1
|
Hirst SR, Rautsaw RM, VanHorn CM, Beer MA, McDonald PJ, Rosales García RA, Rodriguez Lopez B, Rubio Rincón A, Franz Chávez H, Vásquez-Cruz V, Kelly Hernández A, Storfer A, Borja M, Castañeda-Gaytán G, Frandsen PB, Parkinson CL, Strickland JL, Margres MJ. Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution. Genome Biol Evol 2024; 16:evae198. [PMID: 39255072 PMCID: PMC11440179 DOI: 10.1093/gbe/evae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Preston J McDonald
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Veracruz, Mexico
- PIMVS Herpetario Palancoatl, Veracruz, Mexico
| | | | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Hogan MP, Holding ML, Nystrom GS, Colston TJ, Bartlett DA, Mason AJ, Ellsworth SA, Rautsaw RM, Lawrence KC, Strickland JL, He B, Fraser P, Margres MJ, Gilbert DM, Gibbs HL, Parkinson CL, Rokyta DR. The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci U S A 2024; 121:e2313440121. [PMID: 38578985 PMCID: PMC11032440 DOI: 10.1073/pnas.2313440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.
Collapse
Affiliation(s)
- Michael P. Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Matthew L. Holding
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Gunnar S. Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Timothy J. Colston
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR00681
| | - Daniel A. Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Schyler A. Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- School of Biological Sciences, Washington State University, Pullman, WA99164
| | - Kylie C. Lawrence
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Biology, University of South Alabama, Mobile, AL36688
| | - Bing He
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Mark J. Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
| | - David M. Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA92121
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC29634
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
3
|
Niedziałkowska M, Tarnowska E, Babik W, Konczal M, Gharbi K, Cezard T, Jędrzejewska B. Different waves of postglacial recolonisation and genomic structure of bank vole populations in NE Poland. Heredity (Edinb) 2023; 130:269-277. [PMID: 36944856 PMCID: PMC10163242 DOI: 10.1038/s41437-023-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/23/2023] Open
Abstract
Previous studies indicated that in some species phylogeographic patterns obtained in the analysis of nuclear and mitochondrial DNA (mtDNA) markers can be different. Such mitonuclear discordance can have important evolutionary and ecological consequences. In the present study, we aimed to check whether there was any discordance between mtDNA and nuclear DNA in the bank vole population in the contact zone of its two mtDNA lineages. We analysed the population genetic structure of bank voles using genome-wide genetic data (SNPs) and diversity of sequenced heart transcriptomes obtained from selected individuals from three populations inhabiting areas outside the contact zone. The SNP genetic structure of the populations confirmed the presence of at least two genetic clusters, and such division was concordant with the patterns obtained in the analysis of other genetic markers and functional genes. However, genome-wide SNP analyses revealed the more detailed structure of the studied population, consistent with more than two bank vole recolonisation waves, as recognised previously in the study area. We did not find any significant differences between individuals representing two separate mtDNA lineages of the species in functional genes coding for protein-forming complexes, which are involved in the process of cell respiration in mitochondria. We concluded that the contemporary genetic structure of the populations and the width of the contact zone were shaped by climatic and environmental factors rather than by genetic barriers. The studied populations were likely isolated in separate Last Glacial Maximum refugia for insufficient amount of time to develop significant genetic differentiation.
Collapse
Affiliation(s)
| | - Ewa Tarnowska
- Mammal Research Institute Polish Academy of Sciences, 17-230, Białowieża, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences Jagiellonian University, 30-387, Kraków, Poland
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614, Poznań, Poland
| | - Karim Gharbi
- Edinburgh Genomics, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Earlham Institute, Norwich, NR4 7UZ, UK
| | - Timothee Cezard
- Edinburgh Genomics, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | | |
Collapse
|
4
|
Maciak S. Cell size, body size and Peto's paradox. BMC Ecol Evol 2022; 22:142. [PMID: 36513976 PMCID: PMC9746147 DOI: 10.1186/s12862-022-02096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Carcinogenesis is one of the leading health concerns afflicting presumably every single animal species, including humans. Currently, cancer research expands considerably beyond medicine, becoming a focus in other branches of natural science. Accumulating evidence suggests that a proportional scale of tumor deaths involves domestic and wild animals and poses economical or conservation threats to many species. Therefore, understanding the genetic and physiological mechanisms of cancer initiation and its progression is essential for our future action and contingent prevention. From this perspective, I used an evolutionary-based approach to re-evaluate the baseline for debate around Peto's paradox. First, I review the background of information on which current understanding of Peto's paradox and evolutionary concept of carcinogenesis have been founded. The weak points and limitations of theoretical modeling or indirect reasoning in studies based on intraspecific, comparative studies of carcinogenesis are highlighted. This is then followed by detail discussion of an effect of the body mass in cancer research and the importance of cell size in consideration of body architecture; also, I note to the ambiguity around cell size invariance hypothesis and hard data for variability of cell size across species are provided. Finally, I point to the new research area that is driving concepts to identify exact molecular mechanisms promoting the process of tumorigenesis, which in turn may provide a proximate explanation of Peto's paradox. The novelty of the approach proposed therein lies in intraspecies testing of the effect of differentiation of cell size/number on the probability of carcinogenesis while controlling for the confounding effect of body mass/size.
Collapse
Affiliation(s)
- Sebastian Maciak
- grid.25588.320000 0004 0620 6106Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, K. Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
5
|
Hanhimäki E, Watts PC, Koskela E, Koteja P, Mappes T, Hämäläinen AM. Evolved high aerobic capacity has context-specific effects on gut microbiota. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.934164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota is expected to coevolve with the host's physiology and may play a role in adjusting the host's energy metabolism to suit the host's environment. To evaluate the effects of both evolved host metabolism and the environmental context in shaping the gut microbiota, we used a unique combination of (1) experimental evolution to create selection lines for a fast metabolism and (2) a laboratory-to-field translocation study. Mature bank voles Myodes glareolus from lines selected for high aerobic capacity (A lines) and from unselected control (C lines) were released into large (0.2 ha) outdoor enclosures for longitudinal monitoring. To examine whether the natural environment elicited a similar or more pronounced impact on the gut microbiota of the next generation, we also sampled the field-reared offspring. The gut microbiota were characterized using 16S rRNA amplicon sequencing of fecal samples. The artificial selection for fast metabolism had minimal impact on the gut microbiota in laboratory conditions but in field conditions, there were differences between the selection lines (A lines vs. C lines) in the diversity, community, and resilience of the gut microbiota. Notably, the selection lines differed in the less abundant bacteria throughout the experiment. The lab-to-field transition resulted in an increase in alpha diversity and an altered community composition in the gut microbiota, characterized by a significant increase in the relative abundance of Actinobacteria and a decrease of Patescibacteria. Also, the selection lines showed different temporal patterns in changes in microbiota composition, as the average gut microbiota alpha diversity of the C lines, but not A lines, was temporarily reduced during the initial transition to the field. In surviving young voles, the alpha diversity of gut microbiota was significantly higher in A-line than C-line voles. These results indicate that the association of host metabolism and gut microbiota is context-specific, likely mediated by behavioral or physiological modifications in response to the environment.
Collapse
|
6
|
Lipowska MM, Sadowska ET, Bauchinger U, Goymann W, Bober-Sowa B, Koteja P. Does selection for behavioral and physiological performance traits alter glucocorticoid responsiveness in bank voles? J Exp Biol 2020; 223:jeb219865. [PMID: 32561625 DOI: 10.1242/jeb.219865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
One of the key elements of an animal's Darwinian fitness is its ability to adequately respond to and cope with challenging situations. Glucocorticoid hormones, such as corticosterone, affect an organism's ability to overcome such challenges. We hypothesized that changes in the glucocorticoid response curve contribute to the evolution of increased performance during challenging conditions, and tested it on bank voles (Myodes glareolus) from a multidirectional artificial selection experiment, which involves lines selected for high aerobic exercise metabolism achieved during swimming (A - Aerobic), predatory behavior towards a cricket (P - Predatory) and ability to maintain body mass on a low-quality herbivorous diet (H - Herbivorous), as well as unselected control lines (C - Control). We elicited a glucocorticoid response either by restraining the animal or by maximum pharmacological stimulation, and measured plasma corticosterone levels at baseline, during the response and during the recovery phase. Response-level corticosterone was higher in females, and recovery from maximal level was faster than that of males. Selection did not affect baseline or stress-induced corticosterone levels, but it decreased the maximum corticosterone level in Aerobic and Predatory lines, reducing the difference between stress-induced and maximum levels. Recovery from restraint-induced corticosterone level tended to be slower in the Herbivorous than in the other lines, an effect that was stronger in females than in males. In conclusion, successful selection for increased performance in challenging conditions was not associated with changes in absolute values of the glucocorticoid response to stress, but can affect other characteristics of the glucocorticoid response curve.
Collapse
Affiliation(s)
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology PAS, 02-093 Warszawa, Poland
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Barbara Bober-Sowa
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Gros‐Balthazard M, Besnard G, Sarah G, Holtz Y, Leclercq J, Santoni S, Wegmann D, Glémin S, Khadari B. Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:143-157. [PMID: 31192486 PMCID: PMC6851578 DOI: 10.1111/tpj.14435] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/11/2023]
Abstract
The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Present address:
New York University Abu Dhabi (NYUAD), Center for Genomics and Systems BiologySaadiyat IslandAbu DhabiUnited Arab Emirates
| | | | - Gautier Sarah
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Yan Holtz
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Julie Leclercq
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Sylvain Santoni
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Sylvain Glémin
- CNRSUniversité de RennesECOBIO (Ecosystèmes, biodiversité, évolution) − UMR 6553F‐35000RennesFrance
- Department of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Conservatoire Botanique National MéditerranéenUMR AGAPMontpellierFrance
| |
Collapse
|
8
|
Experimental evolution of aerobic exercise performance and hematological traits in bank voles. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:1-9. [DOI: 10.1016/j.cbpa.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 01/19/2023]
|
9
|
Jaromin E, Sadowska ET, Koteja P. The effect of monoamines reuptake inhibitors on aerobic exercise performance in bank voles from a selection experiment. Curr Zool 2019; 65:409-419. [PMID: 31413714 PMCID: PMC6688583 DOI: 10.1093/cz/zoy063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/28/2018] [Indexed: 01/26/2023] Open
Abstract
Exercise performance depends on both physiological abilities (e.g., muscle strength) and behavioral characteristics (e.g., motivation). We tested the hypothesis that evolution of increased aerobic exercise performance can be facilitated by evolution of neuropsychological mechanisms responsible for motivation to undertake physical activity. We used a unique model system: lines of bank voles Myodes glareolus selected for high swim-induced aerobic metabolism ("aerobic" A lines). In generation 21, voles from the 4 A lines achieved a 57% higher "voluntary maximum" swim-induced aerobic metabolism (VO2swim) than voles from 4 unselected, "control" C lines. In C lines, VO2swim was 9% lower than the maximum forced-exercise aerobic metabolism (VO2run; P = 0.007), while in A lines it was even higher than VO2run, although not significantly (4%, P = 0.15). Thus, we hypothesized that selection changed both the aerobic capacity and the neuronal mechanisms behind motivation to undertake activity. We investigated the influence of reuptake inhibitors of dopamine (DARI), serotonin (SSRI), and norepinephrine (NERI) on VO2swim. The drugs decreased VO2swim both in C and A lines (% decrease compared with saline: DARI 8%, P < 0.001; SSRI 6%, P < 0.001; NERI 8%, P < 0.001), but the proportional response differed between selection directions only for NERI (stronger effect in C lines: P = 0.008) and the difference was marginally non-significant for SSRI (P = 0.07) and DARI (P = 0.06). Thus, the results suggest that all the 3 monoamines are involved in signaling pathways controlling the motivation to be active and that norepinephrine could have played a role in the evolution of increased aerobic exercise performance in our animal model.
Collapse
Affiliation(s)
- Ewa Jaromin
- Institute of Environmetal Sciences, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland
| | | | | |
Collapse
|
10
|
Larsen PA, Matocq MD. Emerging genomic applications in mammalian ecology, evolution, and conservation. J Mammal 2019. [DOI: 10.1093/jmammal/gyy184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
11
|
Affiliation(s)
- Thomas E Tomasi
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Briana N Anderson
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California – Riverside, Riverside, CA, USA
| |
Collapse
|
12
|
Kraaijeveld K, Oostra V, Liefting M, Wertheim B, de Meijer E, Ellers J. Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis. BMC Genomics 2018; 19:892. [PMID: 30526508 PMCID: PMC6288879 DOI: 10.1186/s12864-018-5310-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Selection acts on the phenotype, yet only the genotype is inherited. While both the phenotypic and genotypic response to short-term selection can be measured, the link between these is a major unsolved problem in evolutionary biology, in particular for complex behavioural phenotypes. Results Here we characterize the genomic and the transcriptomic basis of associative learning ability in the parasitic wasp Nasonia vitripennis and use gene network analysis to link the two. We artificially selected for improved associative learning ability in four independent pairs of lines and identified signatures of selection across the genome. Allele frequency diverged consistently between the selected and control lines in 118 single nucleotide polymorphisms (SNPs), clustering in 51 distinct genomic regions containing 128 genes. The majority of SNPs were found in regulatory regions, suggesting a potential role for gene expression evolution. We therefore sequenced the transcriptomes of selected and control lines and identified 36 consistently differentially expressed transcripts with large changes in expression. None of the differentially expressed genes also showed sequence divergence as a result of selection. Instead, gene network analysis showed many of the genes with consistent allele frequency differences and all of the differentially expressed genes to cluster in a single co-expression network. At a functional level, both genomic and transcriptomic analyses implicated members of gene networks known to be involved in neural plasticity and cognitive processes. Conclusions Taken together, our results reveal how specific cognitive abilities can readily respond to selection via a complex interplay between regulatory and sequence evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-5310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
| | - Maartje Liefting
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Emile de Meijer
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacintha Ellers
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Margres MJ, Ruiz-Aravena M, Hamede R, Jones ME, Lawrance MF, Hendricks SA, Patton A, Davis BW, Ostrander EA, McCallum H, Hohenlohe PA, Storfer A. The Genomic Basis of Tumor Regression in Tasmanian Devils (Sarcophilus harrisii). Genome Biol Evol 2018; 10:3012-3025. [PMID: 30321343 PMCID: PMC6251476 DOI: 10.1093/gbe/evy229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic basis of disease-related phenotypes, such as cancer susceptibility, is crucial for the advancement of personalized medicine. Although most cancers are somatic in origin, a small number of transmissible cancers have been documented. Two such cancers have emerged in the Tasmanian devil (Sarcophilus harrisii) and now threaten the species with extinction. Recently, cases of natural tumor regression in Tasmanian devils infected with the clonally contagious cancer have been detected. We used whole-genome sequencing and FST-based approaches to identify the genetic basis of tumor regression by comparing the genomes of seven individuals that underwent tumor regression with those of three infected individuals that did not. We found three highly differentiated candidate genomic regions containing several genes related to immune response and/or cancer risk, indicating that the genomic basis of tumor regression was polygenic. Within these genomic regions, we identified putative regulatory variation in candidate genes but no nonsynonymous variation, suggesting that natural tumor regression may be driven, at least in part, by differential host expression of key loci. Comparative oncology can provide insight into the genetic basis of cancer risk, tumor development, and the pathogenicity of cancer, particularly due to our limited ability to monitor natural, untreated tumor progression in human patients. Our results support the hypothesis that host immune response is necessary for triggering tumor regression, providing candidate genes that may translate to novel treatments in human and nonhuman cancers.
Collapse
Affiliation(s)
- Mark J Margres
- School of Biological Sciences, Washington State University
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Sarah A Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Austin Patton
- School of Biological Sciences, Washington State University
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station.,Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hamish McCallum
- School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Andrew Storfer
- School of Biological Sciences, Washington State University
| |
Collapse
|
14
|
Rohfritsch A, Galan M, Gautier M, Gharbi K, Olsson G, Gschloessl B, Zeimes C, VanWambeke S, Vitalis R, Charbonnel N. Preliminary insights into the genetics of bank vole tolerance to Puumala hantavirus in Sweden. Ecol Evol 2018; 8:11273-11292. [PMID: 30519443 PMCID: PMC6262921 DOI: 10.1002/ece3.4603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Natural reservoirs of zoonotic pathogens generally seem to be capable of tolerating infections. Tolerance and its underlying mechanisms remain difficult to assess using experiments or wildlife surveys. High-throughput sequencing technologies give the opportunity to investigate the genetic bases of tolerance, and the variability of its mechanisms in natural populations. In particular, population genomics may provide preliminary insights into the genes shaping tolerance and potentially influencing epidemiological dynamics. Here, we addressed these questions in the bank vole Myodes glareolus, the specific asymptomatic reservoir host of Puumala hantavirus (PUUV), which causes nephropathia epidemica (NE) in humans. Despite the continuous spatial distribution of M. glareolus in Sweden, NE is endemic to the northern part of the country. Northern bank vole populations in Sweden might exhibit tolerance strategies as a result of coadaptation with PUUV. This may favor the circulation and maintenance of PUUV and lead to high spatial risk of NE in northern Sweden. We performed a genome-scan study to detect signatures of selection potentially correlated with spatial variations in tolerance to PUUV. We analyzed six bank vole populations from Sweden, sampled from northern NE-endemic to southern NE-free areas. We combined candidate gene analyses (Tlr4, Tlr7, and Mx2 genes) and high-throughput sequencing of restriction site-associated DNA (RAD) markers. Outlier loci showed high levels of genetic differentiation and significant associations with environmental data including variations in the regional number of NE human cases. Among the 108 outliers that matched to mouse protein-coding genes, 14 corresponded to immune-related genes. The main biological pathways found to be significantly enriched corresponded to immune processes and responses to hantavirus, including the regulation of cytokine productions, TLR cascades, and IL-7, VEGF, and JAK-STAT signaling. In the future, genome-scan replicates and functional experimentations should enable to assess the role of these biological pathways in M. glareolus tolerance to PUUV.
Collapse
Affiliation(s)
- Audrey Rohfritsch
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Maxime Galan
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Karim Gharbi
- Norwich Research ParkEarlham InstituteNorwich, NorfolkUK
| | - Gert Olsson
- Department of Wildlife, Fish, and Environmental StudiesSLUUmeåSweden
| | - Bernhard Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Caroline Zeimes
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life InstituteUniversité Catholique de Louvain (UCL)Louvain‐la‐NeuveBelgium
| | - Sophie VanWambeke
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life InstituteUniversité Catholique de Louvain (UCL)Louvain‐la‐NeuveBelgium
| | - Renaud Vitalis
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Nathalie Charbonnel
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| |
Collapse
|
15
|
Maiti U, Sadowska ET, ChrzĄścik KM, Koteja P. Experimental evolution of personality traits: open-field exploration in bank voles from a multidirectional selection experiment. Curr Zool 2018; 65:375-384. [PMID: 31413710 PMCID: PMC6688576 DOI: 10.1093/cz/zoy068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/21/2017] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Evolution of complex physiological adaptations could be driven by natural selection acting on behavioral traits. Consequently, animal personality traits and their correlation with physiological traits have become an engaging research area. Here, we applied a unique experimental evolution model-lines of bank voles selected for (A) high exercise-induced aerobic metabolism, (H) ability to cope with low-quality herbivorous diet, and (P) intensity of predatory behavior, that is, traits shaping evolutionary path and diversity of mammals-and asked how the selection affected the voles' personality traits, assessed in an open field test. The A- and P-line voles were more active, whereas the H-line voles were less active, compared those from unselected control lines (C). H-line voles moved slower but on more meandering trajectories, which indicated a more thorough exploration, whereas the A- and P-line voles moved faster and on straighter trajectories. A-line voles showed also an increased escape propensity, whereas P-line voles tended to be bolder. The remarkable correlated responses to the selection indicate a common genetic underlying mechanism of behavioral and physiological traits, and support the paradigm of evolutionary physiology built around the concept of correlated evolution of behavior and physiology.
Collapse
Affiliation(s)
- Uttaran Maiti
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Katarzyna M ChrzĄścik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
16
|
Margres MJ, Wray KP, Hassinger ATB, Ward MJ, McGivern JJ, Moriarty Lemmon E, Lemmon AR, Rokyta DR. Quantity, Not Quality: Rapid Adaptation in a Polygenic Trait Proceeded Exclusively through Expression Differentiation. Mol Biol Evol 2018; 34:3099-3110. [PMID: 28962003 DOI: 10.1093/molbev/msx231] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A trait's genomic architecture can affect the rate and mechanism of adaptation, and although many ecologically-important traits are polygenic, most studies connecting genotype, phenotype, and fitness in natural populations have focused on traits with relatively simple genetic bases. To understand the genetic basis of polygenic adaptation, we must integrate genomics, phenotypic data, ecology, and fitness effects for a genetically tractable, polygenic trait; snake venoms provide such a system for studying polygenic adaptation because of their genetic tractability and vital ecological role in feeding and defense. We used a venom transcriptome-proteome map, quantitative proteomics, genomics, and fitness assays in sympatric prey to construct a genotype-phenotype-fitness map for the venoms of an island-mainland pair of rattlesnake populations. Reciprocal fitness experiments demonstrated that each population was locally adapted to sympatric prey. We identified significant expression differentiation with little to no coding-sequence variation across populations, demonstrating that expression differentiation was exclusively the genetic basis of polygenic adaptation. Previous research on the genetics of adaptation, however, has largely been biased toward investigating protein-coding regions because of the complexity of gene regulation. Our results showed that biases at the molecular level can be in the opposite direction, highlighting the need for more systematic comparisons of different molecular mechanisms underlying rapid, adaptive evolution in polygenic traits.
Collapse
Affiliation(s)
- Mark J Margres
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Kenneth P Wray
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - James J McGivern
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
17
|
Stawski C, Koteja P, Sadowska ET. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism. Front Physiol 2017; 8:1070. [PMID: 29326604 PMCID: PMC5741638 DOI: 10.3389/fphys.2017.01070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022] Open
Abstract
According to the “aerobic capacity model,” endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ) and increasing at ambient temperatures (Ta) below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles (Myodes glareolus) have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (Tb) during exposure to high Ta. To test these hypotheses we measured the RMR and Tb of selected and control voles at Ta from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the Tb of selected lines within the TNZ was greater than the Tb of control lines, particularly at the maximum measured Ta of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT) is significantly lower in the selected lines, the LCT (26.1°C) does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (−28.6°C) than in control lines (−20.2°C). Thus, selection for high aerobic exercise performance, even though operating under thermally neutral conditions, has resulted in the evolution of increased cold tolerance, which, under natural conditions, could allow voles to inhabit colder environments. Further, the results of the current experiment support the assumptions of the aerobic capacity model of the evolution of endothermy.
Collapse
Affiliation(s)
- Clare Stawski
- Faculty of Biology and Earth Sciences, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paweł Koteja
- Faculty of Biology and Earth Sciences, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Edyta T Sadowska
- Faculty of Biology and Earth Sciences, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
18
|
Rudolf AM, Dańko MJ, Sadowska ET, Dheyongera G, Koteja P. Age-related changes of physiological performance and survivorship of bank voles selected for high aerobic capacity. Exp Gerontol 2017; 98:70-79. [PMID: 28803134 DOI: 10.1016/j.exger.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Variation in lifespans is an intriguing phenomenon, but how metabolic rate influence this variation remains unclear. High aerobic capacity can result in health benefits, but also in increased oxidative damage and accelerated ageing. We tested these contradictory predictions using bank voles (Myodes=Clethrionomys glareolus) from lines selected for high swim-induced aerobic metabolism (A), which had about 50% higher maximum metabolic rate and a higher basal and routine metabolic rates, than those from unselected control lines (C). We measured sprint speed (VSmax), forced-running maximum metabolic rate (VO2run), maximum long-distance running speed (VLmax), running speed at VO2run (VVO2), and respiratory quotient at VO2run (RQ) at three age classes (I: 3-5, II: 12-14, III: 17-19months), and analysed survivorship. We asked if ageing, understood as the age-related decline of the performance traits, differs between the A and C lines. At age class I, voles from A lines had 19% higher VO2run, and 12% higher VLmax, but tended to have 19% lower VSmax, than those from C lines. RQ was nearly 1.0 for both A and C lines. The pattern of age-related changes differed between the lines mainly between age classes I and II, but not in older animals. VSmax increased by 27% in A lines and by 10% in C lines between age class I and II, but between classes II and III, it increased by 16% in both selection directions. VO2run decreased by 7% between age class I and II in A lines only, but in C lines it remained constant across all age classes. VLmax decreased by 8% and VVO2 by 12% between age classes II and III, but similarly in both selection directions. Mortality was higher in A than in C lines only between the age of 1 and 4months. The only trait for which the changes in old animals differed between the lines was RQ. In A lines, RQ increased between age classes II and III, whereas in C lines such an increase occurred between age classes I and II. Thus, we did not find obvious effects of selection on the pattern of ageing. However, the physiological performance and mortality of bank voles remained surprisingly robust to ageing, at least until the age of 17-19months, similar to the maximum lifespan under natural conditions. Therefore, it is possible that the selection could affect the pattern of ageing in even older individuals when symptoms of senility might be more profound.
Collapse
Affiliation(s)
- Agata Marta Rudolf
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Maciej Jan Dańko
- Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057 Rostock, Germany
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Geoffrey Dheyongera
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
19
|
Garlapow ME, Everett LJ, Zhou S, Gearhart AW, Fay KA, Huang W, Morozova TV, Arya GH, Turlapati L, St Armour G, Hussain YN, McAdams SE, Fochler S, Mackay TFC. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster. Behav Genet 2017; 47:227-243. [PMID: 27704301 PMCID: PMC5305434 DOI: 10.1007/s10519-016-9819-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Abstract
Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2081 genes and 3526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93 %) affected the mean and/or variance of food consumption.
Collapse
Affiliation(s)
- Megan E Garlapow
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Logan J Everett
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Shanshan Zhou
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Alexander W Gearhart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Kairsten A Fay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Wen Huang
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Tatiana V Morozova
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Yasmeen N Hussain
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sarah E McAdams
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sophia Fochler
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Trudy F C Mackay
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
20
|
Konczal M, Koteja P, Orlowska-Feuer P, Radwan J, Sadowska ET, Babik W. Genomic Response to Selection for Predatory Behavior in a Mammalian Model of Adaptive Radiation. Mol Biol Evol 2016; 33:2429-40. [PMID: 27401229 DOI: 10.1093/molbev/msw121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
If genetic architectures of various quantitative traits are similar, as studies on model organisms suggest, comparable selection pressures should produce similar molecular patterns for various traits. To test this prediction, we used a laboratory model of vertebrate adaptive radiation to investigate the genetic basis of the response to selection for predatory behavior and compare it with evolution of aerobic capacity reported in an earlier work. After 13 generations of selection, the proportion of bank voles (Myodes [=Clethrionomys] glareolus) showing predatory behavior was five times higher in selected lines than in controls. We analyzed the hippocampus and liver transcriptomes and found repeatable changes in allele frequencies and gene expression. Genes with the largest differences between predatory and control lines are associated with hunger, aggression, biological rhythms, and functioning of the nervous system. Evolution of predatory behavior could be meaningfully compared with evolution of high aerobic capacity, because the experiments and analyses were performed in the same methodological framework. The number of genes that changed expression was much smaller in predatory lines, and allele frequencies changed repeatably in predatory but not in aerobic lines. This suggests that more variants of smaller effects underlie variation in aerobic performance, whereas fewer variants of larger effects underlie variation in predatory behavior. Our results thus contradict the view that comparable selection pressures for different quantitative traits produce similar molecular patterns. Therefore, to gain knowledge about molecular-level response to selection for complex traits, we need to investigate not only multiple replicate populations but also multiple quantitative traits.
Collapse
Affiliation(s)
- Mateusz Konczal
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Patrycja Orlowska-Feuer
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Jacek Radwan
- Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Jaromin E, Sadowska ET, Koteja P. A dopamine and noradrenaline reuptake inhibitor (bupropion) does not alter exercise performance of bank voles. Curr Zool 2016; 62:307-315. [PMID: 29491918 PMCID: PMC5804238 DOI: 10.1093/cz/zow026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Physical performance is determined both by biophysical and physiological limitations and behavioral characteristic, specifically motivation. We applied an experimental evolution approach combined with pharmacological manipulation to test the hypothesis that evolution of increased aerobic exercise performance can be triggered by evolution of motivation to undertake physical activity. We used a unique model system: bank voles from A lines, selected for high swim-induced aerobic metabolism (VO2swim), which achieved a 61% higher mass-adjusted VO2swim than those from unselected C lines. Because the voles could float on the water surface with only a minimum activity, the maximum rate of metabolism achieved in that test depended not only on their aerobic capacity, but also on motivation to undertake intensive activity. Therefore, we hypothesized that signaling of neurotransmitters putatively involved in regulating physical activity (dopamine and noradrenaline) had changed in response to selection. We measured VO2swim after intraperitoneal injections of saline or the norepinephrine and dopamine reuptake inhibitor bupropion (20 mg/kg or 30 mg/kg). Additionally, we measured forced-exercise VO2 (VO2max). In C lines, VO2swim (mass-adjusted mean ± standard error (SE): 4.0 ± 0.1 mLO2/min) was lower than VO2max (5.0 ± 0.1 mLO2/min), but in A lines VO2swim (6.0 ± 0.1 mLO2/min) was as high as VO2max (6.0 ± 0.1 mLO2/min). Thus, the selection effectively changed both the physiological-physical performance limit and mechanisms responsible for the willingness to undertake vigorous locomotor activity. Surprisingly, the drug had no effect on the achieved level of VO2swim. Thus, the results did not allow firm conclusions concerning involvement of these neurotransmitters in evolution of increased aerobic exercise performance in the experimental evolution model system.
Collapse
Affiliation(s)
- Ewa Jaromin
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
22
|
Kohl KD, Sadowska ET, Rudolf AM, Dearing MD, Koteja P. Experimental Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial Communities. Front Microbiol 2016; 7:634. [PMID: 27199960 PMCID: PMC4854874 DOI: 10.3389/fmicb.2016.00634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/18/2016] [Indexed: 01/15/2023] Open
Abstract
Comparative studies have shown that diet, life history, and phylogeny interact to determine microbial community structure across mammalian hosts. However, these studies are often confounded by numerous factors. Selection experiments offer unique opportunities to validate conclusions and test hypotheses generated by comparative studies. We used a replicated, 15-generation selection experiment on bank voles (Myodes glareolus) that have been selected for high swim-induced aerobic metabolism, predatory behavior toward crickets, and the ability to maintain body mass on a high-fiber, herbivorous diet. We predicted that selection on host performance, mimicking adaptive radiation, would result in distinct microbial signatures. We collected foregut and cecum samples from animals that were all fed the same nutrient-rich diet and had not been subjected to any performance tests. We conducted microbial inventories of gut contents by sequencing the V4 region of the 16S rRNA gene. We found no differences in cecal microbial community structure or diversity between control lines and the aerobic or predatory lines. However, the cecal chambers of voles selected for herbivorous capability harbored distinct microbial communities that exhibited higher diversity than control lines. The foregut communities of herbivorous-selected voles were also distinct from control lines. Overall, this experiment suggests that differences in microbial communities across herbivorous mammals may be evolved, and not solely driven by current diet or other transient factors.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University Kraków, Poland
| | - Agata M Rudolf
- Institute of Environmental Sciences, Jagiellonian University Kraków, Poland
| | - M Denise Dearing
- Department of Biology, University of Utah Salt Lake City, UT, USA
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University Kraków, Poland
| |
Collapse
|
23
|
Sadowska ET, Stawski C, Rudolf A, Dheyongera G, Chrząścik KM, Baliga-Klimczyk K, Koteja P. Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment. Proc Biol Sci 2016; 282:20150025. [PMID: 25876844 DOI: 10.1098/rspb.2015.0025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major theme in evolutionary and ecological physiology of terrestrial vertebrates encompasses the factors underlying the evolution of endothermy in birds and mammals and interspecific variation of basal metabolic rate (BMR). Here, we applied the experimental evolution approach and compared BMR in lines of a wild rodent, the bank vole (Myodes glareolus), selected for 11 generations for: high swim-induced aerobic metabolism (A), ability to maintain body mass on a low-quality herbivorous diet (H) and intensity of predatory behaviour towards crickets (P). Four replicate lines were maintained for each of the selection directions and an unselected control (C). In comparison to C lines, A lines achieved a 49% higher maximum rate of oxygen consumption during swimming, H lines lost 1.3 g less mass in the test with low-quality diet and P lines attacked crickets five times more frequently. BMR was significantly higher in A lines than in C or H lines (60.8, 56.6 and 54.4 ml O2 h(-1), respectively), and the values were intermediate in P lines (59.0 ml O2 h(-1)). Results of the selection experiment provide support for the hypothesis of a positive association between BMR and aerobic exercise performance, but not for the association of adaptation to herbivorous diet with either a high or low BMR.
Collapse
Affiliation(s)
- Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Clare Stawski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Agata Rudolf
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Geoffrey Dheyongera
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Katarzyna M Chrząścik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Katarzyna Baliga-Klimczyk
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| |
Collapse
|
24
|
Sadowska ET, Król E, Chrzascik KM, Rudolf AM, Speakman JR, Koteja P. Limits to sustained energy intake. XXIII. Does heat dissipation capacity limit the energy budget of lactating bank voles? ACTA ACUST UNITED AC 2016; 219:805-15. [PMID: 26747907 DOI: 10.1242/jeb.134437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/28/2015] [Indexed: 01/13/2023]
Abstract
Understanding factors limiting sustained metabolic rate (SusMR) is a central issue in ecological physiology. According to the heat dissipation limit (HDL) theory, the SusMR at peak lactation is constrained by the maternal capacity to dissipate body heat. To test that theory, we shaved lactating bank voles (Myodes glareolus) to experimentally elevate their capacity for heat dissipation. The voles were sampled from lines selected for high aerobic exercise metabolism (A; characterized also by increased basal metabolic rate) and unselected control lines (C). Fur removal significantly increased the peak-lactation food intake (mass-adjusted least square means ± s.e.; shaved: 16.3 ± 0.3 g day(-1), unshaved: 14.4 ± 0.2 g day(-1); P<0.0001), average daily metabolic rate (shaved: 109 ± 2 kJ day(-1), unshaved: 97 ± 2 kJ day(-1); P<0.0001) and metabolisable energy intake (shaved: 215 ± 4 kJ day(-1), unshaved: 185 ± 4 kJ day(-1); P<0.0001), as well as the milk energy output (shaved: 104 ± 4 kJ day(-1); unshaved: 93 ± 4 kJ day(-1); P=0.021) and litter growth rate (shaved: 9.4 ± 0.7 g 4 days(-1), unshaved: 7.7 ± 0.7 g 4 days(-1); P=0.028). Thus, fur removal increased both the total energy budget and reproductive output at the most demanding period of lactation, which supports the HDL theory. However, digestive efficiency was lower in shaved voles (76.0 ± 0.3%) than in unshaved ones (78.5 ± 0.2%; P<0.0001), which may indicate that a limit imposed by the capacity of the alimentary system was also approached. Shaving similarly affected the metabolic and reproductive traits in voles from the A and C lines. Thus, the experimental evolution model did not reveal a difference in the limiting mechanism between animals with inherently different metabolic rates.
Collapse
Affiliation(s)
- Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Katarzyna M Chrzascik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Agata M Rudolf
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beichen Xi Lu, Chaoyang, Beijing 100101, People's Republic of China
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| |
Collapse
|
25
|
Storz JF, Bridgham JT, Kelly SA, Garland T. Genetic approaches in comparative and evolutionary physiology. Am J Physiol Regul Integr Comp Physiol 2015; 309:R197-214. [PMID: 26041111 PMCID: PMC4525326 DOI: 10.1152/ajpregu.00100.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/23/2015] [Indexed: 01/04/2023]
Abstract
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | - Jamie T Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio; and
| | - Theodore Garland
- Department of Biology, University of California, Riverside, Riverside, California
| |
Collapse
|
26
|
Caspermeyer J. Turning a Vole into a Mighty Rodent. Mol Biol Evol 2015; 32:1657. [DOI: 10.1093/molbev/msv065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Ołdakowski Ł, Wasiluk A, Sadowska ET, Koteja P, Taylor JRE. Reproduction is not costly in terms of oxidative stress. J Exp Biol 2015; 218:3901-10. [DOI: 10.1242/jeb.126557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
One of the core assumptions of life-history theory is the negative trade-off between current and future reproduction. Investment in current reproduction is expected to decrease future reproductive success or survival, but the physiological mechanisms underlying these costs are still obscure. To test for a role of oxidative stress, we measured oxidative damage to lipids and proteins in liver, heart, kidneys, and muscles, as well as the level of antioxidants (total glutathione and catalase), in breeding and non-breeding bank voles. We used females from lines selected for high aerobic metabolism and non-selected control lines and manipulated their reproductive investment by decreasing or increasing litter size. Unlike in most previous studies, the females reared four consecutive litters (the maximum possible during a breeding season). Contrary to predictions, oxidative damage in reproducing females was decreased or not changed, and did not differ between the selected and control lines. Oxidative damage to lipids and proteins in liver was lower in females that weaned enlarged litters than in non-breeding ones, and was intermediate in those with reduced litters. Oxidative damage to proteins in the heart also tended to be lower in breeding females than in non-breeding ones. A negative relationship between the level of oxidative damage and activity of catalase in kidneys indicated a protective action of antioxidants. In conclusion, our study falsified the hypothesis that oxidative stress is a part of the proximate physiological mechanism underlying the fundamental life-history trade-off between current and future reproduction.
Collapse
Affiliation(s)
- Łukasz Ołdakowski
- Institute of Biology, University of Białystok, Ciołkowskiego 1 J, PL 15-245 Białystok, Poland
| | - Aleksandra Wasiluk
- Institute of Biology, University of Białystok, Ciołkowskiego 1 J, PL 15-245 Białystok, Poland
| | - Edyta T. Sadowska
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, PL 30-387 Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, PL 30-387 Kraków, Poland
| | - Jan R. E. Taylor
- Institute of Biology, University of Białystok, Ciołkowskiego 1 J, PL 15-245 Białystok, Poland
| |
Collapse
|