1
|
Tian S, Asano Y, Banerjee TD, Komata S, Wee JLQ, Lamb A, Wang Y, Murugesan SN, Fujiwara H, Ui-Tei K, Wittkopp PJ, Monteiro A. A microRNA is the effector gene of a classic evolutionary hotspot locus. Science 2024; 386:1135-1141. [PMID: 39636974 PMCID: PMC12015148 DOI: 10.1126/science.adp7899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a "hotspot" locus, repeatedly implicated in generating intraspecific melanic wing color polymorphisms across 100 million years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. We show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a microRNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its role is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic primary long noncoding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yoshimasa Asano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Faculty of Applied Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| | - Tirtha Das Banerjee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Shinya Komata
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Jocelyn Liang Qi Wee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Abigail Lamb
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI USA
| | - Yehan Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- NucleoTIDE and PepTIDE Drug Discovery Center, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI USA
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, USA
| | - Antónia Monteiro
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Tian S, Asano Y, Banerjee TD, Wee JLQ, Lamb A, Wang Y, Murugesan SN, Ui-Tei K, Wittkopp PJ, Monteiro A. A micro-RNA is the effector gene of a classic evolutionary hotspot locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579741. [PMID: 38659873 PMCID: PMC11042203 DOI: 10.1101/2024.02.09.579741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a 'hotspot' locus, repeatedly used to generate intraspecific melanic wing color polymorphisms across 100-million-years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. Here, we show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a micro-RNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its function is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic long non-coding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Yoshimasa Asano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo; Tokyo, 113-0033, Japan
| | - Tirtha Das Banerjee
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Jocelyn Liang Qi Wee
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Abigail Lamb
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
| | - Yehan Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo; Tokyo, 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo; Chiba, 277-8561, Japan
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
| | - Antónia Monteiro
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| |
Collapse
|
3
|
Roberts KT, Steward RA, Süess P, Lehmann P, Wheat CW. A time course analysis through diapause reveals dynamic temporal patterns of microRNAs associated with endocrine regulation in the butterfly Pieris napi. Mol Ecol 2024:e17348. [PMID: 38597329 DOI: 10.1111/mec.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Organisms inhabiting highly seasonal environments must cope with a wide range of environmentally induced challenges. Many seasonal challenges require extensive physiological modification to survive. In winter, to survive extreme cold and limited resources, insects commonly enter diapause, which is an endogenously derived dormant state associated with minimized cellular processes and low energetic expenditure. Due to the high degree of complexity involved in diapause, substantial cellular regulation is required, of which our understanding primarily derives from the transcriptome via messenger RNA expression dynamics. Here we aim to advance our understanding of diapause by investigating microRNA (miRNA) expression in diapausing and direct developing pupae of the butterfly Pieris napi. We identified coordinated patterns of miRNA expression throughout diapause in both head and abdomen tissues of pupae, and via miRNA target identification, found several expression patterns to be enriched for relevant diapause-related physiological processes. We also identified two candidate miRNAs, miR-14-5p and miR-2a-3p, that are likely involved in diapause progression through their activity in the ecdysone pathway, a critical regulator of diapause termination. miR-14-5p targets phantom, a gene in the ecdysone synthesis pathway, and is upregulated early in diapause. miR-2a-3p has been found to be expressed in response to ecdysone, and is upregulated during diapause termination. Together, the expression patterns of these two miRNAs match our current understanding of the timing of hormonal regulation of diapause in P. napi and provide interesting candidates to further explore the mechanistic role of microRNAs in diapause regulation.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Rachel A Steward
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Philip Süess
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
4
|
Wang Y, Tang X, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biol Rev Camb Philos Soc 2024; 99:525-545. [PMID: 37987240 DOI: 10.1111/brv.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA-mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the 'independent origin' hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage-specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth-death evolutionary pattern aligning with the 'out-of-the-testis' and 'transcriptional control' hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA-mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.
Collapse
Affiliation(s)
- Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Lee IHT, Nong W, So WL, Cheung CKH, Xie Y, Baril T, Yip HY, Swale T, Chan SKF, Wei Y, Lo N, Hayward A, Chan TF, Lam HM, Hui JHL. The genome and sex-dependent responses to temperature in the common yellow butterfly, Eurema hecabe. BMC Biol 2023; 21:200. [PMID: 37749565 PMCID: PMC10521528 DOI: 10.1186/s12915-023-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Lepidoptera (butterflies and moths) is one of the most geographically widespread insect orders in the world, and its species play important and diverse ecological and applied roles. Climate change is one of the biggest challenges to biodiversity this century, and lepidopterans are vulnerable to climate change. Temperature-dependent gene expression differences are of relevance under the ongoing climate crisis. However, little is known about how climate affects gene expression in lepidopterans and the ecological consequences of this, particularly with respect to genes with biased expression in one of the sexes. The common yellow butterfly, Eurema hecabe (Family Pieridae), is one of the most geographically widespread lepidopterans that can be found in Asia, Africa, and Australia. Nevertheless, what temperature-dependent effects there may be and whether the effects differ between the sexes remain largely unexplored. RESULTS Here, we generated high-quality genomic resources for E. hecabe along with transcriptomes from eight developmental stages. Male and female butterflies were subjected to varying temperatures to assess sex-specific gene expression responses through mRNA and microRNA transcriptomics. We find that there are more temperature-dependent sex-biased genes in females than males, including genes that are involved in a range of biologically important functions, highlighting potential ecological impacts of increased temperatures. Further, by considering available butterfly data on sex-biased gene expression in a comparative genomic framework, we find that the pattern of sex-biased gene expression identified in E. hecabe is highly species-specific, rather than conserved across butterfly species, suggesting that sex-biased gene expression responses to climate change are complex in butterflies. CONCLUSIONS Our study lays the foundation for further understanding of differential responses to environmental stress in a widespread lepidopteran model and demonstrates the potential complexity of sex-specific responses of lepidopterans to climate change.
Collapse
Affiliation(s)
- Ivy H T Lee
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris K H Cheung
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Yichun Xie
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Simon K F Chan
- Agriculture, Fisheries and Conservation Department, Hong Kong, China
| | - Yingying Wei
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Law STS, Nong W, So WL, Baril T, Swale T, Chan CB, Tobe SS, Kai ZP, Bendena WG, Hayward A, Hui JHL. Chromosomal-level reference genome of the moth Heortia vitessoides (Lepidoptera: Crambidae), a major pest of agarwood-producing trees. Genomics 2022; 114:110440. [PMID: 35905835 DOI: 10.1016/j.ygeno.2022.110440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.
Collapse
Affiliation(s)
- Sean T S Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | - Chi Bun Chan
- School of Biological Science, The University of Hong Kong, Hong Kong, China
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | | | | | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
9
|
Tian S, Monteiro A. A transcriptomic atlas underlying developmental plasticity of seasonal forms of Bicyclus anynana butterflies. Mol Biol Evol 2022; 39:msac126. [PMID: 35679434 PMCID: PMC9218548 DOI: 10.1093/molbev/msac126] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Organisms residing in regions with alternating seasons often develop different phenotypes, or forms, in each season. These forms are often adaptations to each season and result from an altered developmental response to specific environmental cues such as temperature. While multiple studies have examined form-specific gene expression profiles in a diversity of species, little is known about how environments and developmental transitions, cued by hormone pulses, alter post-transcriptional patterns. In this study, we examine how gene expression, alternative splicing, and miRNA-mediated gene silencing in Bicyclus anynana butterfly hindwing tissue, varies across two rearing temperatures at four developmental timepoints. These timepoints flank two temperature-sensitive periods that coincide with two pulses of the insect hormone 20E. Our results suggest that developmental transitions, coincident with 20E pulses, elicit a greater impact on all these transcriptomic patterns than rearing temperatures per se. More similar transcriptomic patterns are observed pre-20E pulses than those observed post-20E pulses. We also found functionally distinct sets of differentially expressed and differentially spliced genes in the seasonal forms. Furthermore, around 10% of differentially expressed genes are predicted to be direct targets of, and regulated by, differentially expressed miRNAs between the seasonal forms. Many differentially expressed genes, miRNAs, or differentially spliced genes potentially regulate eyespot size plasticity, and we validated the differential splicing pattern of one such gene, daughterless. We present a comprehensive and interactive transcriptomic atlas of the hindwing tissue of both seasonal forms of B. anynana throughout development, a model organism of seasonal plasticity.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Desvignes T, Bardou P, Montfort J, Sydes J, Guyomar C, George S, Postlethwait JH, Bobe J. FishmiRNA: An evolutionarily supported microRNA annotation and expression database for ray-finned fishes. Mol Biol Evol 2022; 39:6502288. [PMID: 35020925 PMCID: PMC8826519 DOI: 10.1093/molbev/msac004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
microRNAs are important post-transcriptional regulators of gene expression involved in countless biological processes and are widely studied across metazoans. While miRNA research continues to grow, the large community of fish miRNA researchers lacks exhaustive resources consistent among species. To fill this gap, we developed FishmiRNA, an evolutionarily supported microRNA annotation and expression database for ray-finned fishes: www.fishmirna.org. The self-explanatory database contains detailed, manually-curated miRNA annotations with orthology relationships rigorously established by sequence similarity and conserved syntenies, and expression data provided for each detected mature miRNA. In just few clicks, users can download the annotation and expression database in several convenient formats either in its entirety or a subset. Simple filters and BLAST search options also permit the simultaneous exploration and visual comparison of expression data for up to any ten mature miRNAs across species and organs. FishmiRNA was specifically designed for ease of use to reach a wide audience.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Philippe Bardou
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, F-31326, France
| | | | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Cervin Guyomar
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, F-31326, France
| | - Simon George
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
11
|
Liu C, Yuan J, Zhang X, Jin S, Li F, Xiang J. Clustering genomic organization of sea cucumber miRNAs impacts their evolution and expression. Genomics 2021; 113:3544-3555. [PMID: 34371099 DOI: 10.1016/j.ygeno.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Echinoderms are marine deuterostomes with fascinating adaptation features such as aestivation and organ regeneration. However, post-transcriptional gene regulation by microRNAs (miRNAs) underlying these features are largely unexplored. Here, using homology-based and de novo approaches supported by expression data, we provided a comprehensive annotation of miRNA genes in the sea cucumber Apostichopus japonicus. By linkage and phylogenic analyses, we characterized miRNA genomic organization, evolutionary history and expression regulation. The results showed that sea cucumbers evolved a large number of new miRNAs, which tended to form polycistronic clusters via tandem duplication that had been especially active in the echinoderms. Most new miRNAs were weakly expressed, but miRNA clustering increased the expression level of clustered new miRNAs. The most abundantly expressed new miRNAs were organized in a single tandem cluster (cluster n2), which was activated during aestivation and intestine regeneration. Overall, our analyses suggest that clustering of miRNAs is important for their evolutionary origin, expression control, and functional cooperation.
Collapse
Affiliation(s)
- Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Songjun Jin
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
12
|
Desvignes T, Sydes J, Montfort J, Bobe J, Postlethwait JH. Evolution after Whole-Genome Duplication: Teleost MicroRNAs. Mol Biol Evol 2021; 38:3308-3331. [PMID: 33871629 PMCID: PMC8321539 DOI: 10.1093/molbev/msab105] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole-genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the teleost genome duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than nonclustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3'-complementary regions, compared with minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multispecies analysis of the mechanisms influencing metazoan miRNA evolution after whole-genome duplication.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | | | |
Collapse
|
13
|
Ma X, He K, Shi Z, Li M, Li F, Chen XX. Large-Scale Annotation and Evolution Analysis of MiRNA in Insects. Genome Biol Evol 2021; 13:6255746. [PMID: 33905491 PMCID: PMC8126727 DOI: 10.1093/gbe/evab083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Insects are among the most diverse and successful groups of animals and exhibit great morphological diversity and complexity. The innovation of wings and metamorphosis are some examples of the fascinating biological evolution of insects. Most microRNAs (miRNAs) contribute to canalization by conferring robustness to gene networks and thus increase the heritability of important phenotypes. Though previous studies have demonstrated how miRNAs regulate important phenotypes, little is still known about miRNA evolution in insects. Here, we used both small RNA-seq data and homology searching methods to annotate the miRNA repertoires of 152 arthropod species, including 135 insects and 17 noninsect arthropods. We identified 16,212 miRNA genes, and classified them into highly conserved (62), insect-conserved (90), and lineage-specific (354) miRNA families. The phylogenetic relationship of miRNA binary presence/absence dynamics implies that homoplastic loss of conserved miRNA families tends to occur in far-related morphologically simplified taxa, including scale insects (Coccoidea) and twisted-wing insects (Strepsiptera), leading to inconsistent phylogenetic tree reconstruction. The common ancestor of Insecta shares 62 conserved miRNA families, of which five were rapidly gained in the early winged-insects (Pterygota). We also detected extensive miRNA losses in Paraneoptera that are correlated with morphological reduction, and miRNA gains in early Endopterygota around the time holometabolous metamorphosis appeared. This was followed by abundant miRNA gains in Hymenoptera and Lepidoptera. In summary, we provide a comprehensive data set and a detailed evolutionary analysis of miRNAs in insects. These data will be important for future studies on miRNA functions associated with insect morphological innovation and trait biodiversity.
Collapse
Affiliation(s)
- Xingzhou Ma
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,College of Plant Protection, Nanjing Agricultural University, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmin Shi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meizhen Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Timmermans MJTN, Srivathsan A, Collins S, Meier R, Vogler AP. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed- invected. Proc Biol Sci 2020; 287:20200443. [PMID: 32345166 DOI: 10.1098/rspb.2020.0443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polymorphic Batesian mimics exhibit multiple protective morphs that each mimic a different noxious model. Here, we study the genomic transitions leading to the evolution of different mimetic wing patterns in the polymorphic Mocker Swallowtail Papilio dardanus. We generated a draft genome (231 Mb over 30 chromosomes) and re-sequenced individuals of three morphs. Genome-wide single nucleotide polymorphism (SNP) analysis revealed elevated linkage disequilibrium and divergence between morphs in the regulatory region of engrailed, a developmental gene previously implicated in the mimicry switch. The diverged region exhibits a discrete chromosomal inversion (of 40 kb) relative to the ancestral orientation that is associated with the cenea morph, but not with the bottom-recessive hippocoonides morph or with non-mimetic allopatric populations. The functional role of this inversion in the expression of the novel phenotype is currently unknown, but by preventing recombination, it allows the stable inheritance of divergent alleles enabling geographic spread and local coexistence of multiple adaptive morphs.
Collapse
Affiliation(s)
- Martijn J T N Timmermans
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK.,Department of Natural Sciences, Middlesex University, London, UK
| | - Amrita Srivathsan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore.,Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
15
|
Kittelmann S, McGregor AP. Modulation and Evolution of Animal Development through microRNA Regulation of Gene Expression. Genes (Basel) 2019; 10:genes10040321. [PMID: 31027314 PMCID: PMC6523689 DOI: 10.3390/genes10040321] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs regulate gene expression by blocking the translation of mRNAs and/or promoting their degradation. They, therefore, play important roles in gene regulatory networks (GRNs) by modulating the expression levels of specific genes and can tune GRN outputs more broadly as part of feedback loops. These roles for microRNAs provide developmental buffering on one hand but can facilitate evolution of development on the other. Here we review how microRNAs can modulate GRNs during animal development as part of feedback loops and through their individual or combinatorial targeting of multiple different genes in the same network. We then explore how changes in the expression of microRNAs and consequently targets can facilitate changes in GRNs that alter development and lead to phenotypic evolution. The reviewed studies exemplify the key roles played by microRNAs in the regulation and evolution of gene expression during developmental processes in animals.
Collapse
Affiliation(s)
- Sebastian Kittelmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
16
|
Das Gupta M, Tsiantis M. Gene networks and the evolution of plant morphology. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:82-87. [PMID: 29885565 DOI: 10.1016/j.pbi.2018.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Elaboration of morphology depends on the precise orchestration of gene expression by key regulatory genes. The hierarchy and relationship among the participating genes is commonly known as gene regulatory network (GRN). Therefore, the evolution of morphology ultimately occurs by the rewiring of gene network structures or by the co-option of gene networks to novel domains. The availability of high-resolution expression data combined with powerful statistical tools have opened up new avenues to formulate and test hypotheses on how diverse gene networks influence trait development and diversity. Here we summarize recent studies based on both big-data and genetics approaches to understand the evolution of plant form and physiology. We also discuss recent genome-wide investigations on how studying open-chromatin regions may help study the evolution of gene expression patterns.
Collapse
Affiliation(s)
- Mainak Das Gupta
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany.
| |
Collapse
|
17
|
Tarver JE, Taylor RS, Puttick MN, Lloyd GT, Pett W, Fromm B, Schirrmeister BE, Pisani D, Peterson KJ, Donoghue PCJ. Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss. Genome Biol Evol 2018; 10:1457-1470. [PMID: 29788279 PMCID: PMC6007596 DOI: 10.1093/gbe/evy096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
microRNAs are conserved noncoding regulatory factors implicated in diverse physiological and developmental processes in multicellular organisms, as causal macroevolutionary agents and for phylogeny inference. However, the conservation and phylogenetic utility of microRNAs has been questioned on evidence of pervasive loss. Here, we show that apparent widespread losses are, largely, an artefact of poorly sampled and annotated microRNAomes. Using a curated data set of animal microRNAomes, we reject the view that miRNA families are never lost, but they are rarely lost (92% are never lost). A small number of families account for a majority of losses (1.7% of families account for >45% losses), and losses are associated with lineages exhibiting phenotypic simplification. Phylogenetic analyses based on the presence/absence of microRNA families among animal lineages, and based on microRNA sequences among Osteichthyes, demonstrate the power of these small data sets in phylogenetic inference. Perceptions of widespread evolutionary loss of microRNA families are due to the uncritical use of public archives corrupted by spurious microRNA annotations, and failure to discriminate false absences that occur because of incomplete microRNAome annotation.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Richard S Taylor
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Mark N Puttick
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Graeme T Lloyd
- School of Earth and Environment, University of Leeds, United Kingdom
| | - Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | - Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Bettina E Schirrmeister
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Davide Pisani
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Philip C J Donoghue
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
18
|
Vitsios DM, Kentepozidou E, Quintais L, Benito-Gutiérrez E, van Dongen S, Davis MP, Enright AJ. Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests. Nucleic Acids Res 2017; 45:e177. [PMID: 29036314 PMCID: PMC5716205 DOI: 10.1093/nar/gkx836] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences. In brief, miRNAs usually have a well-defined 5′ end and a more flexible 3′ end with the possibility of 3′ tailing events, such as uridylation. Previous approaches to the prediction of novel miRNAs usually involve the analysis of structural features of miRNA precursor hairpin sequences obtained from genome sequence. We surmised that it may be possible to identify miRNAs by using these biogenesis features observed directly from sequenced reads, solely or in addition to structural analysis from genome data. To this end, we have developed mirnovo, a machine learning based algorithm, which is able to identify known and novel miRNAs in animals and plants directly from small RNA-Seq data, with or without a reference genome. This method performs comparably to existing tools, however is simpler to use with reduced run time. Its performance and accuracy has been tested on multiple datasets, including species with poorly assembled genomes, RNaseIII (Drosha and/or Dicer) deficient samples and single cells (at both embryonic and adult stage).
Collapse
Affiliation(s)
- Dimitrios M Vitsios
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elissavet Kentepozidou
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leonor Quintais
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Stijn van Dongen
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew P Davis
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anton J Enright
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
19
|
Shi T, Wang K, Yang P. The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:442-457. [PMID: 27743419 DOI: 10.1111/tpj.13394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNAs in eukaryotes. However, under which circumstances different miRNAs/miRNA families exhibit different evolutionary trajectories in plants remains unclear. In this study, we sequenced the small RNAs and degradome from a basal eudicot, sacred lotus (Nelumbo nucifera or lotus), to identify miRNAs and their targets. Combining with public miRNAs, we predicted 57 pre-eudicot miRNA families from different evolutionary stages. We found that miRNA families featuring older age, higher copy and target number tend to show lower propensity for miRNA family loss (PGL) and stronger signature of purifying selection during divergence of temperate and tropical lotus. Further analyses of lotus genome revealed that there is an association between loss of miRNA families in descendent plants and in duplicated genomes. Gene dosage balance is crucial in maintaining those preferentially retained MIRNA duplicates by imposing stronger purifying selection. However, these factors and selection influencing miRNA family evolution are not applicable to the putative MIRNA-likes. Additionally, the MIRNAs participating in lotus pollen-pistil interaction, a conserved process in angiosperms, also have a strong signature of purifying selection. Functionally, sequence divergence in MIRNAs escalates expression divergence of their target genes between temperate and tropical lotus during rhizome and leaf growth. Overall, our study unravels several important factors and selection that determine the miRNA family distribution in plants and duplicated genomes, and provides evidence for functional impact of MIRNA sequence evolution.
Collapse
Affiliation(s)
- Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Wuhan University, Wuhan, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Comparative profiling of microRNAs in the winged and wingless English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae). Sci Rep 2016; 6:35668. [PMID: 27762301 PMCID: PMC5071838 DOI: 10.1038/srep35668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNAs that regulate gene expression, particularly during development. In this study, 345 miRNAs were identified from the English green aphid, Sitobion avenae (F.), of which 168 were conserved and 177 were S. avenae-specific. Quantitative comparison of miRNA expression levels indicated that 16 and 12 miRNAs were significantly up-regulated in winged and wingless S. avenae small RNA libraries, respectively. Differential expression of these miRNAs was confirmed by real-time quantitative RT-PCR validation. The putative transcript targets for these candidate miRNAs were predicted based on sequences from a model species Drosophila melanogaster and four aphid species Acyrthosiphon pisum, Myzus persicae, Toxoptera citricida, and Aphis gosspii. Gene Ontology and KEGG pathway analyses shed light on the potential functions of these miRNAs in the regulation of genes involved in the metabolism, development and wing polyphenism of S. avenae.
Collapse
|
21
|
Chen H, Wang H, Jiang S, Xu J, Wang L, Qiu L, Song L. An oyster species-specific miRNA scaffold42648_5080 modulates haemocyte migration by targeting integrin pathway. FISH & SHELLFISH IMMUNOLOGY 2016; 57:160-169. [PMID: 27544269 DOI: 10.1016/j.fsi.2016.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/07/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
miRNAs are important gene regulators at post-transcriptional level and can modulate diverse biological processes, including immune response. Dozens of species-specific miRNAs have been identified in oyster Crassostrea gigas while their functions remain largely unknown. In the present study, an oyster species-specific miRNA scaffold42648_5080 was found responsive to LPS stimulation and might target a total of 31 oyster genes possibly involved in cell communication, cellular localization and cellular response to stimulus. Besides, in gain-of-function assay of scaffold42648_5080 in vivo, the phagocytosis (30.90% in miRNA group verse 23.20% in miRNA control group), apoptosis (3.10% in miRNA group verse 5.30% in miRNA control group) and migration rate (13.88% in miRNA group verse 21.03% in miRNA control group) of oyster haemocytes were found significantly altered after the injection of scaffold42648_5080 mimics. Among the target genes, integrin-linked kinase (CgILK) was considered crucial in cell migration and its interaction with scaffold42648_5080 was then verified both in vitro and in vivo. Consequently, a significant decrease of relative luciferase ratio was observed in CgILK 3'-UTR luciferase reporter assay after transfection of scaffold42648_5080 mimics (0.70-fold of that in blank group, p < 0.01). Meanwhile, when scaffold42648_5080 was overexpressed in vivo (5.41-fold of miRNA control group, p < 0.01), the expression of CgILK declined significantly to 0.25-fold of miRNA control group (p < 0.01). Comparatively, a significant decrease of the haemocyte migration rate (19.76% verse 34.82% in siEGFP control group, p < 0.01) was observed after knock-down of CgILK in vivo. The present study, as far as we know, for the first time revealed the immunomodulation role of an oyster species-specific miRNA, which might provide new insights into miRNA-mediated adaptation mechanism of oysters.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
22
|
Koufaris C. Human and primate-specific microRNAs in cancer: Evolution, and significance in comparison with more distantly-related research models. Bioessays 2016; 38:286-94. [DOI: 10.1002/bies.201500135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Costas Koufaris
- Department of Cytogenetics and Genomics; Cyprus institute of Neurology and Genetics; Nicosia Cyprus
| |
Collapse
|
23
|
A Diversity of Conserved and Novel Ovarian MicroRNAs in the Speckled Wood (Pararge aegeria). PLoS One 2015; 10:e0142243. [PMID: 26556800 PMCID: PMC4640560 DOI: 10.1371/journal.pone.0142243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/18/2015] [Indexed: 02/02/2023] Open
Abstract
microRNAs (miRNAs) are important regulators of animal development and other processes, and impart robustness to living systems through post-transcriptional regulation of specific mRNA transcripts. It is postulated that newly emergent miRNAs are generally expressed at low levels and with spatiotemporally restricted expression domains, thus minimising effects of spurious targeting on animal transcriptomes. Here we present ovarian miRNA transcriptome data for two geographically distinct populations of the Speckled Wood butterfly (Pararge aegeria). A total of 74 miRNAs were identified, including 11 newly discovered and evolutionarily-young miRNAs, bringing the total of miRNA genes known from P. aegeria up to 150. We find a positive correlation between miRNA age and expression level. A common set of 55 miRNAs are expressed in both populations. From this set, we identify seven that are consistently either ovary-specific or highly upregulated in ovaries relative to other tissues. This ‘ovary set’ includes miRNAs with known contributions to ovarian function in other insect species with similar ovaries and mode of oogenesis, including miR-989 and miR-2763, plus new candidates for ovarian function. We also note that conserved miRNAs are overrepresented in the ovary relative to the whole body.
Collapse
|
24
|
Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet 2015; 49:213-42. [PMID: 26473382 DOI: 10.1146/annurev-genet-120213-092023] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database--MirGeneDB ( http://mirgenedb.org )--to catalog this set of miRNAs, which complements the efforts of miRBase but differs from it by annotating the mature versus star products and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire.
Collapse
Affiliation(s)
- Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research
| | - Tyler Billipp
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Liam E Peck
- Department of Biology and Health Sciences, New England College, Henniker, New Hampshire 03242
| | | | - James E Tarver
- Department of Biology, The National University of Ireland, Maynooth, Kildare, Ireland.,School of Earth Sciences, University of Bristol, BS8 1TQ Bristol, United Kingdom
| | - Benjamin L King
- Kathryn W. Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672
| | - James M Newcomb
- Department of Biology and Health Sciences, New England College, Henniker, New Hampshire 03242
| | - Lorenzo F Sempere
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research.,Department of Gastroenterological Surgery.,Institute of Clinical Medicine
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research.,Institute of Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, N-0424 Oslo, Norway.,Department of Informatics, University of Oslo, Blindern, N-0318 Oslo, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
25
|
Quah S, Holland PWH. The Hox cluster microRNA miR-615: a case study of intronic microRNA evolution. EvoDevo 2015; 6:31. [PMID: 26451238 PMCID: PMC4597612 DOI: 10.1186/s13227-015-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/25/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Introns represent a potentially rich source of existing transcription for the evolution of novel microRNAs (miRNAs). Within the Hox gene clusters, a miRNA gene, miR-615, is located within the intron of the Hoxc5 gene. This miRNA has a restricted phylogenetic distribution, providing an opportunity to examine the origin and evolution of a new miRNA within the intron of a developmentally-important homeobox gene. RESULTS Alignment and structural analyses show that the sequence is highly conserved across eutherian mammals and absent in non-mammalian tetrapods. Marsupials possess a similar sequence which we predict will not be efficiently processed as a miRNA. Our analyses suggest that transcription of HOXC5 in humans is accompanied by expression of miR-615 in all cases, but that the miRNA can also be transcribed independently of its host gene through the use of an intragenic promoter. We present scenarios for the evolution of miR-615 through intronic exaptation, and speculate on the acquisition of independent transcriptional regulation. Target prediction and transcriptomic analyses suggest that the dominant product of miR-615 is involved in the regulation of growth and a range of developmental processes. CONCLUSIONS The miR-615 gene evolved within the intron of Hoxc5 in the ancestor of placental mammals. Using miR-615 as a case study, we propose a model by which a functional miRNA can emerge within an intron gradually, by selection on secondary structure followed by evolution of an independent miRNA promoter. The location within a Hox gene intron is of particular interest as the miRNA is specific to placental mammals, is co-expressed with its host gene and may share complementary functions.
Collapse
Affiliation(s)
- Shan Quah
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Peter W. H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
26
|
Lucas KJ, Zhao B, Liu S, Raikhel AS. Regulation of physiological processes by microRNAs in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 11:1-7. [PMID: 26251827 PMCID: PMC4522942 DOI: 10.1016/j.cois.2015.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function in gene regulatory processes in plants and animals by targeting sites within messenger RNA. In insects, miRNAs have been shown to regulate a variety of physiological processes throughout insect development, including molting, metamorphosis, oogenesis, embryogenesis, behavior and host-pathogen interactions. The roles of miRNAs in the model organism, Drosophila melanogaster, have been studied extensively due to the conserved nature of miRNA function among highly divergent species. However, seeking to understand miRNA function in non-drosophilid insect species has become a growing trend in insect science. Here, we highlight the recent discoveries regarding miRNA function in insect physiology and development.
Collapse
Affiliation(s)
- Keira J. Lucas
- Department of Entomology, University of California Riverside CA 92521, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside CA 92521, USA
| | - Bo Zhao
- Department of Entomology, University of California Riverside CA 92521, USA
- Institute for Integrative Genome Biology, University of California Riverside CA 92521, USA
| | - Shiping Liu
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California Riverside CA 92521, USA
- Institute for Integrative Genome Biology, University of California Riverside CA 92521, USA
| |
Collapse
|
27
|
Wang Y, Jiang F, Wang H, Song T, Wei Y, Yang M, Zhang J, Kang L. Evidence for the expression of abundant microRNAs in the locust genome. Sci Rep 2015; 5:13608. [PMID: 26329925 PMCID: PMC4556993 DOI: 10.1038/srep13608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
Substantial accumulation of neutral sequences accounts for genome size expansion in animal genomes. Numerous novel microRNAs (miRNAs), which evolve in a birth and death manner, are considered evolutionary neutral sequences. The migratory locust is an ideal model to determine whether large genomes contain abundant neutral miRNAs because of its large genome size. A total of 833 miRNAs were discovered, and several miRNAs were randomly chosen for validation by Northern blot and RIP-qPCR. Three additional verification methods, namely, processing-dependent methods of miRNA biogenesis using RNAi, evolutionary comparison with closely related species, and evidence supported by tissue-specific expression, were applied to provide compelling results that support the authenticity of locust miRNAs. We observed that abundant local duplication events of miRNAs, which were unique in locusts compared with those in other insects with small genome sizes, may be responsible for the substantial acquisition of miRNAs in locusts. Together, multiple evidence showed that the locust genome experienced a burst of miRNA acquisition, suggesting that genome size expansion may have considerable influences of miRNA innovation. These results provide new insight into the genomic dynamics of miRNA repertoires under genome size evolution.
Collapse
Affiliation(s)
- Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tianqi Song
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yuanyuan Wei
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meiling Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Kenny NJ, Namigai EKO, Marlétaz F, Hui JHL, Shimeld SM. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Mar Genomics 2015; 24 Pt 2:139-46. [PMID: 26319627 DOI: 10.1016/j.margen.2015.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 12/01/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act post-transcriptionally to regulate gene expression levels. Some studies have indicated that microRNAs may have low homoplasy, and as a consequence the phylogenetic distribution of microRNA families has been used to study animal evolutionary relationships. Limited levels of lineage sampling, however, may distort such analyses. Lophotrochozoa is an under-sampled taxon that includes molluscs, annelids and nemerteans, among other phyla. Here, we present two novel draft genomes, those of the limpet Patella vulgata and polychaete Spirobranchus (Pomatoceros) lamarcki. Surveying these genomes for known microRNAs identifies numerous potential orthologues, including a number that have been considered to be confined to other lineages. RT-PCR demonstrates that some of these (miR-1285, miR-1287, miR-1957, miR-1983 and miR-3533), previously thought to be found only in vertebrates, are expressed. This study provides genomic resources for two lophotrochozoans and reveals patterns of microRNA evolution that could be hidden by more restricted sampling.
Collapse
Affiliation(s)
- Nathan J Kenny
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | | | | | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | |
Collapse
|