolic engineering and synthetic biology. This review aims to provide valuable insights for strain improvement.
Collapse
Affiliation(s)
- Ye Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
42
|
Mairet F, Gouzé JL, de Jong H. Optimal proteome allocation and the temperature dependence of microbial growth laws. NPJ Syst Biol Appl 2021; 7:14. [PMID: 33686098 PMCID: PMC7940435 DOI: 10.1038/s41540-021-00172-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/15/2021] [Indexed: 11/14/2022] Open
Abstract
Although the effect of temperature on microbial growth has been widely studied, the role of proteome allocation in bringing about temperature-induced changes remains elusive. To tackle this problem, we propose a coarse-grained model of microbial growth, including the processes of temperature-sensitive protein unfolding and chaperone-assisted (re)folding. We determine the proteome sector allocation that maximizes balanced growth rate as a function of nutrient limitation and temperature. Calibrated with quantitative proteomic data for Escherichia coli, the model allows us to clarify general principles of temperature-dependent proteome allocation and formulate generalized growth laws. The same activation energy for metabolic enzymes and ribosomes leads to an Arrhenius increase in growth rate at constant proteome composition over a large range of temperatures, whereas at extreme temperatures resources are diverted away from growth to chaperone-mediated stress responses. Our approach points at risks and possible remedies for the use of ribosome content to characterize complex ecosystems with temperature variation.
Collapse
Affiliation(s)
- Francis Mairet
- Ifremer, Physiology and Biotechnology of Algae laboratory, Nantes, France.
| | - Jean-Luc Gouzé
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France
| | | |
Collapse
|
43
|
Van Houdt R, Vandecraen J, Leys N, Monsieurs P, Aertsen A. Adaptation of Cupriavidus metallidurans CH34 to Toxic Zinc Concentrations Involves an Uncharacterized ABC-Type Transporter. Microorganisms 2021; 9:microorganisms9020309. [PMID: 33540705 PMCID: PMC7912956 DOI: 10.3390/microorganisms9020309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cupriavidus metallidurans CH34 is a well-studied metal-resistant β-proteobacterium and contains a battery of genes participating in metal metabolism and resistance. Here, we generated a mutant (CH34ZnR) adapted to high zinc concentrations in order to study how CH34 could adaptively further increase its resistance against this metal. Characterization of CH34ZnR revealed that it was also more resistant to cadmium, and that it incurred seven insertion sequence-mediated mutations. Among these, an IS1088 disruption of the glpR gene (encoding a DeoR-type transcriptional repressor) resulted in the constitutive expression of the neighboring ATP-binding cassette (ABC)-type transporter. GlpR and the adjacent ABC transporter are highly similar to the glycerol operon regulator and ATP-driven glycerol importer of Rhizobium leguminosarum bv. viciae VF39, respectively. Deletion of glpR or the ABC transporter and complementation of CH34ZnR with the parental glpR gene further demonstrated that loss of GlpR function and concomitant derepression of the adjacent ABC transporter is pivotal for the observed resistance phenotype. Importantly, addition of glycerol, presumably by glycerol-mediated attenuation of GlpR activity, also promoted increased zinc and cadmium resistance in the parental CH34 strain. Upregulation of this ABC-type transporter is therefore proposed as a new adaptation route towards metal resistance.
Collapse
Affiliation(s)
- Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Correspondence:
| | - Joachim Vandecraen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Pieter Monsieurs
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
44
|
Welsing G, Wolter B, Hintzen HMT, Tiso T, Blank LM. Upcycling of hydrolyzed PET by microbial conversion to a fatty acid derivative. Methods Enzymol 2021; 648:391-421. [PMID: 33579413 DOI: 10.1016/bs.mie.2020.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The enzymatic degradation of polyethylene terephthalate (PET) results in a hydrolysate consisting almost exclusively of its two monomers, ethylene glycol and terephthalate. To biologically valorize the PET hydrolysate, microbial upcycling into high-value products is proposed. Fatty acid derivatives hydroxyalkanoyloxy alkanoates (HAAs) represent such valuable target molecules. HAAs exhibit surface-active properties and can be exploited in the catalytical conversion to drop-in biofuels as well as in the polymerization to bio-based poly(amide urethane). This chapter presents the genetic engineering methods of pseudomonads for the metabolization of PET monomers and the biosynthesis of HAAs with detailed protocols concerning product purification.
Collapse
Affiliation(s)
- Gina Welsing
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Birger Wolter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Henric M T Hintzen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
45
|
Bacterial fitness landscapes stratify based on proteome allocation associated with discrete aero-types. PLoS Comput Biol 2021; 17:e1008596. [PMID: 33465077 PMCID: PMC7846111 DOI: 10.1371/journal.pcbi.1008596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/29/2021] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
The fitness landscape is a concept commonly used to describe evolution towards optimal phenotypes. It can be reduced to mechanistic detail using genome-scale models (GEMs) from systems biology. We use recently developed GEMs of Metabolism and protein Expression (ME-models) to study the distribution of Escherichia coli phenotypes on the rate-yield plane. We found that the measured phenotypes distribute non-uniformly to form a highly stratified fitness landscape. Systems analysis of the ME-model simulations suggest that this stratification results from discrete ATP generation strategies. Accordingly, we define "aero-types", a phenotypic trait that characterizes how a balanced proteome can achieve a given growth rate by modulating 1) the relative utilization of oxidative phosphorylation, glycolysis, and fermentation pathways; and 2) the differential employment of electron-transport-chain enzymes. This global, quantitative, and mechanistic systems biology interpretation of fitness landscape formed upon proteome allocation offers a fundamental understanding of bacterial physiology and evolution dynamics.
Collapse
|
46
|
Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ, Javanmardi K, Jones MA, Kunjapur AM, Nyerges A, Pal C, Schubert MG, Church GM. Recombineering and MAGE. NATURE REVIEWS. METHODS PRIMERS 2021; 1:7. [PMID: 35540496 PMCID: PMC9083505 DOI: 10.1038/s43586-020-00006-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.
Collapse
Affiliation(s)
- Timothy M. Wannier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Peter N. Ciaccia
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Gabriel T. Filsinger
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Michaela A. Jones
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Aditya M. Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Csaba Pal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
47
|
Pereira R, Mohamed ET, Radi MS, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. Proc Natl Acad Sci U S A 2020; 117:27954-27961. [PMID: 33106428 PMCID: PMC7668050 DOI: 10.1073/pnas.2013044117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Toxicity from the external presence or internal production of compounds can reduce the growth and viability of microbial cell factories and compromise productivity. Aromatic compounds are generally toxic for microorganisms, which makes their production in microbial hosts challenging. Here we use adaptive laboratory evolution to generate Saccharomyces cerevisiae mutants tolerant to two aromatic acids, coumaric acid and ferulic acid. The evolution experiments were performed at low pH (3.5) to reproduce conditions typical of industrial processes. Mutant strains tolerant to levels of aromatic acids near the solubility limit were then analyzed by whole genome sequencing, which revealed prevalent point mutations in a transcriptional activator (Aro80) that is responsible for regulating the use of aromatic amino acids as the nitrogen source. Among the genes regulated by Aro80, ESBP6 was found to be responsible for increasing tolerance to aromatic acids by exporting them out of the cell. Further examination of the native function of Esbp6 revealed that this transporter can excrete fusel acids (byproducts of aromatic amino acid catabolism) and this role is shared with at least one additional transporter native to S. cerevisiae (Pdr12). Besides conferring tolerance to aromatic acids, ESBP6 overexpression was also shown to significantly improve the secretion in coumaric acid production strains. Overall, we showed that regulating the activity of transporters is a major mechanism to improve tolerance to aromatic acids. These findings can be used to modulate the intracellular concentration of aromatic compounds to optimize the excretion of such products while keeping precursor molecules inside the cell.
Collapse
Affiliation(s)
- Rui Pereira
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Elsayed T Mohamed
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Mohammad S Radi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Adam M Feist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
48
|
Godara A, Kao KC. Adaptive laboratory evolution for growth coupled microbial production. World J Microbiol Biotechnol 2020; 36:175. [DOI: 10.1007/s11274-020-02946-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
|
49
|
Kim S, Kim Y, Suh DH, Lee CH, Yoo SM, Lee SY, Yoon SH. Heat-responsive and time-resolved transcriptome and metabolome analyses of Escherichia coli uncover thermo-tolerant mechanisms. Sci Rep 2020; 10:17715. [PMID: 33077799 PMCID: PMC7572479 DOI: 10.1038/s41598-020-74606-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022] Open
Abstract
Current understanding of heat shock response has been complicated by the fact that heat stress is inevitably accompanied by changes in specific growth rates and growth stages. In this study, a chemostat culture was successfully performed to avoid the physico-chemical and biological changes that accompany heatshock, which provided a unique opportunity to investigate the full range of cellular responses to thermal stress, ranging from temporary adjustment to phenotypic adaptation at multi-omics levels. Heat-responsive and time-resolved changes in the transcriptome and metabolome of a widely used E. coli strain BL21(DE3) were explored in which the temperature was upshifted from 37 to 42 °C. Omics profiles were categorized into early (2 and 10 min), middle (0.5, 1, and 2 h), and late (4, 8, and 40 h) stages of heat stress, each of which reflected the initiation, adaptation, and phenotypic plasticity steps of the stress response. The continued heat stress modulated global gene expression by controlling the expression levels of sigma factors in different time frames, including unexpected downregulation of the second heatshock sigma factor gene (rpoE) upon the heat stress. Trehalose, cadaverine, and enterobactin showed increased production to deal with the heat-induced oxidative stress. Genes highly expressed at the late stage were experimentally validated to provide thermotolerance. Intriguingly, a cryptic capsular gene cluster showed considerably high expression level only at the late stage, and its expression was essential for cell growth at high temperature. Granule-forming and elongated cells were observed at the late stage, which was morphological plasticity occurred as a result of acclimation to the continued heat stress. Whole process of thermal adaptation along with the genetic and metabolic changes at fine temporal resolution will contribute to far-reaching comprehension of the heat shock response. Further, the identified thermotolerant genes will be useful to rationally engineer thermotolerant microorganisms.
Collapse
Affiliation(s)
- Sinyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, 34141, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
50
|
Developing rapid growing Bacillus subtilis for improved biochemical and recombinant protein production. Metab Eng Commun 2020; 11:e00141. [PMID: 32874915 PMCID: PMC7452210 DOI: 10.1016/j.mec.2020.e00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Bacillus subtilis is a model Gram-positive bacterium, which has been widely used as industrially important chassis in synthetic biology and metabolic engineering. Rapid growth of chassis is beneficial for shortening the fermentation period and enhancing production of target product. However, engineered B. subtilis with faster growth phenotype is lacking. Here, fast-growing B. subtilis were constructed through rational gene knockout and adaptive laboratory evolution using wild type strain B. subtilis 168 (BS168) as starting strain. Specifically, strains BS01, BS02, and BS03 were obtained through gene knockout of oppD, hag, and flgD genes, respectively, resulting 15.37%, 24.18% and 36.46% increases of specific growth rate compared with BS168. Next, strains A28 and A40 were obtained through adaptive laboratory evolution, whose specific growth rates increased by 39.88% and 43.53% compared to BS168, respectively. Then these two methods were combined via deleting oppD, hag, and flgD genes respectively on the basis of evolved strain A40, yielding strain A4003 with further 7.76% increase of specific growth rate, reaching 0.75 h-1 in chemical defined M9 medium. Finally, bioproduction efficiency of intracellular product (ribonucleic acid, RNA), extracellular product (acetoin), and recombinant proteins (green fluorescent protein (GFP) and ovalbumin) by fast-growing strain A4003 was tested. And the production of RNA, acetoin, GFP, and ovalbumin increased 38.09%, 5.40%, 9.47% and 19.79% using fast-growing strain A4003 as chassis compared with BS168, respectively. The developed fast-growing B. subtilis strains and strategies used for developing these strains should be useful for improving bioproduction efficiency and constructing other industrially important bacterium with faster growth phenotype. Fast-growing Bacillus subtilis were constructed through rational gene knockout and adaptive laboratory evolution. Specific growth rate of engineered B. subtilis increased 53.06% compared with B. subtilis 168, reaching 0.75 h-1 in M9 medium. Production of RNA, acetoin, and ovalbumin increased 38.09%, 5.40%, and 19.79% using fast-growing strain as chassis.
Collapse
|