1
|
Molinet J, Stelkens R. The evolution of thermal performance curves in response to rising temperatures across the model genus yeast. Proc Natl Acad Sci U S A 2025; 122:e2423262122. [PMID: 40392856 DOI: 10.1073/pnas.2423262122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
The maintenance of biodiversity crucially depends on the evolutionary potential of populations to adapt to environmental change. Accelerating climate change and extreme temperature events urge us to better understand and forecast evolutionary responses. Here, we harnessed the power of experimental evolution with the microbial model system yeast (Saccharomyces spp.) to measure the evolutionary potential of populations to adapt to future warming, in real-time and across the entire phylogenetic diversity of the genus. We tracked the evolution of thermal performance curves (TPCs) in populations of eight genetically and ecologically diverse species under gradually increasing temperature conditions, from 25 to 40 °C, for up to 600 generations. We found that evolving toward higher critical thermal limits generally came at a cost, causing a decrease in both thermal tolerance and maximum growth performance. The evolution of TPCs varied significantly between species with strong genotype-by-environment interactions, revealing two main trajectories: i) Warm-tolerant species showed an increase in both optimum growth temperature and thermal tolerance, consistent with the "hotter is wider" hypothesis. ii) Cold-tolerant species on the other hand evolved larger thermal breadth and higher thermal limits, but suffered from reduced maximum performance overall, consistent with the generalist or "a jack of all temperatures is a master of none" hypothesis. In addition, cold-tolerant species never reached the warm-tolerant species' upper thermal limits. Our results show that adaptive strategies to increasing temperatures are complex, highlighting the need to consider both within and between species diversity when predicting and managing the impacts of climate change on populations.
Collapse
Affiliation(s)
- Jennifer Molinet
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
2
|
Ghiaci P, Jouhten P, Martyushenko N, Roca-Mesa H, Vázquez J, Konstantinidis D, Stenberg S, Andrejev S, Grkovska K, Mas A, Beltran G, Almaas E, Patil KR, Warringer J. Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes. Mol Syst Biol 2024; 20:1109-1133. [PMID: 39174863 PMCID: PMC11450223 DOI: 10.1038/s44320-024-00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Adaptive Laboratory Evolution (ALE) of microorganisms can improve the efficiency of sustainable industrial processes important to the global economy. However, stochasticity and genetic background effects often lead to suboptimal outcomes during laboratory evolution. Here we report an ALE platform to circumvent these shortcomings through parallelized clonal evolution at an unprecedented scale. Using this platform, we evolved 104 yeast populations in parallel from many strains for eight desired wine fermentation-related traits. Expansions of both ALE replicates and lineage numbers broadened the evolutionary search spectrum leading to improved wine yeasts unencumbered by unwanted side effects. At the genomic level, evolutionary gains in metabolic characteristics often coincided with distinct chromosome amplifications and the emergence of side-effect syndromes that were characteristic of each selection niche. Several high-performing ALE strains exhibited desired wine fermentation kinetics when tested in larger liquid cultures, supporting their suitability for application. More broadly, our high-throughput ALE platform opens opportunities for rapid optimization of microbes which otherwise could take many years to accomplish.
Collapse
Affiliation(s)
- Payam Ghiaci
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden
- Department of Biorefinery and Energy, High-throughput Centre, Research Institutes of Sweden, Örnsköldsvik, 89250, Sweden
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Paula Jouhten
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
- VTT Technical Research Centre of Finland Ltd, Espoo, 02044 VTT, Finland
- Aalto University, Department of Bioproducts and Biosystems, Espoo, 02150, Finland
| | - Nikolay Martyushenko
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Roca-Mesa
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Jennifer Vázquez
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
- Centro Tecnológico del Vino-VITEC, Carretera de Porrera Km. 1, Falset, 43730, Spain
| | | | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden
| | - Sergej Andrejev
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | | | - Albert Mas
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Gemma Beltran
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Kiran R Patil
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany.
- Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK.
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden.
| |
Collapse
|
3
|
García-Ríos E, Pardo J, Su Y, Guillamón JM. Different Nitrogen Consumption Patterns in Low Temperature Fermentations in the Wine Yeast Saccharomyces cerevisiae. Foods 2024; 13:2522. [PMID: 39200449 PMCID: PMC11354071 DOI: 10.3390/foods13162522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Nowadays, the wine industry carries out fermentations at low temperatures because this oenological practice clearly improves the aromatic complexity of the final wines. In addition, nitrogen content of the must also influences the quality of the wine. In this study, we carried out a phenotypic and fermentative analysis of two industrial wine Saccharomyces cerevisiae strains (P5 and P24) at 15 and 28 °C and three nitrogen concentrations (60, 140 and 300 mg N/L) in synthetic must. Our results show that both parameters, temperature and nitrogen, are interrelated and clearly determine the competitiveness of the wine strains and their ability to adapt at low temperatures. The best adapted strain at low temperatures decreased its competitiveness at lower nitrogen concentrations. In addition, our results show that it is not only the quantity of nitrogen transported that is important but also the quality of the nitrogen source used for wine yeast adaptation at low temperatures. The presence of some amino acids, such as arginine, branched chain amino acids, and some aromatic amino acids can improve the growth and fermentation activity of wine yeasts at low temperatures. These results allow us to better understand the basis of wine yeast adaptation to fermentation conditions, providing important information for winemakers to help them select the most appropriate yeast strain, thus reducing the economic costs associated with long and sluggish fermentations. The correlation between some amino acids and better yeast fermentation performance could be used in the future to design inactive dry yeast enriched in some of these amino acids, which could be added as a nutritional supplement during low temperature fermentations.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| | - Judit Pardo
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| | - Ying Su
- College of Enology, Northwest A&F University, Xianyang 712100, China;
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| |
Collapse
|
4
|
Molinet J, Navarrete JP, Villarroel CA, Villarreal P, Sandoval FI, Nespolo RF, Stelkens R, Cubillos FA. Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing. PLoS Genet 2024; 20:e1011154. [PMID: 38900713 PMCID: PMC11189258 DOI: 10.1371/journal.pgen.1011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Lager yeasts are limited to a few strains worldwide, imposing restrictions on flavour and aroma diversity and hindering our understanding of the complex evolutionary mechanisms during yeast domestication. The recent finding of diverse S. eubayanus lineages from Patagonia offers potential for generating new lager yeasts with different flavour profiles. Here, we leverage the natural genetic diversity of S. eubayanus and expand the lager yeast repertoire by including three distinct Patagonian S. eubayanus lineages. We used experimental evolution and selection on desirable traits to enhance the fermentation profiles of novel S. cerevisiae x S. eubayanus hybrids. Our analyses reveal an intricate interplay of pre-existing diversity, selection on species-specific mitochondria, de-novo mutations, and gene copy variations in sugar metabolism genes, resulting in high ethanol production and unique aroma profiles. Hybrids with S. eubayanus mitochondria exhibited greater evolutionary potential and superior fitness post-evolution, analogous to commercial lager hybrids. Using genome-wide screens of the parental subgenomes, we identified genetic changes in IRA2, IMA1, and MALX genes that influence maltose metabolism, and increase glycolytic flux and sugar consumption in the evolved hybrids. Functional validation and transcriptome analyses confirmed increased maltose-related gene expression, influencing greater maltotriose consumption in evolved hybrids. This study demonstrates the potential for generating industrially viable lager yeast hybrids from wild Patagonian strains. Our hybridization, evolution, and mitochondrial selection approach produced hybrids with high fermentation capacity and expands lager beer brewing options.
Collapse
Affiliation(s)
- Jennifer Molinet
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Juan P. Navarrete
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos A. Villarroel
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Pablo Villarreal
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe I. Sandoval
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Roberto F. Nespolo
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- ANID-Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Francisco A. Cubillos
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- ANID-Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
5
|
Pan C, Yin J, Ma B, Wen J, Luo P. Whole-genome sequence and characterization of a marine red yeast, Rhodosporidium sphaerocarpum GDMCC 60679, featuring the assimilation of ammonia nitrogen. J Biosci Bioeng 2024; 137:85-93. [PMID: 38155026 DOI: 10.1016/j.jbiosc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
A marine red yeast, Rhodosporidium sphaerocarpum, is generally used for the production of lipids and carotenoids. In a previous study, we demonstrated that a marine-derived R. sphaerocarpum GDMCC 60679 can efficiently remove ammonia nitrogen and exhibit multiple probiotic functions for shrimp, Litopenaeus vannamei. Here, we performed a genome assembly of the strain GDMCC 60679 using a combination of the data from Illumina PE and PacBio CLR reads. The genome has a size of 18.03 Mb and consists of 32 contigs with an N50 length of 1,074,774 bp and GC content of 63 %. The genome was predicted to contain 6092 protein-coding genes, 5962 of which were functionally annotated. Metabolic pathways responsible for the ammonia assimilation and the synthesis of lipids and carotenoids were particularly examined to explore and characterize genes contributing to these functions. Whole-genome sequence and annotation of the strain lays a foundation to reveal the molecular mechanism of its prominent biological functions and will facilitate us to further expand new applications of yeasts in Rhodosporidium.
Collapse
Affiliation(s)
- Chuanhao Pan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayue Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wen
- Department of Biology, Lingnan Normal University, Zhanjiang 524048, China
| | - Peng Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
6
|
Kessi-Pérez EI, Acuña E, Bastías C, Fundora L, Villalobos-Cid M, Romero A, Khaiwal S, De Chiara M, Liti G, Salinas F, Martínez C. Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains. Biol Res 2023; 56:43. [PMID: 37507753 PMCID: PMC10385942 DOI: 10.1186/s40659-023-00453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
For more than 20 years, Saccharomyces cerevisiae has served as a model organism for genetic studies and molecular biology, as well as a platform for biotechnology (e.g., wine production). One of the important ecological niches of this yeast that has been extensively studied is wine fermentation, a complex microbiological process in which S. cerevisiae faces various stresses such as limited availability of nitrogen. Nitrogen deficiencies in grape juice impair fermentation rate and yeast biomass production, leading to sluggish or stuck fermentations, resulting in considerable economic losses for the wine industry. In the present work, we took advantage of the "1002 Yeast Genomes Project" population, the most complete catalogue of the genetic variation in the species and a powerful resource for genotype-phenotype correlations, to study the adaptation to nitrogen limitation in wild and domesticated yeast strains in the context of wine fermentation. We found that wild and domesticated yeast strains have different adaptations to nitrogen limitation, corroborating their different evolutionary trajectories. Using a combination of state-of-the-art bioinformatic (GWAS) and molecular biology (CRISPR-Cas9) methodologies, we validated that PNP1, RRT5 and PDR12 are implicated in wine fermentation, where RRT5 and PDR12 are also involved in yeast adaptation to nitrogen limitation. In addition, we validated SNPs in these genes leading to differences in fermentative capacities and adaptation to nitrogen limitation. Altogether, the mapped genetic variants have potential applications for the genetic improvement of industrial yeast strains.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Eric Acuña
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Camila Bastías
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Leyanis Fundora
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Manuel Villalobos-Cid
- Departamento de Ingeniería Informática, Program for the Development of Sustainable Production Systems (PDSPS), Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Romero
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sakshi Khaiwal
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | | | - Gianni Liti
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Francisco Salinas
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
7
|
García-Ríos E, Guillamón JM. Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms 2022; 10:microorganisms10091811. [PMID: 36144411 PMCID: PMC9500811 DOI: 10.3390/microorganisms10091811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Wine yeast have been exposed to harsh conditions for millennia, which have led to adaptive evolutionary strategies. Thus, wine yeasts from Saccharomyces genus are considered an interesting and highly valuable model to study human-drive domestication processes. The rise of whole-genome sequencing technologies together with new long reads platforms has provided new understanding about the population structure and the evolution of wine yeasts. Population genomics studies have indicated domestication fingerprints in wine yeast, including nucleotide variations, chromosomal rearrangements, horizontal gene transfer or hybridization, among others. These genetic changes contribute to genetically and phenotypically distinct strains. This review will summarize and discuss recent research on evolutionary trajectories of wine yeasts, highlighting the domestication hallmarks identified in this group of yeast.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
- Department of Science, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002 Valencia, Spain
- Correspondence:
| | - José Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| |
Collapse
|
8
|
De Chiara M, Barré BP, Persson K, Irizar A, Vischioni C, Khaiwal S, Stenberg S, Amadi OC, Žun G, Doberšek K, Taccioli C, Schacherer J, Petrovič U, Warringer J, Liti G. Domestication reprogrammed the budding yeast life cycle. Nat Ecol Evol 2022; 6:448-460. [PMID: 35210580 DOI: 10.1038/s41559-022-01671-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Domestication of plants and animals is the foundation for feeding the world human population but can profoundly alter the biology of the domesticated species. Here we investigated the effect of domestication on one of our prime model organisms, the yeast Saccharomyces cerevisiae, at a species-wide level. We tracked the capacity for sexual and asexual reproduction and the chronological life span across a global collection of 1,011 genome-sequenced yeast isolates and found a remarkable dichotomy between domesticated and wild strains. Domestication had systematically enhanced fermentative and reduced respiratory asexual growth, altered the tolerance to many stresses and abolished or impaired the sexual life cycle. The chronological life span remained largely unaffected by domestication and was instead dictated by clade-specific evolution. We traced the genetic origins of the yeast domestication syndrome using genome-wide association analysis and genetic engineering and disclosed causative effects of aneuploidy, gene presence/absence variations, copy number variations and single-nucleotide polymorphisms. Overall, we propose domestication to be the most dramatic event in budding yeast evolution, raising questions about how much domestication has distorted our understanding of the natural biology of this key model species.
Collapse
Affiliation(s)
| | - Benjamin P Barré
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karl Persson
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| | | | - Chiara Vischioni
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Sakshi Khaiwal
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| | - Onyetugo Chioma Amadi
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Gašper Žun
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Doberšek
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | | | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
| |
Collapse
|
9
|
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
The evolution, evolvability and engineering of gene regulatory DNA. Nature 2022; 603:455-463. [PMID: 35264797 DOI: 10.1038/s41586-022-04506-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1-3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4-6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution.
Collapse
|
11
|
Abstract
Saccharomyces cerevisiae rewires its transcriptional output to survive stressful environments, such as nitrogen scarcity under fermentative conditions. Although divergence in nitrogen metabolism among natural yeast populations has been reported, the impact of regulatory genetic variants modulating gene expression and nitrogen consumption remains to be investigated. Here, we employed an F1 hybrid from two contrasting S. cerevisiae strains, providing a controlled genetic environment to map cis factors involved in the divergence of gene expression regulation in response to nitrogen scarcity. We used a dual approach to obtain genome-wide allele-specific profiles of chromatin accessibility, transcription factor binding, and gene expression through ATAC-seq (assay for transposase accessible chromatin) and RNA-seq (transcriptome sequencing). We observed large variability in allele-specific expression and accessibility between the two genetic backgrounds, with a third of these differences specific to a deficient nitrogen environment. Furthermore, we discovered events of allelic bias in gene expression correlating with allelic bias in transcription factor binding solely under nitrogen scarcity, where the majority of these transcription factors orchestrates the nitrogen catabolite repression regulatory pathway and demonstrates a cis × environment-specific response. Our approach allowed us to find cis variants modulating gene expression, chromatin accessibility, and allelic differences in transcription factor binding in response to low nitrogen culture conditions. IMPORTANCE Historically, coding variants were prioritized when searching for causal mechanisms driving adaptation of natural populations to stressful environments. However, the recent focus on noncoding variants demonstrated their ubiquitous role in adaptation. Here, we performed genome-wide regulatory variation profiles between two divergent yeast strains when facing nitrogen nutritional stress. The open chromatin availability of several regulatory regions changes in response to nitrogen scarcity. Importantly, we describe regulatory events that deviate between strains. Our results demonstrate a widespread variation in gene expression regulation between naturally occurring populations in response to stressful environments.
Collapse
|
12
|
Márquez D, Escalera-Fanjul X, El Hafidi M, Aguirre-López B, Riego-Ruiz L, González A. Alanine Represses γ-Aminobutyric Acid Utilization and Induces Alanine Transaminase Required for Mitochondrial Function in Saccharomyces cerevisiae. Front Microbiol 2021; 12:695382. [PMID: 34421848 PMCID: PMC8371705 DOI: 10.3389/fmicb.2021.695382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
The γ-aminobutyric acid (GABA) shunt constitutes a conserved metabolic route generating nicotinamide adenine dinucleotide phosphate (NADPH) and regulating stress response in most organisms. Here we show that in the presence of GABA, Saccharomyces cerevisiae produces glutamate and alanine through the irreversible action of Uga1 transaminase. Alanine induces expression of alanine transaminase (ALT1) gene. In an alt1Δ mutant grown on GABA, alanine accumulation leads to repression of the GAD1, UGA1, and UGA2 genes, involved in the GABA shunt, which could result in growth impairment. Induced ALT1 expression and negative modulation of the GABA shunt by alanine constitute a novel regulatory circuit controlling both alanine biosynthesis and catabolism. Consistent with this, the GABA shunt and the production of NADPH are repressed in a wild-type strain grown in alanine, as compared to those detected in the wild-type strain grown on GABA. We also show that heat shock induces alanine biosynthesis and ALT1, UGA1, UGA2, and GAD1 gene expression, whereas an uga1Δ mutant shows heat sensitivity and reduced NADPH pools, as compared with those observed in the wild-type strain. Additionally, an alt1Δ mutant shows an unexpected alanine-independent phenotype, displaying null expression of mitochondrial COX2, COX3, and ATP6 genes and a notable decrease in mitochondrial/nuclear DNA ratio, as compared to a wild-type strain, which results in a petite phenotype. Our results uncover a new negative role of alanine in stress defense, repressing the transcription of the GABA shunt genes, and support a novel Alt1 moonlighting function related to the maintenance of mitochondrial DNA integrity and mitochondrial gene expression.
Collapse
Affiliation(s)
- Dariel Márquez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Mexico
| | - Beatriz Aguirre-López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, México
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
13
|
Romero-Olivares AL, Morrison EW, Pringle A, Frey SD. Linking Genes to Traits in Fungi. MICROBIAL ECOLOGY 2021; 82:145-155. [PMID: 33483845 PMCID: PMC8282587 DOI: 10.1007/s00248-021-01687-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 05/31/2023]
Abstract
Fungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.
Collapse
Affiliation(s)
- A L Romero-Olivares
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA.
- Department of Biology, New Mexico State University, Las Cruces, NM, 88001, USA.
| | - E W Morrison
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| | - A Pringle
- Department of Botany and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - S D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|
14
|
Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiol 2020; 96:103685. [PMID: 33494889 DOI: 10.1016/j.fm.2020.103685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023]
Abstract
Nitrogen requirements by S. cerevisiae during wine fermentation are highly strain-dependent. Different approaches were applied to explore the nitrogen requirements of 28 wine yeast strains. Based on the growth and fermentation behaviour displayed at different nitrogen concentrations, high and low nitrogen-demanding strains were selected and further verified by competition fermentation. Biomass production with increasing nitrogen concentrations in the exponential fermentation phase was analysed by chemostat cultures. Low nitrogen-demanding (LND) strains produced a larger amount of biomass in nitrogen-limited synthetic grape musts, whereas high nitrogen-demanding (HND) strains achieved a bigger biomass yield when the YAN concentration was above 100 mg/L. Constant rate fermentation was carried out with both strains to determine the amount of nitrogen required to maintain the highest fermentation rate. Large differences appeared in the analysis of the genomes of low and high-nitrogen demanding strains showed for heterozygosity and the amino acid substitutions between orthologous proteins, with nitrogen recycling system genes showing the widest amino acid divergences. The CRISPR/Cas9-mediated genome modification method was used to validate the involvement of GCN1 in the yeast strain nitrogen needs. However, the allele swapping of gene GCN1 from low nitrogen-demanding strains to high nitrogen-demanding strains did not significantly influence the fermentation rate.
Collapse
|
15
|
Derome N, Filteau M. A continuously changing selective context on microbial communities associated with fish, from egg to fork. Evol Appl 2020; 13:1298-1319. [PMID: 32684960 PMCID: PMC7359827 DOI: 10.1111/eva.13027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fast increase of fish aquaculture production to meet consumer demands is accompanied by important ecological concerns such as disease outbreaks. Meanwhile, food waste is an important concern with fish products since they are highly perishable. Recent aquaculture and fish product microbiology, and more recently, microbiota research, paved the way to a highly integrated approach to understand complex relationships between host fish, product and their associated microbial communities at health/disease and preservation/spoilage frontiers. Microbial manipulation strategies are increasingly validated as promising tools either to replace or to complement traditional veterinary and preservation methods. In this review, we consider evolutionary forces driving fish microbiota assembly, in particular the changes in the selective context along the production chain. We summarize the current knowledge concerning factors governing assembly and dynamics of fish hosts and food microbial communities. Then, we discuss the current microbial community manipulation strategies from an evolutionary standpoint to provide a perspective on the potential for risks, conflict and opportunities. Finally, we conclude that to harness evolutionary forces in the development of sustainable microbiota manipulation applications in the fish industry, an integrated knowledge of the controlling abiotic and especially biotic factors is required.
Collapse
Affiliation(s)
- Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieUniversité LavalQuébecQCCanada
| | - Marie Filteau
- Département de BiologieUniversité LavalQuébecQCCanada
- Département des Sciences des alimentsInstitut sur la nutrition et les aliments fonctionnels (INAF)Université LavalQuébecQCCanada
| |
Collapse
|
16
|
Kessi-Pérez EI, Ponce B, Li J, Molinet J, Baeza C, Figueroa D, Bastías C, Gaete M, Liti G, Díaz-Barrera A, Salinas F, Martínez C. Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous Yeast Population to Nitrogen-Limited Fermentations. Front Microbiol 2020; 11:1204. [PMID: 32612585 PMCID: PMC7307137 DOI: 10.3389/fmicb.2020.01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alcoholic fermentation is fundamentally an adaptation process, in which the yeast Saccharomyces cerevisiae outperforms its competitors and takes over the fermentation process itself. Although wine yeast strains appear to be adapted to the stressful conditions of alcoholic fermentation, nitrogen limitations in grape must cause stuck or slow fermentations, generating significant economic losses for the wine industry. One way to discover the genetic bases that promote yeast adaptation to nitrogen-deficient environments are selection experiments, where a yeast population undergoes selection under conditions of nitrogen restriction for a number of generations, to then identify by sequencing the molecular characteristics that promote this adaptation. In this work, we carried out selection experiments in bioreactors imitating wine fermentation under nitrogen-limited fermentation conditions (SM60), using the heterogeneous SGRP-4X yeast population, to then sequence the transcriptome and the genome of the population at different time points of the selection process. The transcriptomic results showed an overexpression of genes from the NA strain (North American/YPS128), a wild, non-domesticated isolate. In addition, genome sequencing and allele frequency results allowed several QTLs to be mapped for adaptation to nitrogen-limited fermentation. Finally, we validated the ECM38 allele of NA strain as responsible for higher growth efficiency under nitrogen-limited conditions. Taken together, our results revealed a complex pattern of molecular signatures favouring adaptation of the yeast population to nitrogen-limited fermentations, including differential gene expression, allele frequency changes and loss of the mitochondrial genome. Finally, the results suggest that wild alleles from a non-domesticated isolate (NA) may have a relevant role in the adaptation to the assayed fermentation conditions, with the consequent potential of these alleles for the genetic improvement of wine yeast strains.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jing Li
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Camila Baeza
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - David Figueroa
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Camila Bastías
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Marco Gaete
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
17
|
Becerra-Rodríguez C, Marsit S, Galeote V. Diversity of Oligopeptide Transport in Yeast and Its Impact on Adaptation to Winemaking Conditions. Front Genet 2020; 11:602. [PMID: 32587604 PMCID: PMC7298112 DOI: 10.3389/fgene.2020.00602] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrogen is an essential nutrient for yeasts and its relative abundance is an important modulator of fermentation kinetics. The main sources of nitrogen in food are ammonium and free amino acids, however, secondary sources such as oligopeptides are also important contributors to the nitrogen supply. In yeast, oligopeptide uptake is driven by different families of proton–coupled transporters whose specificity depends on peptide length. Proton-dependent Oligopeptide Transporters (POT) are specific to di- and tri-peptides, whereas the Oligopeptide Transport (OPT) family members import tetra- and pentapeptides. Recently, the novel family of Fungal Oligopeptide Transporters (FOT) has been identified in Saccharomyces cerevisiae wine strains as a result of a horizontal gene transfer from Torulaspora microellipsoides. In natural grape must fermentations with S. cerevisiae, Fots have a broader range of oligopeptide utilization in comparison with non-Fot strains, leading to higher biomass production and better fermentation efficiency. In this review we present the current knowledge on the diversity of oligopeptide transporters in yeast, also discussing how the consumption of oligopeptides provides an adaptive advantage to yeasts within the wine environment.
Collapse
Affiliation(s)
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes, Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Département de Biologie, Université Laval, Québec City, QC, Canada
| | - Virginie Galeote
- SPO, INRAE, Université de Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
18
|
Molinet J, Salinas F, Guillamón JM, Martínez C. GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 2020; 11:519. [PMID: 32523604 PMCID: PMC7261904 DOI: 10.3389/fgene.2020.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
The TORC1 pathway coordinates cell growth in response to nitrogen availability present in the medium, regulating genes related to nitrogen transport and metabolism. Therefore, the adaptation of Saccharomyces cerevisiae to changes in nitrogen availability implies variations in the activity of this signaling pathway. In this sense, variations in nitrogen detection and signaling pathway are one of the main causes of differences in nitrogen assimilation during alcoholic fermentation. Previously, we demonstrated that allelic variants in the GTR1 gene underlying differences in ammonium and amino acids consumption between Wine/European (WE) and West African (WA) strains impact the expression of nitrogen transporters. The GTR1 gene encodes a GTPase that participates in the EGO complex responsible for TORC1 activation in response to amino acids availability. In this work, we assessed the role of the GTR1 gene on nitrogen consumption under fermentation conditions, using a high sugar concentration medium with nitrogen limitation and in the context of the WE and WA genetic backgrounds. The gtr1Δ mutant presented a reduced TORC1 activity and increased expression levels of nitrogen transporters, which in turn favored ammonium consumption, but decreased amino acid assimilation. Furthermore, to identify the SNPs responsible for differences in nitrogen consumption during alcoholic fermentation, we studied the polymorphisms present in the GTR1 gene. We carried out swapping experiments for the promoter and coding regions of GTR1 between the WE and WA strains. We observed that polymorphisms in the coding region of the WA GTR1 gene are relevant for TORC1 activity. Altogether, our results highlight the role of the GTR1 gene on nitrogen consumption in S. cerevisiae under fermentation conditions.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José Manuel Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
19
|
Evaluation of Saccharomyces cerevisiae Wine Yeast Competitive Fitness in Enologically Relevant Environments by Barcode Sequencing. G3-GENES GENOMES GENETICS 2020; 10:591-603. [PMID: 31792006 PMCID: PMC7003103 DOI: 10.1534/g3.119.400743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When a wine yeast is inoculated into grape juice the potential variation in juice composition that confronts it is huge. Assessing the performance characteristics of the many commercially available wine yeasts in the many possible grape juice compositions is a daunting task. To this end we have developed a barcoded Saccharomyces cerevisiae wine yeast collection to facilitate the task of performance assessment that will contribute to a broader understanding of genotype-phenotype relations. Barcode sequencing of mixed populations is used to monitor strain abundance in different grape juices and grape juice-like environments. Choice of DNA extraction method is shown to affect strain-specific barcode count in this highly related set of S. cerevisiae strains; however, the analytical approach is shown to be robust toward strain dependent variation in DNA extraction efficiency. Of the 38 unique compositional variables assessed, resistance to copper and SO2 are found to be dominant discriminatory factors in wine yeast performance. Finally, a comparison of competitive fitness profile with performance in single inoculum fermentations reveal strain dependent correspondence of yeast performance using these two different approaches.
Collapse
|
20
|
Kessi-Pérez EI, Molinet J, Martínez C. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biol Res 2020; 53:2. [PMID: 31918759 PMCID: PMC6950849 DOI: 10.1186/s40659-019-0270-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae, with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing for population structure determination and presenting QTL mapping as a powerful tool for phenotype-genotype correlations. Finally, we do a recapitulation of S. cerevisiae natural diversity related to low nitrogen adaptation, specially showing how different studies have left in evidence the central role of the TORC1 signalling pathway in nitrogen utilization and positioned wild S. cerevisiae strains as a reservoir of beneficial alleles with potential industrial applications (e.g. improvement of industrial yeasts for wine production). More studies focused in disentangling the genetic bases of S. cerevisiae adaptation in wine fermentation will be key to determine the domestication effects over low nitrogen adaptation, as well as to definitely proof that wild S. cerevisiae strains have potential genetic determinants for better adaptation to low nitrogen conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
21
|
Villalobos-Cid M, Salinas F, Kessi-Pérez EI, De Chiara M, Liti G, Inostroza-Ponta M, Martínez C. Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae. Microorganisms 2019; 8:E32. [PMID: 31877949 PMCID: PMC7022669 DOI: 10.3390/microorganisms8010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Massive sequencing projects executed in Saccharomyces cerevisiae have revealed in detail its population structure. The recent "1002 yeast genomes project" has become the most complete catalogue of yeast genetic diversity and a powerful resource to analyse the evolutionary history of genes affecting specific phenotypes. In this work, we selected 22 nitrogen associated genes and analysed the sequence information from the 1011 strains of the "1002 yeast genomes project". We constructed a total evidence (TE) phylogenetic tree using concatenated information, which showed a 27% topology similarity with the reference (REF) tree of the "1002 yeast genomes project". We also generated individual phylogenetic trees for each gene and compared their topologies, identifying genes with similar topologies (suggesting a shared evolutionary history). Furthermore, we pruned the constructed phylogenetic trees to compare the REF tree topology versus the TE tree and the individual genes trees, considering each phylogenetic cluster/subcluster within the population, observing genes with cluster/subcluster topologies of high similarity to the REF tree. Finally, we used the pruned versions of the phylogenetic trees to compare four strains considered as representatives of S. cerevisiae clean lineages, observing for 15 genes that its cluster topologies match 100% the REF tree, supporting that these strains represent main lineages of yeast population. Altogether, our results showed the potential of tree topologies comparison for exploring the evolutionary history of a specific group of genes.
Collapse
Affiliation(s)
- Manuel Villalobos-Cid
- Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia 5110566, Chile
| | - Eduardo I. Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | | | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Mario Inostroza-Ponta
- Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
22
|
Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Appl Environ Microbiol 2019; 85:AEM.01161-19. [PMID: 31375494 DOI: 10.1128/aem.01161-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/27/2019] [Indexed: 01/07/2023] Open
Abstract
So far, the physiology of Saccharomyces cerevisiae at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of S. cerevisiae under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of S. cerevisiae in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation. To compensate for loss of extracellular nitrogen- or phosphorus-containing compounds, establishing near-zero growth rates (μ < 0.002 h-1) in these retentostats required addition of low concentrations of ammonium or phosphate to reservoir media. In chemostats as well as in retentostats, strongly reduced cellular contents of the growth-limiting element (nitrogen or phosphorus) and high accumulation levels of storage carbohydrates were observed. Even at near-zero growth rates, culture viability in non-energy-limited retentostats remained above 80% and ATP synthesis was still sufficient to maintain an adequate energy status and keep cells in a metabolically active state. Compared to similar glucose-limited retentostat cultures, the nitrogen- and phosphate-limited cultures showed aerobic fermentation and a partial uncoupling of catabolism and anabolism. The possibility to achieve stable, near-zero growth cultures of S. cerevisiae under nitrogen or phosphorus limitation offers interesting prospects for high-yield production of bio-based chemicals.IMPORTANCE The yeast Saccharomyces cerevisiae is a commonly used microbial host for production of various biochemical compounds. From a physiological perspective, biosynthesis of these compounds competes with biomass formation in terms of carbon and/or energy equivalents. Fermentation processes functioning at extremely low or near-zero growth rates would prevent loss of feedstock to biomass production. Establishing S. cerevisiae cultures in which growth is restricted by the limited supply of a non-energy substrate therefore could have a wide range of industrial applications but remains largely unexplored. In this work we accomplished near-zero growth of S. cerevisiae through limited supply of a non-energy nutrient, namely, the nitrogen or phosphorus source, and carried out a quantitative physiological study of the cells under these conditions. The possibility to achieve near-zero-growth S. cerevisiae cultures through limited supply of a non-energy nutrient may offer interesting prospects to develop novel fermentation processes for high-yield production of bio-based chemicals.
Collapse
|
23
|
Molinet J, Cubillos FA, Salinas F, Liti G, Martínez C. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 2019; 14:e0220515. [PMID: 31348805 PMCID: PMC6660096 DOI: 10.1371/journal.pone.0220515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), INSERM, University of Côte d’Azur, Nice, France
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
24
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
25
|
Li J, Vázquez-García I, Persson K, González A, Yue JX, Barré B, Hall MN, Long A, Warringer J, Mustonen V, Liti G. Shared Molecular Targets Confer Resistance over Short and Long Evolutionary Timescales. Mol Biol Evol 2019; 36:691-708. [PMID: 30657986 DOI: 10.1093/molbev/msz006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing and de novo genetic variants can both drive adaptation to environmental changes, but their relative contributions and interplay remain poorly understood. Here we investigated the evolutionary dynamics in drug-treated yeast populations with different levels of pre-existing variation by experimental evolution coupled with time-resolved sequencing and phenotyping. We found a doubling of pre-existing variation alone boosts the adaptation by 64.1% and 51.5% in hydroxyurea and rapamycin, respectively. The causative pre-existing and de novo variants were selected on shared targets: RNR4 in hydroxyurea and TOR1, TOR2 in rapamycin. Interestingly, the pre-existing and de novo TOR variants map to different functional domains and act via distinct mechanisms. The pre-existing TOR variants from two domesticated strains exhibited opposite rapamycin resistance effects, reflecting lineage-specific functional divergence. This study provides a dynamic view on how pre-existing and de novo variants interactively drive adaptation and deepens our understanding of clonally evolving populations.
Collapse
Affiliation(s)
- Jing Li
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Ignacio Vázquez-García
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Statistics, Columbia University, New York, NY
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Benjamin Barré
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | | | - Anthony Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gianni Liti
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| |
Collapse
|
26
|
Kessi-Pérez EI, Salinas F, Molinet J, González A, Muñiz S, Guillamón JM, Hall MN, Larrondo LF, Martínez C. Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast 2018; 36:65-74. [PMID: 30094872 DOI: 10.1002/yea.3351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/07/2018] [Accepted: 07/29/2018] [Indexed: 11/08/2022] Open
Abstract
Saccharomyces cerevisiae is the main species responsible for the alcoholic fermentation in wine production. One of the main problems in this process is the deficiency of nitrogen sources in the grape must, which can lead to stuck or sluggish fermentations. Currently, yeast nitrogen consumption and metabolism are under active inquiry, with emphasis on the study of the TORC1 signalling pathway, given its central role responding to nitrogen availability and influencing growth and cell metabolism. However, the mechanism by which different nitrogen sources activates TORC1 is not completely understood. Existing methods to evaluate TORC1 activation by nitrogen sources are time-consuming, making difficult the analyses of large numbers of strains. In this work, a new indirect method for monitoring TORC1 pathway was developed on the basis of the luciferase reporter gene controlled by the promoter region of RPL26A gene, a gene known to be expressed upon TORC1 activation. The method was tested in strains representative of the clean lineages described so far in S. cerevisiae. The activation of the TORC1 pathway by a proline-to-glutamine upshift was indirectly evaluated using our system and the traditional direct methods based on immunoblot (Sch9 and Rps6 phosphorylation). Regardless of the different molecular readouts obtained with both methodologies, the general results showed a wide phenotypic variation between the representative strains analysed. Altogether, this easy-to-use assay opens the possibility to study the molecular basis for the differential TORC1 pathway activation, allowing to interrogate a larger number of strains in the context of nitrogen metabolism phenotypic differences.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | | | - Sara Muñiz
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna, Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna, Valencia, Spain
| | | | - Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
27
|
Tapia SM, Cuevas M, Abarca V, Delgado V, Rojas V, García V, Brice C, Martínez C, Salinas F, Larrondo LF, Cubillos FA. GPD1 and ADH3 Natural Variants Underlie Glycerol Yield Differences in Wine Fermentation. Front Microbiol 2018; 9:1460. [PMID: 30018610 PMCID: PMC6037841 DOI: 10.3389/fmicb.2018.01460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Glycerol is one of the most important by-products of alcohol fermentation, and depending on its concentration it can contribute to wine flavor intensity and aroma volatility. Here, we evaluated the potential of utilizing the natural genetic variation of non-coding regions in budding yeast to identify allelic variants that could modulate glycerol phenotype during wine fermentation. For this we utilized four Saccharomyces cerevisiae strains (WE - Wine/European, SA – Sake, NA – North American, and WA – West African), which were previously profiled for genome-wide Allele Specific Expression (ASE) levels. The glycerol yields under Synthetic Wine Must (SWM) fermentations differed significantly between strains; WA produced the highest glycerol yields while SA produced the lowest yields. Subsequently, from our ASE database, we identified two candidate genes involved in alcoholic fermentation pathways, ADH3 and GPD1, exhibiting significant expression differences between strains. A reciprocal hemizygosity assay demonstrated that hemizygotes expressing GPD1WA, GPD1SA, ADH3WA and ADH3SA alleles had significantly greater glycerol yields compared to GPD1WE and ADH3WE. We further analyzed the gene expression profiles for each GPD1 variant under SWM, demonstrating that the expression of GPD1WE occurred earlier and was greater compared to the other alleles. This result indicates that the level, timing, and condition of expression differ between regulatory regions in the various genetic backgrounds. Furthermore, promoter allele swapping demonstrated that these allele expression patterns were transposable across genetic backgrounds; however, glycerol yields did not differ between wild type and modified strains, suggesting a strong trans effect on GPD1 gene expression. In this line, Gpd1 protein levels in parental strains, particularly Gpd1pWE, did not necessarily correlate with gene expression differences, but rather with glycerol yield where low Gpd1pWE levels were detected. This suggests that GPD1WE is influenced by recessive negative post-transcriptional regulation which is absent in the other genetic backgrounds. This dissection of regulatory mechanisms in GPD1 allelic variants demonstrates the potential to exploit natural alleles to improve glycerol production in wine fermentation and highlights the difficulties of trait improvement due to alternative trans-regulation and gene-gene interactions in the different genetic background.
Collapse
Affiliation(s)
- Sebastián M Tapia
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Mara Cuevas
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile
| | - Valentina Abarca
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Verónica Delgado
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente Rojas
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Claire Brice
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Luis F Larrondo
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| |
Collapse
|
28
|
Brice C, Cubillos FA, Dequin S, Camarasa C, Martínez C. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS One 2018; 13:e0192383. [PMID: 29432462 PMCID: PMC5809068 DOI: 10.1371/journal.pone.0192383] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/20/2018] [Indexed: 11/25/2022] Open
Abstract
Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.
Collapse
Affiliation(s)
- Claire Brice
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology (MII-SSB), Santiago, Chile
| | - Sylvie Dequin
- UMR SPO: INRA, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Carole Camarasa
- UMR SPO: INRA, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- * E-mail:
| |
Collapse
|
29
|
Marsit S, Leducq JB, Durand É, Marchant A, Filteau M, Landry CR. Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet 2017; 18:581-598. [DOI: 10.1038/nrg.2017.49] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses. G3-GENES GENOMES GENETICS 2017; 7:1693-1705. [PMID: 28592651 PMCID: PMC5473750 DOI: 10.1534/g3.117.042127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.
Collapse
|
31
|
Filteau M, Charron G, Landry CR. Identification of the fitness determinants of budding yeast on a natural substrate. THE ISME JOURNAL 2017; 11:959-971. [PMID: 27935595 PMCID: PMC5364353 DOI: 10.1038/ismej.2016.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/15/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022]
Abstract
The budding yeasts are prime models in genomics and cell biology, but the ecological factors that determine their success in non-human-associated habitats is poorly understood. In North America Saccharomyces yeasts are present on the bark of deciduous trees, where they feed on bark and sap exudates. In the North East, Saccharomyces paradoxus is found on maples, which makes maple sap a natural substrate for this species. We measured growth rates of S. paradoxus natural isolates on maple sap and found variation along a geographical gradient not explained by the inherent variation observed under optimal laboratory conditions. We used a functional genomic screen to reveal the ecologically relevant genes and conditions required for optimal growth in this substrate. We found that the allantoin degradation pathway is required for optimal growth in maple sap, in particular genes necessary for allantoate utilization, which we demonstrate is the major nitrogen source available to yeast in this environment. Growth with allantoin or allantoate as the sole nitrogen source recapitulated the variation in growth rates in maple sap among strains. We also show that two lineages of S. paradoxus display different life-history traits on allantoin and allantoate media, highlighting the ecological relevance of this pathway.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, PROTEO, Big Data Research Center and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département des Sciences des aliments, Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Québec, Canada
| | - Guillaume Charron
- Département de Biologie, PROTEO, Big Data Research Center and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Big Data Research Center and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
32
|
Hughes KA, Leips J. Pleiotropy, constraint, and modularity in the evolution of life histories: insights from genomic analyses. Ann N Y Acad Sci 2017; 1389:76-91. [PMID: 27936291 PMCID: PMC5318229 DOI: 10.1111/nyas.13256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Multicellular organisms display an enormous range of life history (LH) strategies and present an evolutionary conundrum; despite strong natural selection, LH traits are characterized by high levels of genetic variation. To understand the evolution of life histories and maintenance of this variation, the specific phenotypic effects of segregating alleles and the genetic networks in which they act need to be elucidated. In particular, the extent to which LH evolution is constrained by the pleiotropy of alleles contributing to LH variation is generally unknown. Here, we review recent empirical results that shed light on this question, with an emphasis on studies employing genomic analyses. While genome-scale analyses are increasingly practical and affordable, they face limitations of genetic resolution and statistical power. We describe new research approaches that we believe can produce new insights and evaluate their promise and applicability to different kinds of organisms. Two approaches seem particularly promising: experiments that manipulate selection in multiple dimensions and measure phenotypic and genomic response and analytical approaches that take into account genome-wide associations between markers and phenotypes, rather than applying a traditional marker-by-marker approach.
Collapse
Affiliation(s)
- Kimberly A. Hughes
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Jeff Leips
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
33
|
Eldarov MA, Kishkovskaia SA, Tanaschuk TN, Mardanov AV. Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. BIOCHEMISTRY (MOSCOW) 2017; 81:1650-1668. [DOI: 10.1134/s0006297916130046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Gjuvsland AB, Zörgö E, Samy JK, Stenberg S, Demirsoy IH, Roque F, Maciaszczyk-Dziubinska E, Migocka M, Alonso-Perez E, Zackrisson M, Wysocki R, Tamás MJ, Jonassen I, Omholt SW, Warringer J. Disentangling genetic and epigenetic determinants of ultrafast adaptation. Mol Syst Biol 2016; 12:892. [PMID: 27979908 PMCID: PMC5199126 DOI: 10.15252/msb.20166951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.
Collapse
Affiliation(s)
- Arne B Gjuvsland
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Enikö Zörgö
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jeevan Ka Samy
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simon Stenberg
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ibrahim H Demirsoy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Francisco Roque
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | | | - Magdalena Migocka
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Elisa Alonso-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Inge Jonassen
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Stig W Omholt
- Centre for Biodiversity Dynamics, Department of Biology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Warringer
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway .,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Hallin J, Märtens K, Young AI, Zackrisson M, Salinas F, Parts L, Warringer J, Liti G. Powerful decomposition of complex traits in a diploid model. Nat Commun 2016; 7:13311. [PMID: 27804950 PMCID: PMC5097135 DOI: 10.1038/ncomms13311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/21/2016] [Indexed: 01/20/2023] Open
Abstract
Explaining trait differences between individuals is a core and challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We sequence and systematically pair the recombinant gametes of two intercrossed natural genomes into an array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of this approach by partitioning fitness traits of 6,642 Saccharomyces cerevisiae POLs across many environments, achieving near complete trait heritability and precisely estimating additive (73%), dominance (10%), second (7%) and third (1.7%) order epistasis components. We map quantitative trait loci (QTLs) and find nonadditive QTLs to outnumber (3:1) additive loci, dominant contributions to heterosis to outnumber overdominant, and extensive pleiotropy. The POL framework offers the most complete decomposition of diploid traits to date and can be adapted to most model organisms.
Collapse
Affiliation(s)
- Johan Hallin
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| | - Kaspar Märtens
- Institute of Computer Science, University of Tartu, 50090 Tartu, Estonia
| | - Alexander I. Young
- Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
| | - Francisco Salinas
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| | - Leopold Parts
- Institute of Computer Science, University of Tartu, 50090 Tartu, Estonia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA Hinxton, UK
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Gianni Liti
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| |
Collapse
|
36
|
Abstract
The capacity to map traits over large cohorts of individuals—phenomics—lags far behind the explosive development in genomics. For microbes, the estimation of growth is the key phenotype because of its link to fitness. We introduce an automated microbial phenomics framework that delivers accurate, precise, and highly resolved growth phenotypes at an unprecedented scale. Advancements were achieved through the introduction of transmissive scanning hardware and software technology, frequent acquisition of exact colony population size measurements, extraction of population growth rates from growth curves, and removal of spatial bias by reference-surface normalization. Our prototype arrangement automatically records and analyzes close to 100,000 growth curves in parallel. We demonstrate the power of the approach by extending and nuancing the known salt-defense biology in baker’s yeast. The introduced framework represents a major advance in microbial phenomics by providing high-quality data for extensive cohorts of individuals and generating well-populated and standardized phenomics databases
Collapse
|
37
|
Abt TD, Souffriau B, Foulquié-Moreno MR, Duitama J, Thevelein JM. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait. MICROBIAL CELL 2016; 3:159-175. [PMID: 28357348 PMCID: PMC5349090 DOI: 10.15698/mic2016.04.491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to identify causative alleles underlying many non-selectable, polygenic traits in small collections of haploid strains with multiple induced mutations.
Collapse
Affiliation(s)
- Tom Den Abt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Ben Souffriau
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Jorge Duitama
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
38
|
Kessi-Pérez EI, Araos S, García V, Salinas F, Abarca V, Larrondo LF, Martínez C, Cubillos FA. RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res 2016; 16:fow021. [PMID: 26945894 DOI: 10.1093/femsyr/fow021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Different natural yeast populations have faced dissimilar selective pressures due to the heterogeneous fermentation substrates available around the world; this increases the genetic and phenotypic diversity in Saccharomyces cerevisiae In this context, we expect prominent differences between isolates when exposed to a particular condition, such as wine or sake musts. To better comprehend the mechanisms underlying niche adaptation between two S. cerevisiae isolates obtained from wine and sake fermentation processes, we evaluated fermentative and fungicide resistance phenotypes and identify the molecular origin of such adaptive variation. Multiple regions were associated with fermentation rate under different nitrogen conditions and fungicide resistance, with a single QTL co-localizing in all traits. Analysis around this region identified RIM15 as the causative locus driving fungicide sensitivity, together with efficient nitrogen utilization and glycerol production in the wine strain. A null RIM15 variant confers a greater fermentation rate through the utilization of available glucose instead of its storage. However, this variant has a detrimental effect on fungicide resistance since complex sugars are not synthesized and transported into the membrane. Together, our results reveal the antagonist pleiotropic nature of a RIM15 null variant, positively affecting a series of fermentation related phenotypes, but apparently detrimental in the wild.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Sebastián Araos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Francisco Salinas
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile
| | - Valentina Abarca
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile
| |
Collapse
|
39
|
Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth. Appl Microbiol Biotechnol 2016; 100:3255-65. [DOI: 10.1007/s00253-015-7273-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 11/30/2022]
|
40
|
Naranjo S, Smith JD, Artieri CG, Zhang M, Zhou Y, Palmer ME, Fraser HB. Dissecting the Genetic Basis of a Complex cis-Regulatory Adaptation. PLoS Genet 2015; 11:e1005751. [PMID: 26713447 PMCID: PMC4694769 DOI: 10.1371/journal.pgen.1005751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022] Open
Abstract
Although single genes underlying several evolutionary adaptations have been identified, the genetic basis of complex, polygenic adaptations has been far more challenging to pinpoint. Here we report that the budding yeast Saccharomyces paradoxus has recently evolved resistance to citrinin, a naturally occurring mycotoxin. Applying a genome-wide test for selection on cis-regulation, we identified five genes involved in the citrinin response that are constitutively up-regulated in S. paradoxus. Four of these genes are necessary for resistance, and are also sufficient to increase the resistance of a sensitive strain when over-expressed. Moreover, cis-regulatory divergence in the promoters of these genes contributes to resistance, while exacting a cost in the absence of citrinin. Our results demonstrate how the subtle effects of individual regulatory elements can be combined, via natural selection, into a complex adaptation. Our approach can be applied to dissect the genetic basis of polygenic adaptations in a wide range of species.
Collapse
Affiliation(s)
- Santiago Naranjo
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Justin D. Smith
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Stanford Genome Technology Center, Stanford University, Stanford, California, United States of America
| | - Carlo G. Artieri
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Mian Zhang
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yiqi Zhou
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Michael E. Palmer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. This review summarizes current knowledge and recent advances on the diversity and evolutionary history of Saccharomyces cerevisiae wine yeasts, focusing on the domestication fingerprints identified in these strains.
Collapse
Affiliation(s)
- Souhir Marsit
- INRA, UMR1083, SPO, F-34060 Montpellier, France Montpellier SupAgro, UMR1083, SPO, F-34060 Montpellier, France Montpellier University, UMR1083, SPO, F-34060 Montpellier, France
| | - Sylvie Dequin
- INRA, UMR1083, SPO, F-34060 Montpellier, France Montpellier SupAgro, UMR1083, SPO, F-34060 Montpellier, France Montpellier University, UMR1083, SPO, F-34060 Montpellier, France
| |
Collapse
|